共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Neuhaus JM 《Biometrics》2002,58(3):675-683
Misclassified clustered and longitudinal data arise in studies where the response indicates a condition identified through an imperfect diagnostic procedure. Examples include longitudinal studies that use an imperfect diagnostic test to assess whether or not an individual has been infected with a specific virus. This article presents methods to implement both population-averaged and cluster-specific analyses of such data when the misclassification rates are known. The methods exploit the fact that the class of generalized linear models enjoys a closure property in the case of misclassified responses. Data from longitudinal studies of infectious disease will illustrate the findings. 相似文献
3.
Pan W 《Biometrics》2001,57(1):120-125
Correlated response data are common in biomedical studies. Regression analysis based on the generalized estimating equations (GEE) is an increasingly important method for such data. However, there seem to be few model-selection criteria available in GEE. The well-known Akaike Information Criterion (AIC) cannot be directly applied since AIC is based on maximum likelihood estimation while GEE is nonlikelihood based. We propose a modification to AIC, where the likelihood is replaced by the quasi-likelihood and a proper adjustment is made for the penalty term. Its performance is investigated through simulation studies. For illustration, the method is applied to a real data set. 相似文献
4.
Dominici F Zanobetti A Zeger SL Schwartz J Samet JM 《Biostatistics (Oxford, England)》2004,5(3):341-360
In this paper we develop a hierarchical bivariate time series model to characterize the relationship between particulate matter less than 10 microns in aerodynamic diameter (PM10) and both mortality and hospital admissions for cardiovascular diseases. The model is applied to time series data on mortality and morbidity for 10 metropolitan areas in the United States from 1986 to 1993. We postulate that these time series should be related through a shared relationship with PM10. At the first stage of the hierarchy, we fit two seemingly unrelated Poisson regression models to produce city-specific estimates of the log relative rates of mortality and morbidity associated with exposure to PM10 within each location. The sample covariance matrix of the estimated log relative rates is obtained using a novel generalized estimating equation approach that takes into account the correlation between the mortality and morbidity time series. At the second stage, we combine information across locations to estimate overall log relative rates of mortality and morbidity and variation of the rates across cities. Using the combined information across the 10 locations we find that a 10 microg/m3 increase in average PM10 at the current day and previous day is associated with a 0.26% increase in mortality (95% posterior interval -0.37, 0.65), and a 0.71% increase in hospital admissions (95% posterior interval 0.35, 0.99). The log relative rates of mortality and morbidity have a similar degree of heterogeneity across cities: the posterior means of the between-city standard deviations of the mortality and morbidity air pollution effects are 0.42 (95% interval 0.05, 1.18), and 0.31 (95% interval 0.10, 0.89), respectively. The city-specific log relative rates of mortality and morbidity are estimated to have very low correlation, but the uncertainty in the correlation is very substantial (posterior mean = 0.20, 95% interval -0.89, 0.98). With the parameter estimates from the model, we can predict the hospitalization log relative rate for a new city for which hospitalization data are unavailable, using that city's estimated mortality relative rate. We illustrate this prediction using New York as an example. 相似文献
5.
This article applies a simple method for settings where one has clustered data, but statistical methods are only available for independent data. We assume the statistical method provides us with a normally distributed estimate, theta, and an estimate of its variance sigma. We randomly select a data point from each cluster and apply our statistical method to this independent data. We repeat this multiple times, and use the average of the associated theta's as our estimate. An estimate of the variance is given by the average of the sigma2's minus the sample variance of the theta's. We call this procedure multiple outputation, as all \"excess\" data within each cluster is thrown out multiple times. Hoffman, Sen, and Weinberg (2001, Biometrika 88, 1121-1134) introduced this approach for generalized linear models when the cluster size is related to outcome. In this article, we demonstrate the broad applicability of the approach. Applications to angular data, p-values, vector parameters, Bayesian inference, genetics data, and random cluster sizes are discussed. In addition, asymptotic normality of estimates based on all possible outputations, as well as a finite number of outputations, is proven given weak conditions. Multiple outputation provides a simple and broadly applicable method for analyzing clustered data. It is especially suited to settings where methods for clustered data are impractical, but can also be applied generally as a quick and simple tool. 相似文献
6.
Summary. Continuous proportional data arise when the response of interest is a percentage between zero and one, e.g., the percentage of decrease in renal function at different follow‐up times from the baseline. In this paper, we propose methods to directly model the marginal means of the longitudinal proportional responses using the simplex distribution of Barndorff‐Nielsen and Jørgensen that takes into account the fact that such responses are percentages restricted between zero and one and may as well have large dispersion. Parameters in such a marginal model are estimated using an extended version of the generalized estimating equations where the score vector is a nonlinear function of the observed response. The method is illustrated with an ophthalmology study on the use of intraocular gas in retinal repair surgeries. 相似文献
7.
In certain diseases, outcome is the number of morbid events over the course of follow-up. In epilepsy, e.g., daily seizure counts are often used to reflect disease severity. Follow-up of patients in clinical trials of such diseases is often subject to censoring due to patients dying or dropping out. If the sicker patients tend to be censored in such trials, estimates of the treatment effect that do not incorporate the censoring process may be misleading. We extend the shared random effects approach of Wu and Carroll (1988, Biometrics 44, 175-188) to the setting of repeated counts of events. Three strategies are developed. The first is a likelihood-based approach for jointly modeling the count and censoring processes. A shared random effect is incorporated to introduce dependence between the two processes. The second is a likelihood-based approach that conditions on the dropout times in adjusting for informative dropout. The third is a generalized estimating equations (GEE) approach, which also conditions on the dropout times but makes fewer assumptions about the distribution of the count process. Estimation procedures for each of the approaches are discussed, and the approaches are applied to data from an epilepsy clinical trial. A simulation study is also conducted to compare the various approaches. Through analyses and simulations, we demonstrate the flexibility of the likelihood-based conditional model for analyzing data from the epilepsy trial. 相似文献
8.
9.
In recent years there has been considerable research devoted to the development of methods for the analysis of incomplete data in longitudinal studies. Despite these advances, the methods used in practice have changed relatively little, particularly in the reporting of pharmaceutical trials. In this setting, perhaps the most widely adopted strategy for dealing with incomplete longitudinal data is imputation by the \"last observation carried forward\" (LOCF) approach, in which values for missing responses are imputed using observations from the most recently completed assessment. We examine the asymptotic and empirical bias, the empirical type I error rate, and the empirical coverage probability associated with estimators and tests of treatment effect based on the LOCF imputation strategy. We consider a setting involving longitudinal binary data with longitudinal analyses based on generalized estimating equations, and an analysis based simply on the response at the end of the scheduled follow-up. We find that for both of these approaches, imputation by LOCF can lead to substantial biases in estimators of treatment effects, the type I error rates of associated tests can be greatly inflated, and the coverage probability can be far from the nominal level. Alternative analyses based on all available data lead to estimators with comparatively small bias, and inverse probability weighted analyses yield consistent estimators subject to correct specification of the missing data process. We illustrate the differences between various methods of dealing with drop-outs using data from a study of smoking behavior. 相似文献
10.
Mayile Caizares Prez Lydia Lera Marqus 《Biometrical journal. Biometrische Zeitschrift》2001,43(3):343-356
This paper shows the effect of sample design on the Discriminant Analysis for two groups by means of a simulation study involving stratified design. Four criteria of discrimination are used and compared. Also, the equivalency between the Multiple Linear Regression using the Generalized Estimating Equations and the Discriminant Analysis for two normal populations from a Complex Design is proved. The results are applied to an epidemiological problem. 相似文献
11.
This paper considers the impact of bias in the estimation of the association parameters for longitudinal binary responses when there are drop-outs. A number of different estimating equation approaches are considered for the case where drop-out cannot be assumed to be a completely random process. In particular, standard generalized estimating equations (GEE), GEE based on conditional residuals, GEE based on multivariate normal estimating equations for the covariance matrix, and second-order estimating equations (GEE2) are examined. These different GEE estimators are compared in terms of finite sample and asymptotic bias under a variety of drop-out processes. Finally, the relationship between bias in the estimation of the association parameters and bias in the estimation of the mean parameters is explored. 相似文献
12.
Wei Pan 《Biometrics》2001,57(2):529-534
Model selection is a necessary step in many practical regression analyses. But for methods based on estimating equations, such as the quasi-likelihood and generalized estimating equation (GEE) approaches, there seem to be few well-studied model selection techniques. In this article, we propose a new model selection criterion that minimizes the expected predictive bias (EPB) of estimating equations. A bootstrap smoothed cross-validation (BCV) estimate of EPB is presented and its performance is assessed via simulation for overdispersed generalized linear models. For illustration, the method is applied to a real data set taken from a study of the development of ewe embryos. 相似文献
13.
14.
Generalized estimating equations (GEE) for the analysis of clustered data have gained increasing popularity. Recently, the first monograph on this method has been published. GEE have been repeatedly applied in controlled clinical trials. They have, however, been generally used as secondary or supplementary analysis. Instead, the primary analysis was mostly based on a classical method that usually ignored the clustered – mostly longitudinal – nature of the data. In this paper, we discuss the applicability of GEE as primary analysis in controlled clinical trials. From theoretical results in the literature, we derive recommendations how GEE should be used in therapeutic studies for testing statistical hypotheses. We hope that our paper is the starting point for a thorough discussion on the most appropriate analysis of controlled clinical trials with clustered dependent variables. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
15.
16.
The generalized estimating equations (GEE) derived by Liang and Zeger to analyze longitudinal data have been used in a wide range of medical and biological applications. To make regression a useful and meaningful statistical tool, emphasis should be placed not only on inference or fitting, but also on diagnosing potential data problems. Most of the usual diagnostics for linear regression models have been generalized for GEE. However, global influence measures based on the volume of confidence ellipsoids are not available for GEE analysis. This article presents an extension of these measures that is valid for correlated‐measures regression analysis using GEEs. The proposed measures are illustrated by an analysis of epileptic seizure count data arising from a study of prograbide as an adjuvant therapy for partial seizures and some simulated data sets. 相似文献
17.
Summary . A common and important problem in clustered sampling designs is that the effect of within-cluster exposures (i.e., exposures that vary within clusters) on outcome may be confounded by both measured and unmeasured cluster-level factors (i.e., measurements that do not vary within clusters). When some of these are ill/not accounted for, estimation of this effect through population-averaged models or random-effects models may introduce bias. We accommodate this by developing a general theory for the analysis of clustered data, which enables consistent and asymptotically normal estimation of the effects of within-cluster exposures in the presence of cluster-level confounders. Semiparametric efficient estimators are obtained by solving so-called conditional generalized estimating equations. We compare this approach with a popular proposal by Neuhaus and Kalbfleisch (1998, Biometrics 54, 638–645) who separate the exposure effect into a within- and a between-cluster component within a random intercept model. We find that the latter approach yields consistent and efficient estimators when the model is linear, but is less flexible in terms of model specification. Under nonlinear models, this approach may yield inconsistent and inefficient estimators, though with little bias in most practical settings. 相似文献
18.
We describe an algorithm based upon the Sherman–Morrison–Woodburyformula for the inversion of matrices with special structurethat occur in formulae for deletion diagnostics. Substantialcomputational savings relative to a method based upon Cholesky'sdecomposition are illustrated. The result has broad applicationto regression diagnostics for clustered data. 相似文献
19.
20.
In this paper, we develop a Gaussian estimation (GE) procedure to estimate the parameters of a regression model for correlated (longitudinal) binary response data using a working correlation matrix. A two‐step iterative procedure is proposed for estimating the regression parameters by the GE method and the correlation parameters by the method of moments. Consistency properties of the estimators are discussed. A simulation study was conducted to compare 11 estimators of the regression parameters, namely, four versions of the GE, five versions of the generalized estimating equations (GEEs), and two versions of the weighted GEE. Simulations show that (i) the Gaussian estimates have the smallest mean square error and best coverage probability if the working correlation structure is correctly specified and (ii) when the working correlation structure is correctly specified, the GE and the GEE with exchangeable correlation structure perform best as opposed to when the correlation structure is misspecified. 相似文献