首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Two subunits from Xenopus , XenNR1G and the "short" subunit XenU1, have previously been coexpressed to form a unitary (NMDA/non-NMDA type) glutamate receptor. We now show that an antibody to XenNR1G or an antibody to XenU1 precipitates the binding sites of both XenNR1G and XenU1, with the recombinant subunits or with solubilised Xenopus brain membranes, i.e., the combination occurs in vivo. The expressed XenU1 subunits are in the cell membrane and oriented correctly. XenU1 binds not only kainate with high affinity ( K D 1.2 n M at 25°C), but also the glycine site antagonist 5,7-dichlorokynurenic acid (DCKA). DCKA, GTP, or GTPγS displaces competitively all of the bound [3H]kainate, but glycine has no effect. The results suggest that a common binding site for kainate, DCKA, and GTP can exist on XenU1. In the XenNR1G/XenU1 complex, the kainate affinity is lowered eightfold, whereas the DCKA affinity is considerably increased ( K D 147 n M ). Only 18% of the binding to the complex has the properties of the NMDA receptor glycine site, the rest being due to switching of the high-affinity kainate site of XenU1 (low-affinity DCKA) to a high-affinity DCKA (low-affinity kainate) conformation. Surprisingly, a mammalian NR2 subunit can also combine with XenU1, and this introduces similar reciprocal changes in the binding of kainate and DCKA. The combined evidence suggests a common basic mode of agonist site formation in different subunit types of the ionotropic glutamate receptors.  相似文献   

2.
Abstract— Recent reports have suggested that a major proportion of [3H]kainate binding in goldfish brain is to a novel form of G-protein-linked glutamate receptor. Here we confirm that guanine nucleotides decrease [3H]kainate binding in goldfish brain membranes, but that binding is also reduced to a similar extent under conditions where G-protein modulation should be minimised. Inclusion of GTPγS resulted in an approximately twofold decrease in the affinity of [3H]kainate binding and a 50% reduction in the apparent B max values in both Mg2+/Na+ and Mg2+/Na+-free buffer when assayed at 0°c. The pharmacology of [3H]kainate binding is similar to that of well-characterised ionotropic kainate receptors but unlike that of known me-tabotropic glutamate receptors, with neither 1 S ,3 R -amino-1,3-cyclopentanedicarboxylic acid (1 S ,3 R -ACPD) nor ibo-tenic acid being effective competitors. The molecular mass of the [3H]kainate binding protein, as determined by radiation inactivation, was 40 kDa, similar to the subunit sizes of other lower vertebrate kainate binding proteins that are believed to comprise ligand-gated ion channels. Furthermore, GTP-γS also inhibited the binding of the non-NMDA receptor-selective antagonist 6-[3H]cyano-7-ni-troquinoxaline-2,3-dione. These data strongly suggest that the regulatory interaction between guanine nucleotides and [3H]kainate and 6-[3H]cyano-7-nitroquinoxaline-2,3-dione binding is complex and involves competition at the agonist/antagonist binding site in addition to any G-protein-mediated modulation.  相似文献   

3.
We cultured a P19 mouse teratocarcinoma cell line and induced its neuronal differentiation to study the function of ionotropic glutamate receptors (GluRs) in early neuronal development. Immunocytochemical studies showed 85% neuronal population at 5 days in vitro (DIV) with microtubule-associated protein 2-positive staining. Thirty percent and 50% of the cells expressed the alpha-amino-3-hydroxy-5-methyl-4-isopropinonate (AMPA) receptor subunit, GluR2/3, and the kainate (kainic acid; KA) receptor subunit, GluR5/6/7, respectively. In Western blot analysis, the temporal expression of GluR2/3 began to appear at 3 DIV, whereas GluR5/6/7 was already expressed in the undifferentiated cells. P19-derived neurons began to respond to glutamate, AMPA and KA, but not to the metabotropic GluR agonist trans-1-aminocyclopentane-1,3-decarboxylic acid, by 5 DIV in terms of increases in intracellular calcium and phospholipase C-mediated poly-phosphoinositide turnover. Furthermore, KA reduced cell death of P19-derived neurons in both atmospheric and hypobaric conditions in a phospholipase C-dependent manner. The common AMPA/KA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, but not the AMPA receptor antagonist, 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide disodium, profoundly increased hypobaric insult-induced neurotoxicity. In a flow cytometry study, the nerve growth factor-mediated antiapoptotic effect was facilitated by AMPA, with an induction of TrkA, but not p75(NTR) expression. Therefore, AMPA and KA receptors might mediate neurotrophic functions to facilitate neurotrophic factor signaling to protect neurons against hypoxic insult in early neuronal development.  相似文献   

4.
Abstract: Transfection of mouse L(tk-) cells with human N -methyl- d -aspartate (NMDA) receptor subunit cDNAs under the control of a dexamethasone-inducible promoter has been used to generate two stable cell lines expressing NR1a/NR2A receptors and a stable cell line expressing NR1a/NR2B receptors. The cell lines have been characterised by northern and western blot analyses, and the pharmacology of the recombinant receptors determined by radioligand binding techniques. Pharmacological differences were identified between the two NMDA receptor subtypes. The glutamate site antagonist d,l -(ε)-2-[3H]amino-4-propyl-5-phosphono-3-pentanoic acid ([3H]CGP 39653) had high affinity for NR1a/NR2A receptors ( K D = 3.93 n M ) but did not bind to NR1a/NR2B receptors. Glycine site agonists showed a 2.6–5.4-fold higher affinity for NR1a/NR2B receptors. Data from radioligand binding studies indicated that one of the cell lines, NR1a/NR2A-I, expressed a stoichiometric excess of the NR1a subunit, which may exist as homomeric assemblies. This observation has implications when interpreting data from pharmacological analysis of recombinant receptors, as well as understanding the assembly and control of expression of native NMDA receptors.  相似文献   

5.
Glycine is an essential co-agonist of the excitatory N-methyl-D-aspartate (NMDA) receptor. The glycine binding site of this subtype of ionotropic glutamate receptors is formed by the S1 and S2 regions of the NR1 subunit. Here, different S1S2 fusion proteins were expressed and purified from Escherichia coli cultures, and refolding protocols were established allowing the production of 30 mg of soluble S1S2 fusion protein from 1 liter bacterial culture. After affinity purification and renaturation, two of the fusion proteins (S1S2 and S1S2-V1) bound the competitive glycine site antagonist [3H]MDL105,519 with K(d) values of 9.35 and 3.9 nM, respectively. In contrast, with three other constructs (S1S2M, S1S2-V2, and -V3) saturable ligand binding could not be obtained. These results redefine the S1S2 domains required for high-affinity glycine binding. Furthermore, our high-affinity binding proteins may be used for the large-scale production of the glycine binding core region for future structural studies.  相似文献   

6.
A new ionotropic glutamate receptor subunit termed KA-2, cloned from rat brain cDNA, exhibits high affinity for [3H]kainate (KD approximately 15 nM). KA-2 mRNA is widely expressed in embryonic and adult brain. Homomeric KA-2 expression does not generate agonist-sensitive channels, but currents are observed when KA-2 is coexpressed with GluR5 or GluR6 subunits. Specifically, coexpression of GluR5(R) and KA-2 produces channel activity, whereas homomeric expression of either subunit does not. Currents through heteromeric GluR5(Q)/KA-2 channels show more rapid desensitization and different current-voltage relations when compared with GluR5(Q) currents. GluR6/KA-2 channels are gated by AMPA, which fails to gate homomeric GluR6 receptor channels. These results suggest possible in vivo partnership relations for high affinity kainate receptors.  相似文献   

7.
Abstract: The structure of N -acetylaspartylglutamate (NAAG) suggests this neuronal dipeptide as a candidate for interaction with discrete subclasses of ionotropic and metabotropic acidic amino acid receptors. A substantial difficulty in the assay of these interactions is posed by membrane-bound peptidase activity that converts the dipeptide to glutamate and N -acetylaspartate, molecules that will interfere with receptor assays. We have developed two sets of unique receptor assay conditions and applied one standard assay to measure the interactions, under equilibrium binding conditions, of [3H]kainate, [3H]amino-3-hydroxy-5-methylisoxazole-4-propionic acid ([3H]AMPA), and [3H]CGS-19755 with the three classes (kainate, quisqualate, and N -methyl- d -aspartate) of ionotropic glutamate receptors, while inhibiting peptidase activity against NAAG. Under these conditions, NAAG exhibits apparent inhibition constants (IC50) of 500, 790, and 8.8 µ M in the kainate, AMPA, and CGS-19755 receptor binding assays, respectively. Glutamate was substantially more effective and less specific in these competition assays, with inhibition constants of 0.36, 1.1, and 0.37 µ M . These data support the hypothesis that, relative to glutamate, NAAG functions as a specific, low potency agonist at N -methyl- d -aspartate subclass of ionotropic acidic amino acid receptors, but the peptide is not likely to activate directly the kainate or quisqualate subclasses of excitatory ionotropic receptors under physiologic conditions.  相似文献   

8.
Emerging evidence suggests a role for glutamate and its receptors in the biology of cancer. This study was designed to systematically analyze the expression of ionotropic and metabotropic glutamate receptor subunits in various human cancer cell lines, compare expression levels to those in human brain tissue and, using electrophysiological techniques, explore whether cancer cells respond to glutamate receptor agonists and antagonists. Expression analysis of glutamate receptor subunits NR1-NR3B, GluR1-GluR7, KA1, KA2 and mGluR1-mGluR8 was performed by means of RT-PCR in human rhabdomyosarcoma/medulloblastoma (TE671), neuroblastoma (SK-NA-S), thyroid carcinoma (FTC 238), lung carcinoma (SK-LU-1), astrocytoma (MOGGCCM), multiple myeloma (RPMI 8226), glioma (U87-MG and U343), lung carcinoma (A549), colon adenocarcinoma (HT 29), T cell leukemia cells (Jurkat E6.1), breast carcinoma (T47D) and colon adenocarcinoma (LS180). Analysis revealed that all glutamate receptor subunits were differentially expressed in the tumor cell lines. For the majority of tumors, expression levels of NR2B, GluR4, GluR6 and KA2 were lower compared to human brain tissue. Confocal imaging revealed that selected glutamate receptor subunit proteins were expressed in tumor cells. By means of patch-clamp analysis, it was shown that A549 and TE671 cells depolarized in response to application of glutamate agonists and that this effect was reversed by glutamate receptor antagonists. This study reveals that glutamate receptor subunits are differentially expressed in human tumor cell lines at the mRNA and the protein level, and that their expression is associated with the formation of functional channels. The potential role of glutamate receptor antagonists in cancer therapy is a feasible goal to be explored in clinical trials.  相似文献   

9.
The conformational changes in the agonist binding domain of the glycine-binding GluN1 and glutamate-binding GluN2A subunits of the N-methyl D-aspartic acid receptor upon binding agonists of varying efficacy have been investigated by luminescence resonance energy transfer (LRET) measurements. The LRET-based distances indicate a cleft closure conformational change at the GluN1 subunit upon binding agonists; however, no significant changes in the cleft closure are observed between partial and full agonists. This is consistent with the previously reported crystal structures for the isolated agonist binding domain of this receptor. Additionally, the LRET-based distances show that the agonist binding domain of the glutamate-binding GluN2A subunit exhibits a graded cleft closure with the extent of cleft closure being proportional to the extent of activation, indicating that the mechanism of activation in this subunit is similar to that of the glutamate binding α-amino-5-methyl-3-hydroxy-4-isoxazole propionate and kainate subtypes of the ionotropic glutamate receptors.  相似文献   

10.
A point mutation of the GluRdelta2 (A654T) glutamate receptor subunit converts it into a functional channel, and a spontaneous mutation at this site is thought to be responsible for the neurodegeneration of neurons in the Lurcher mouse. This mutation is located in a hydrophobic region of the M3 domain of this subunit, and this alanine is conserved throughout many of the glutamate receptors. We show here that site-directed mutagenesis of the homologous alanine (A636T; GluR1-L(c)) in the GluR1 AMPA receptor subunit alters its channel properties. The apparent potencies of both kainate and glutamate were increased 85- and 2000-fold, respectively. Furthermore, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)was converted from a competitive antagonist into a potent agonist. Our results demonstrate that a single amino acid within or near the putative second transmembrane region of the GluR1 subunit is critical for the binding/gating properties of this AMPA receptor.  相似文献   

11.
Jayaraman V  Keesey R  Madden DR 《Biochemistry》2000,39(30):8693-8697
Fourier transform infrared spectroscopy was used to investigate ligand-protein interactions in the ligand-binding domain of the GluR4 glutamate receptor subunit. Glutamate binding induces more extensive secondary structural changes in the ligand-binding domain than does kainate binding. Glutamate also alters the hydrogen bonding strength of the single free cysteine side chain in the domain, while kainate does not. On the other hand, the interaction of a binding site arginine residue with kainate appears to be stronger than that with glutamate. These results identify chemical and structural differences that may explain the different functional characteristics of the two agonists acting on ionotropic glutamate receptors. In doing so, they complement and extend recent crystallographic structures of the ligand-binding domain.  相似文献   

12.
Neuronal kainate receptors are assembled from subunits with dissimilar specificities for agonists and antagonists. The composite biophysical behavior of heteromeric kainate receptors is determined by intersubunit interactions whose nature is unclear. Here we use dysiherbaine, a selective kainate receptor agonist, to show that GluR5 subunits assembled in heteromeric GluR5/KA-2 kainate receptor complexes can gate current without concomitant activation of their partner KA-2 subunits. A long-lasting interaction between dysiherbaine and GluR5 subunits elicits a tonic current from GluR5/KA-2 receptors; subsequent cooperative gating of KA-2 subunits can be elicited by both agonists, such as glutamate, and some classically defined antagonists, such as CNQX. This study demonstrates that each type of subunit within a heteromeric kainate receptor contributes a distinct conductance upon activation by agonist binding, and therefore provides insight into the biophysical function of ionotropic glutamate receptors.  相似文献   

13.
Host Cell-Specific Folding of the Neuronal Nicotinic Receptor α8 Subunit   总被引:1,自引:1,他引:0  
Abstract: Heterologous expression of the neuronal nicotinic acetylcholine receptor α8 subunit in cultured mammalian cell lines has revealed that the correct folding of this protein is dependent on the host cell type. The α8 subunit, which is able to form homo-oligomeric ion channels when expressed in Xenopus oocytes, could be detected in all transfected cell lines by both immunoprecipitation and immunofluorescence microscopy with a monoclonal antibody that recognises a linear epitope. In contrast, the α8 subunit could be detected in some but not in all transfected cell lines with a monoclonal antibody that recognises a conformation-sensitive epitope or by nicotinic radioligand binding. It is interesting that although correctly folded α8 protein could be detected in transfected rat pituitary (GH4C1) cells, only misfolded α8 protein could be detected in a large subpopulation of transfectants (transient or clonal stable isolates). We have also found that the protein encoded by a chimaeric cDNA (constructed from the N-terminal region of α8 and the C-terminal domain of the serotonin 5-HT3 receptor subunit) is expressed efficiently, and in a conformation that binds α-bungarotoxin, in all cell types examined. These results, together with previous expression studies with the homo-oligomeric α7 subunit and hetero-oligomeric nicotinic receptor subunit combinations, suggest that the cell-specific folding described here is a phenomenon that may be characteristic of homo-oligomeric nicotinic receptors.  相似文献   

14.
Intracellular trafficking of ionotropic glutamate receptors is controlled by multiple discrete determinants in receptor subunits. Most such determinants have been localized to the cytoplasmic carboxyl-terminal domain, but other domains in the subunit proteins can play roles in modulating receptor surface expression. Here we demonstrate that formation of an intact glutamate binding site also acts as an additional quality-control check for surface expression of homomeric and heteromeric kainate receptors. A key ligand-binding residue in the KA2 subunit, threonine 675, was mutated to either alanine or glutamate, which eliminated affinity for the receptor ligands kainate and glutamate. We found that plasma membrane expression of heteromeric GluR6/KA2(T675A) or GluR6/KA2(T675E) kainate receptors was markedly reduced compared with wild-type GluR6/KA2 receptors in transfected HEK 293 and COS-7 cells and in cultured neurons. Surface expression of homomeric KA2 receptors lacking a retention/retrieval determinant (KA2-R/A) was also reduced upon mutation of Thr-675 and elimination of the ligand binding site. KA2 Thr-675 mutant subunits were able to co-assemble with GluR5 and GluR6 subunits and were degraded at the same rate as wild-type KA2 subunit protein. These results suggest that glutamate binding and associated conformational changes are prerequisites for forward trafficking of intracellular kainate receptors following multimeric assembly.  相似文献   

15.
Abstract: We have identified and studied potential ionotropic glutamate receptor genes in pigeon brain. Three cDNA clones exhibit significant amino acid sequence identity to members of a rodent ligand-gated ion channel family. One of them, GluP-II, encodes a full-length AMPA-sensitive glutamate receptor GluR2 (GluR-B) homologue, whereas the other two partial clones, designated as GluP-III and -IV, are nearly identical to rodent GluR3 (GluR-C) and GluR4 (GluR-D) receptor subunits. Northern analysis demonstrated that the avian genes are widely expressed in the brain. Within the brain regions analyzed by in situ hybridization histochemistry, the three avian GluR subunits showed distinct and regionally specific mRNA expression patterns in the adult. Most of the differences in their expression were observed in cell types of the telencephalon, certain thalamic nuclei, the optic tectum, and the cerebellar cortex. A particularly striking finding was the expression of GluP-II in Golgi epithelial/Bergmann glial cells. In contrast, Bergmann glial cells in rat cerebellum do not express GluR2 (GluR-B) subunit genes. Immunoreactivity for a monoclonal sequence-specific antipeptide antibody was widespread and most prominent in Purkinje cell perikarya and their dendrites, neuronal cell bodies of the ectostriatum, and the deep optic tectum. These results demonstrate the existence of multiple subunits of the ionotropic glutamate receptor channel family in avians. Excitatory amino acid receptor genes appear to be highly conserved during evolution.  相似文献   

16.
I Geffen  H P Wessels  J Roth  M A Shia    M Spiess 《The EMBO journal》1989,8(10):2855-2861
The human asialoglycoprotein receptor is composed of two homologous subunits, H1 and H2. By expressing the two subunits in transfected fibroblast cell lines, it has been shown previously that the formation of a hetero-oligomeric complex is necessary for the transport of H2 to the plasma membrane and for high-affinity ligand binding. Here we show that subunit H1, when expressed in the absence of H2, is capable of internalization through coated pits and recycling. The kinetics of these processes are very similar to those of the H1-H2 complex. To study endocytosis in the absence of ligand binding, the cell surface was labeled at 4 degrees C with the 125I-iodinated impermeant reagent sulfosuccinimidyl-3-(4-hydroxyphenyl) propionate, the cells were incubated at 37 degrees C for different times and the amount of internalized receptor was determined by protease digestion of surface proteins and immunoprecipitation. Similarly, recycling of surface-labeled and then internalized receptor protein was studied by monitoring its reappearance on the surface in the presence of exogenous protease. Our results show that subunit H1 contains all the signals necessary for receptor endocytosis and recycling independent of ligand binding.  相似文献   

17.
N Nakanishi  N A Shneider  R Axel 《Neuron》1990,5(5):569-581
We have isolated two cDNA clones (GluR-K2 and GluR-K3) that share considerable sequence identity with the previously described glutamate receptor subunit, GluR-K1. The three glutamate receptor subunits show significant sequence conservation with the glutamine binding component of the glutamine permease of E. coli. Each of these clones encodes a channel responsive to both kainate and AMPA. The coexpression of GluR-K2 with either GluR-K3 or GluR-K1 results in the formation of channels whose current-voltage relationships differ from those of the individual subunits alone and more closely approximate the properties of kainate receptors in neurons. These observations indicate that the kainate/quisqualate receptors are encoded by a family of genes and are likely to be composed of hetero-oligomers of at least two distinct subunits.  相似文献   

18.
To understand the mechanism of activation of a receptor by its agonist, the excitation and relaxation processes of the vibrational states of the receptor should be examined. As a first approach to this problem, we calculated the normal vibrational modes of agonists (glutamate and kainate) and an antagonist (6-cyano-7-nitroquinoxaline-2,3-dione: CNQX) of the glutamate receptor, and then investigated the vibrational interactions between kainate and the binding site of glutamate receptor subunit GluR2 by use of a semiempirical molecular orbital method (MOPAC2000-PM3). We found that two local vibrational modes of kainate, which were also observed in glutamate but not in CNQX, interacted through hydrogen bonds with the vibrational modes of GluR2: (i) the bending vibration of the amine group of kainate, interacting with the stretching vibration of the carboxyl group of Glu705 of GluR2, and (ii) the symmetric stretching vibration of the carboxyl group of kainate, interacting with the bending vibration of the guanidinium group of Arg485. We also found collective modes with low frequency at the binding site of GluR2 in the kainate-bound state. The vibrational energy supplied by an agonist may flow from the high-frequency local modes to the low-frequency collective modes in a receptor, resulting in receptor activation.  相似文献   

19.
To isolate antibodies against ionotropic glutamate receptors (GluRs), we prepared a phage antibody library from mice immunized with proteoliposomes containing purified alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), a selective GluRD receptor. Specific binders were selected by repeated rounds of affinity panning against immobilized GluRD liposomes. Using this approach, we obtained a panel of high-affinity antibody fragments that immunoprecipitated both recombinant and native GluRD receptors, but not GluR6, a kainate receptor subunit with a 40% sequence similarity. The antibody fragments showed subunit selectivity, some being strictly specific for GluRD, whereas others also recognized the GluRB and GluRC but not GluRA subunits. Further experiments indicated that the epitopes recognized were conformational in nature and reside in the N-terminal extracellular 400-residue X domain of GluRD. Our results suggest that proteoliposomes, in combination with phage display technology, provide an effective tool for the generation of high-affinity conformation-sensitive monoclonal antibodies against predetermined membrane proteins.  相似文献   

20.
Rat pinealocytes receive noradrenergic innervation that stimulates melatonin synthesis. Besides melatonin, we showed previously that pinealocytes accumulate L-glutamate in microvesicles and secrete it through an exocytic mechanism. The secreted glutamate binds to the class II metabotropic glutamate receptor and inhibits norepinephrine-stimulated melatonin synthesis in neighboring pinealocytes through an inhibitory cyclic AMP cascade. In this study, it was found that, in addition to metabotropic receptors, pinealocytes express functional ionotropic receptors. RT-PCR and northern analyses indicated the expression of mRNA for GluR1, KA2, and NR2C in pineal gland. The presence of GluR1 protein was confirmed by immunological techniques, but neither KA2 nor NR2C was detected. Consistent with this observation, the presence of (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid or kainate, non-N-methyl-D-aspartate receptor agonists, transiently stimulated increased the intracellular Ca(2+) concentration of cultured pinealocytes, whereas N-methyl-D-aspartate did not. These responses were prevented by 6-cyano-7-nitroquinoxaline-2,3-dione, a selective antagonist for non-N-methyl-D-aspartate receptors, by L-type Ca(2+) channel blockers such as nifedipine, or by omitting Ca(2+) or Na(+) in the medium. In the presence of Ca(2+) and Na(+), (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid or kainate evoked glutamate secretion from the cultured cells, which was prevented by 6-cyano-7-nitroquinoxaline-2,3-dione, L-type Ca(2+) channel blockers, type E or B botulinum neurotoxin, or incubation at <20 degrees C. These results strongly suggest that GluR1 is functionally expressed in pinealocytes and triggers microvesicle-mediated exocytosis of L-glutamate via activation of L-type Ca(2+) channels. It is possible that GluR1 participates in a signaling cascade that enhances and expands the L-glutamate signal throughout the pineal gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号