首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regression modeling of semicompeting risks data   总被引:1,自引:0,他引:1  
Peng L  Fine JP 《Biometrics》2007,63(1):96-108
Semicompeting risks data are often encountered in clinical trials with intermediate endpoints subject to dependent censoring from informative dropout. Unlike with competing risks data, dropout may not be dependently censored by the intermediate event. There has recently been increased attention to these data, in particular inferences about the marginal distribution of the intermediate event without covariates. In this article, we incorporate covariates and formulate their effects on the survival function of the intermediate event via a functional regression model. To accommodate informative censoring, a time-dependent copula model is proposed in the observable region of the data which is more flexible than standard parametric copula models for the dependence between the events. The model permits estimation of the marginal distribution under weaker assumptions than in previous work on competing risks data. New nonparametric estimators for the marginal and dependence models are derived from nonlinear estimating equations and are shown to be uniformly consistent and to converge weakly to Gaussian processes. Graphical model checking techniques are presented for the assumed models. Nonparametric tests are developed accordingly, as are inferences for parametric submodels for the time-varying covariate effects and copula parameters. A novel time-varying sensitivity analysis is developed using the estimation procedures. Simulations and an AIDS data analysis demonstrate the practical utility of the methodology.  相似文献   

2.
3.
4.
Neuhaus JM 《Biometrics》2002,58(3):675-683
Misclassified clustered and longitudinal data arise in studies where the response indicates a condition identified through an imperfect diagnostic procedure. Examples include longitudinal studies that use an imperfect diagnostic test to assess whether or not an individual has been infected with a specific virus. This article presents methods to implement both population-averaged and cluster-specific analyses of such data when the misclassification rates are known. The methods exploit the fact that the class of generalized linear models enjoys a closure property in the case of misclassified responses. Data from longitudinal studies of infectious disease will illustrate the findings.  相似文献   

5.
Lin DY  Wei LJ  Ying Z 《Biometrics》2002,58(1):1-12
Residuals have long been used for graphical and numerical examinations of the adequacy of regression models. Conventional residual analysis based on the plots of raw residuals or their smoothed curves is highly subjective, whereas most numerical goodness-of-fit tests provide little information about the nature of model misspecification. In this paper, we develop objective and informative model-checking techniques by taking the cumulative sums of residuals over certain coordinates (e.g., covariates or fitted values) or by considering some related aggregates of residuals, such as moving sums and moving averages. For a variety of statistical models and data structures, including generalized linear models with independent or dependent observations, the distributions of these stochastic processes tinder the assumed model can be approximated by the distributions of certain zero-mean Gaussian processes whose realizations can be easily generated by computer simulation. Each observed process can then be compared, both graphically and numerically, with a number of realizations from the Gaussian process. Such comparisons enable one to assess objectively whether a trend seen in a residual plot reflects model misspecification or natural variation. The proposed techniques are particularly useful in checking the functional form of a covariate and the link function. Illustrations with several medical studies are provided.  相似文献   

6.
We propose parametric regression analysis of cumulative incidence function with competing risks data. A simple form of Gompertz distribution is used for the improper baseline subdistribution of the event of interest. Maximum likelihood inferences on regression parameters and associated cumulative incidence function are developed for parametric models, including a flexible generalized odds rate model. Estimation of the long-term proportion of patients with cause-specific events is straightforward in the parametric setting. Simple goodness-of-fit tests are discussed for evaluating a fixed odds rate assumption. The parametric regression methods are compared with an existing semiparametric regression analysis on a breast cancer data set where the cumulative incidence of recurrence is of interest. The results demonstrate that the likelihood-based parametric analyses for the cumulative incidence function are a practically useful alternative to the semiparametric analyses.  相似文献   

7.
This article applies a simple method for settings where one has clustered data, but statistical methods are only available for independent data. We assume the statistical method provides us with a normally distributed estimate, theta, and an estimate of its variance sigma. We randomly select a data point from each cluster and apply our statistical method to this independent data. We repeat this multiple times, and use the average of the associated theta's as our estimate. An estimate of the variance is given by the average of the sigma2's minus the sample variance of the theta's. We call this procedure multiple outputation, as all "excess" data within each cluster is thrown out multiple times. Hoffman, Sen, and Weinberg (2001, Biometrika 88, 1121-1134) introduced this approach for generalized linear models when the cluster size is related to outcome. In this article, we demonstrate the broad applicability of the approach. Applications to angular data, p-values, vector parameters, Bayesian inference, genetics data, and random cluster sizes are discussed. In addition, asymptotic normality of estimates based on all possible outputations, as well as a finite number of outputations, is proven given weak conditions. Multiple outputation provides a simple and broadly applicable method for analyzing clustered data. It is especially suited to settings where methods for clustered data are impractical, but can also be applied generally as a quick and simple tool.  相似文献   

8.
Marginal models for longitudinal continuous proportional data   总被引:5,自引:0,他引:5  
Song PX  Tan M 《Biometrics》2000,56(2):496-502
Summary. Continuous proportional data arise when the response of interest is a percentage between zero and one, e.g., the percentage of decrease in renal function at different follow‐up times from the baseline. In this paper, we propose methods to directly model the marginal means of the longitudinal proportional responses using the simplex distribution of Barndorff‐Nielsen and Jørgensen that takes into account the fact that such responses are percentages restricted between zero and one and may as well have large dispersion. Parameters in such a marginal model are estimated using an extended version of the generalized estimating equations where the score vector is a nonlinear function of the observed response. The method is illustrated with an ophthalmology study on the use of intraocular gas in retinal repair surgeries.  相似文献   

9.
Cook RJ  Zeng L  Yi GY 《Biometrics》2004,60(3):820-828
In recent years there has been considerable research devoted to the development of methods for the analysis of incomplete data in longitudinal studies. Despite these advances, the methods used in practice have changed relatively little, particularly in the reporting of pharmaceutical trials. In this setting, perhaps the most widely adopted strategy for dealing with incomplete longitudinal data is imputation by the "last observation carried forward" (LOCF) approach, in which values for missing responses are imputed using observations from the most recently completed assessment. We examine the asymptotic and empirical bias, the empirical type I error rate, and the empirical coverage probability associated with estimators and tests of treatment effect based on the LOCF imputation strategy. We consider a setting involving longitudinal binary data with longitudinal analyses based on generalized estimating equations, and an analysis based simply on the response at the end of the scheduled follow-up. We find that for both of these approaches, imputation by LOCF can lead to substantial biases in estimators of treatment effects, the type I error rates of associated tests can be greatly inflated, and the coverage probability can be far from the nominal level. Alternative analyses based on all available data lead to estimators with comparatively small bias, and inverse probability weighted analyses yield consistent estimators subject to correct specification of the missing data process. We illustrate the differences between various methods of dealing with drop-outs using data from a study of smoking behavior.  相似文献   

10.
The generalized estimating equations (GEE) derived by Liang and Zeger to analyze longitudinal data have been used in a wide range of medical and biological applications. To make regression a useful and meaningful statistical tool, emphasis should be placed not only on inference or fitting, but also on diagnosing potential data problems. Most of the usual diagnostics for linear regression models have been generalized for GEE. However, global influence measures based on the volume of confidence ellipsoids are not available for GEE analysis. This article presents an extension of these measures that is valid for correlated‐measures regression analysis using GEEs. The proposed measures are illustrated by an analysis of epileptic seizure count data arising from a study of prograbide as an adjuvant therapy for partial seizures and some simulated data sets.  相似文献   

11.
Summary .   A common and important problem in clustered sampling designs is that the effect of within-cluster exposures (i.e., exposures that vary within clusters) on outcome may be confounded by both measured and unmeasured cluster-level factors (i.e., measurements that do not vary within clusters). When some of these are ill/not accounted for, estimation of this effect through population-averaged models or random-effects models may introduce bias. We accommodate this by developing a general theory for the analysis of clustered data, which enables consistent and asymptotically normal estimation of the effects of within-cluster exposures in the presence of cluster-level confounders. Semiparametric efficient estimators are obtained by solving so-called conditional generalized estimating equations. We compare this approach with a popular proposal by Neuhaus and Kalbfleisch (1998, Biometrics 54, 638–645) who separate the exposure effect into a within- and a between-cluster component within a random intercept model. We find that the latter approach yields consistent and efficient estimators when the model is linear, but is less flexible in terms of model specification. Under nonlinear models, this approach may yield inconsistent and inefficient estimators, though with little bias in most practical settings.  相似文献   

12.
In this paper we develop a hierarchical bivariate time series model to characterize the relationship between particulate matter less than 10 microns in aerodynamic diameter (PM10) and both mortality and hospital admissions for cardiovascular diseases. The model is applied to time series data on mortality and morbidity for 10 metropolitan areas in the United States from 1986 to 1993. We postulate that these time series should be related through a shared relationship with PM10. At the first stage of the hierarchy, we fit two seemingly unrelated Poisson regression models to produce city-specific estimates of the log relative rates of mortality and morbidity associated with exposure to PM10 within each location. The sample covariance matrix of the estimated log relative rates is obtained using a novel generalized estimating equation approach that takes into account the correlation between the mortality and morbidity time series. At the second stage, we combine information across locations to estimate overall log relative rates of mortality and morbidity and variation of the rates across cities. Using the combined information across the 10 locations we find that a 10 microg/m3 increase in average PM10 at the current day and previous day is associated with a 0.26% increase in mortality (95% posterior interval -0.37, 0.65), and a 0.71% increase in hospital admissions (95% posterior interval 0.35, 0.99). The log relative rates of mortality and morbidity have a similar degree of heterogeneity across cities: the posterior means of the between-city standard deviations of the mortality and morbidity air pollution effects are 0.42 (95% interval 0.05, 1.18), and 0.31 (95% interval 0.10, 0.89), respectively. The city-specific log relative rates of mortality and morbidity are estimated to have very low correlation, but the uncertainty in the correlation is very substantial (posterior mean = 0.20, 95% interval -0.89, 0.98). With the parameter estimates from the model, we can predict the hospitalization log relative rate for a new city for which hospitalization data are unavailable, using that city's estimated mortality relative rate. We illustrate this prediction using New York as an example.  相似文献   

13.
We introduce a novel approach for describing patterns of HIV genetic variation using regression modeling techniques. Parameters are defined for describing genetic variation within and between viral populations by generalizing Simpson's index of diversity. Regression models are specified for these variation parameters and the generalized estimating equation framework is used for estimating both the regression parameters and their corresponding variances. Conditions are described under which the usual asymptotic approximations to the distribution of the estimators are met. This approach provides a formal statistical framework for testing hypotheses regarding the changing patterns of HIV genetic variation over time within an infected patient. The application of these methods for testing biologically relevant hypotheses concerning HIV genetic variation is demonstrated in an example using sequence data from a subset of patients from the Multicenter AIDS Cohort Study.  相似文献   

14.
15.
Registry data typically report incident cases within a certain calendar time interval. Such interval sampling induces double truncation on the incidence times, which may result in an observational bias. In this paper, we introduce nonparametric estimation for the cumulative incidences of competing risks when the incidence time is doubly truncated. Two different estimators are proposed depending on whether the truncation limits are independent of the competing events or not. The asymptotic properties of the estimators are established, and their finite sample performance is investigated through simulations. For illustration purposes, the estimators are applied to childhood cancer registry data, where the target population is peculiarly defined conditional on future cancer development. Then, in our application, the cumulative incidences inform on the distribution by age of the different types of cancer.  相似文献   

16.
17.
This paper shows the effect of sample design on the Discriminant Analysis for two groups by means of a simulation study involving stratified design. Four criteria of discrimination are used and compared. Also, the equivalency between the Multiple Linear Regression using the Generalized Estimating Equations and the Discriminant Analysis for two normal populations from a Complex Design is proved. The results are applied to an epidemiological problem.  相似文献   

18.
19.
The differential reinforcement of low-rate 72 seconds schedule (DRL-72) is a standard behavioral test procedure for screening potential antidepressant compounds. The protocol for the DRL-72 experiment, proposed by Evenden et al. (1993), consists of using a crossover design for the experiment and one-way ANOVA for the statistical analysis. In this paper we discuss the choice of several crossover designs for the DRL-72 experiment and propose to estimate the treatment effects using either generalized linear mixed models (GLMM) or generalized estimating equation (GEE) models for clustered binary data.  相似文献   

20.
Coull BA  Agresti A 《Biometrics》2000,56(1):73-80
The multivariate binomial logit-normal distribution is a mixture distribution for which, (i) conditional on a set of success probabilities and sample size indices, a vector of counts is independent binomial variates, and (ii) the vector of logits of the parameters has a multivariate normal distribution. We use this distribution to model multivariate binomial-type responses using a vector of random effects. The vector of logits of parameters has a mean that is a linear function of explanatory variables and has an unspecified or partly specified covariance matrix. The model generalizes and provides greater flexibility than the univariate model that uses a normal random effect to account for positive correlations in clustered data. The multivariate model is useful when different elements of the response vector refer to different characteristics, each of which may naturally have its own random effect. It is also useful for repeated binary measurement of a single response when there is a nonexchangeable association structure, such as one often expects with longitudinal data or when negative association exists for at least one pair of responses. We apply the model to an influenza study with repeated responses in which some pairs are negatively associated and to a developmental toxicity study with continuation-ratio logits applied to an ordinal response with clustered observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号