首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sequential extraction scheme was combined with sorption isotherm analysis in order to investigate sorption of sewage sludge-derived Cu and Zn to the A-horizon of a humic-gley soil as a whole, and to the operationally defined exchangeable (1?M MgCl2), carbonate (1?M NaOAc), Fe/Mn oxide (0.04?M NH2OH.HCl), and organic (0.02?M HNO3+30% H2O2) soil fractions. Sorption parameters were compared for a sample of sludge leachate (with 97.4% of Cu and 63.2% of Zn present as dissolved metal-organic matter complexes, as calculated by geochemical modeling involving MINTEQA2 and verified using an ion exchange resin method) with that of a reference solution exhibiting the same chemical characteristics as the leachate, except for the presence of dissolved organic material. Dissolved metal-organic matter complexes were found to significantly (P<0.05) depress sorption to the bulk soil and each fraction. The greatest depression of Cu and Zn sorption was observed for the exchangeable, carbonate, and Fe/Mn oxide fractions, while the organic fraction of the soil was the least affected. This reflects a greater affinity for the exchangeable, carbonate, and Fe/Mn oxide fractions by the free divalent metal (Cu2+, Zn2+), with sorption by these fractions attributed to cation exchange, chemisorption, and co-precipitation processes. The sorption characteristics of the organic fraction indicated that Cu and Zn sorption by soil organic matter mostly involved dissolved metal-organic matter complexes. This may be attributed to hydrophobic interactions between nonpolar regions of the dissolved metal-organic matter complexes and solid-phase soil organic matter.  相似文献   

2.
Abstract

This article documents and interprets stratigraphical changes in fractionation of Fe, Mn, Mg, K, Pb, Cu and Zn in the Sa1/2 sediment core from a coastal freshwater lake, Lake Sarbsko (northern Poland). The elements were sequentially extracted from the samples to distinguish five geochemical fractions: exchangeable, acid-extractable, reducible, oxidisable and residual. The analyses revealed substantial variations in geochemical partitioning of the elements and showed no correlation between the fractionation patterns and lithology of the sediments. In the sediments of Lake Sarbsko, iron is mainly bound to sulfides. Potassium occurs in its residual form. Magnesium and zinc are associated with carbonates and aluminosilicates, while copper occurs in compounds with organic matter and sulfides. Lead is found in connection with aluminosilicates and, to a lesser extent, with sulfides and organic matter. Manganese is partitioned between the oxidisable, acid-extractable, and exchangeable fractions. Heavy metals and potassium display the overall tendency to reduce the contents of their residual forms towards the top of the depositional sequence. Fe, Mn, Mg and Zn were found to be the most susceptible to post-sedimentary mobilisation.  相似文献   

3.
The effect of pre-loading and in situ loading of cobalt onto a cobalt-limited granular sludge on the performance of methanol fed bioreactors was investigated. One upflow anaerobic sludge bed (UASB) reactor was inoculated with cobalt pre-loaded sludge (24h; 30 degrees C; 1 mM CoCl2) and a second UASB with unloaded sludge. The UASB reactors (30 degrees C; pH 7) were operated for 77 days at 8 h hydraulic retention time and organic loading rates ranging from 5 to 20 g COD.L reactor(-1).d(-1). Cobalt pre-loading clearly stimulated the methanogenic activity of the sludge with methanol as the substrate, e.g., after 30 days of reactor operation this activity was 5.8 times higher than that of the cobalt unloaded sludge. During the experiment, part of the cobalt leached from the pre-loaded sludge, i.e., 54% of the cobalt content was lost during the 77 days of reactor operation. Sequential metal extraction showed that losses mainly occurred from the exchangeable and carbonate fraction and in the sludge remaining cobalt was mainly present in the organic/sulfide fraction of the sludge. In situ loading of cobalt in the unloaded UASB reactor on day 57 by adding 31 microM cobalt to the influent for a 24-h period (16% of the cobalt present in the loaded sludge at day 11) resulted in a 4 time increase of the methanogenic activity of the sludge with methanol as the substrate at the end of the reactor experiment, while the accumulated amount of cobalt in the sludge only amounted to 6% of the cobalt accumulated in the loaded sludge (on day 11). This study showed that both pre-loading sludge and in situ loading are adequate for achieving an increased reactor performance of methanol fed UASB reactors operating under cobalt limitation. However, the in situ dosing procedure needs substantially lower amounts of cobalt, while it also gives significantly smaller losses of cobalt with the effluent.  相似文献   

4.
The effect of a sulfur source on the performance and metal retention of methanol-fed upflow anaerobic sludge bed (UASB) reactors was investigated. For this purpose, two UASB reactors were operated with cobalt preloaded granular sludge (1 mM CoCl2; 30 degrees C; 24 h) at an organic loading rate (OLR) of 5 g COD.L reactor(-1).d(-1). One UASB reactor (R1) was operated without a sulfur source in the influent during the first 37 days. In this period the methanol conversion to methane remained very poor, apparently due to the absence of a sulfur source, because once cysteine, a sulfur-containing amino acid, was added to the influent of R1 (day 37) a full conversion of methanol to methane occurred within 6 days. The second reactor (R2) was operated with sulfate (0.41 mM) in the influent during the first 86 days of operation, during which no limitation in the methanol conversion to methane manifested. Cobalt washed out from the sludge at similar rates in both reactors. The leaching of cobalt occurred at two distinct rates, first at a high rate of 22 microg.g TSS(-1).d(-1), which proceeded mainly from the exchangeable and carbonate fraction and later at a relatively slow rate of 9 mug.g TSS(-1).d(-1) from the organic/sulfide fraction. This study showed that the supply of the sulfur source L-cysteine has a pronounced positive effect on the methanogenic activity and the retention of metals such as iron, zinc and molybdenum.  相似文献   

5.
Accumulative phases for heavy metals in limnic sediments   总被引:3,自引:1,他引:2  
Förstner  Ulrich 《Hydrobiologia》1982,91(1):269-284
Data from mechanical concentrates of recent sediments indicate that clay minerals, clay-rich aggregates and heavy minerals are the major carriers of heavy metals in detrital sediment fractions. Hydrous Fe/Mn oxides and carbonates and sulfides, in their specific environments, are the predominant accumulative phases for heavy metals in autochthonous fractions. Sequential chemical extraction techniques permit the estimation of characteristic heavy metal bonding forms: exchangeable metal cations, easily reducible, moderately reducible, organic and residual metal fractions, whereby both diagenetic processes and the potential availability of toxic compounds can be studied. The data from lakes affected by acid precipitation indicate that zinc, cobalt and nickel are mainly released from the easily reducible sediment fractions and cadmium from organic phases. In contrast at pH 4.4, neither lead nor copper seem to be remobilized to any significant extent. Immobilization by carbonate precipitation seems to provide an effective mechanism for the reduction of dissolved inputs 9f metals such as zinc and cadmium in pH-buffered, hard water systems.  相似文献   

6.
New activated sludge processes that utilize sorption as a major mechanism for organics removal are being developed to maximize energy recovery from wastewater organics, or as enhanced primary treatment technologies. To model and optimize sorption-based activated sludge processes, further knowledge about sorption of organics onto sludge is needed. This study compared primary-, anaerobic-, and aerobic activated sludge as sorbents, determined sorption capacity and kinetics, and investigated some characteristics of the organics being sorbed. Batch sorption assays were carried out without aeration at a mixing velocity of 200 rpm. Only aerobic activated sludge showed net sorption of organics. Sorption of dissolved organics occurred by a near-instantaneous sorption event followed by a slower process that obeyed 1st order kinetics. Sorption of particulates also followed 1st order kinetics but there was no instantaneous sorption event; instead there was a release of particles upon mixing. The 5-min sorption capacity of activated sludge was 6.5±10.8 mg total organic carbon (TOC) per g volatile suspend solids (VSS) for particulate organics and 5.0±4.7 mgTOC/gVSS for dissolved organics. The observed instantaneous sorption appeared to be mainly due to organics larger than 20 kDa in size being sorbed, although molecules with a size of about 200 Da with strong UV absorbance at 215–230 nm were also rapidly removed.  相似文献   

7.
Bioavailability of Sorbed 3-Chlorodibenzofuran   总被引:9,自引:5,他引:4       下载免费PDF全文
One of the main factors impeding the bioremediation of polluted soils, sediments, and aquifers is the low bioavailability of chemicals which are sorbed by organic matter. To obtain more insight into the factors that control the degradation of sorbed compounds, we used a defined model system in which 3-chlorodibenzofuran (3CDF) was the organic contaminant, porous Teflon granules were the sorbent, and Sphingomonas sp. strain HH19k was the test organism. The sorption of 3CDF to Teflon reached equilibrium within 150 min. The curved shape of the sorption isotherm, the extent of sorption, and the desorption kinetics suggested that there was a surface interaction (adsorption) between 3CDF and Teflon which took place mainly inside the pores of the granules. The kinetics of desorption could be ascribed to sorption-retarded radial diffusion inside the granules since the desorption rate not only was correlated with the sorbed-phase concentration, but also depended on the equilibration status of sorption, since (i) the high initial desorption rate sharply declined because of the depletion of 3CDF in the outermost parts of the granules, but high rates were observed again after the system had been given time to reequilibrate, and (ii) the initial desorption rate was higher when the preceding contact time between sorbate and sorbent was shorter (i.e., most 3CDF was still located in the exterior parts of the granules). These characteristics were observed irrespective of whether the desorption was driven by percolating water through the sorbent or by attaching active bacteria to the sorbent. 3CDF consumption by attached cells drove 3CDF desorption to a considerable extent. The attached cells were thus efficiently supplied with desorbing 3CDF. On the basis of our results, we propose that the rate at which a sorbed substrate becomes available for organisms is influenced by (i) the specific affinity of the degrading organisms (i.e., their ability to reduce the aqueous substrate concentration) and (ii) the tendency of the organisms to adhere to the sorbent.  相似文献   

8.
The influence of cobalt speciation on the toxicity of cobalt to methylotrophic methanogenesis in anaerobic granular sludge was investigated. The cobalt speciation was studied with three different media that contained varying concentrations of complexing ligands [carbonates, phosphates and ethylenediaminetetraacetic acid (EDTA)]. Three fractions (nominal added, dissolved and free) of cobalt were determined in the liquid media and were correlated with data from batch toxicity experiments. The average concentration of cobalt that was required for 50% inhibition of methanogenic activity (IC50) for free Co2+ in the three sets of measurements was 13 μmol/L with a standard deviation of 22% and a similarity of 72% between the data obtained in the three different media for the range of cobalt concentrations investigated. The standard deviation of the IC50 for the other two fractions was much higher, i.e. 85 and 144% for the added cobalt and dissolved cobalt, respectively, and the similarity was almost 0% for both fractions. Complexation (and precipitation) with EDTA, phosphates and carbonates was shown to decrease the toxicity of cobalt on methylotrophic methanogenesis. The free cobalt concentration is proposed to be the key parameter to correlate with cobalt toxicity. Thus, the toxicity of cobalt to granular sludge can be estimated based on the equilibrium-free cobalt concentration.  相似文献   

9.
Cadmium (Cd) is a critical environmental chemical in which sorption reactions control its entry into soil solution. The aim of the present study was to evaluate Cd sorption characteristics of some soils of the northern part of Iran with a wide range of physicochemical properties. Duplicates of each sample were equilibrated with solutions containing 5 to 500 mg Cd L?1 with 0.01 M CaCl2 as background solution. The quantity of Cd retention was calculated as the difference between initial and equilibrated Cd concentration. Sorption isotherms including Freundlich, Langmuir, Temkin, Dubinin-Radushkevich, and Redlich-Peterson were used to evaluate the behavior of Cd sorption. Cadmium sorption data were well fitted to Langmuir, Freundlich, and Redlich-Peterson isotherms. The constant of Freundlich equation (kF ) and adsorption maxima (bL ) of Langmuir equation were related to pH and cation exchange capacity (CEC). The maximum buffering capacity (Kd ) was significantly correlated with pH (R2 = 0.52, p ≤ 0.001) and calcium carbonate equivalent (CCE) (R2 = 0.63, p ≤ 0.001). Redlich-Peterson constants (kRP and aRP ) were significantly correlated with pH (R2 kRP = 0.30, p ≤ 0.007) and (R2 aRP = 0.27, p ≤ 0.012). It seemed that pH, CEC, and CCE were the main soil properties regulating Cd retention behavior of the studied soils.  相似文献   

10.
The relative scavenging abilities of suspended particulate oxides (SPOX), and organic matter (SPOM) for Cd, Zn and Cu were evaluated in a small, anthropogenically influenced river. In addition, the factor most important in influencing the sorption density (Ad: metal concentration associated with a given phase divided by the concentration of that geochemical phase in the suspended particulate pool) of each metal to SPOX and SPOM were identified through multiple linear regression analyses from the suite of: pH, temperature, dissolved metal concentration, and the concentration of the other particulate fraction. Results indicate that SPOX-SPOM interactions do occur in trace metal complexation reactions; and interactions are both phase and cation specific. Fe oxides are able to outcompete discrete organic binding sites for Cu and Zn as a relative decrease in the amount of these two cations sorbed to organic matter was observed with increasing particulate Fe oxides. SPOM concentration was identified as being most important in influencing Cu sorption densities associated with the SPOX fraction. Organic matter — oxide complexes are postulated to occur that enhance oxide sorption of Cu such that relatively more Cu is sorbed to particulate oxides with increasing particulate organic matter concentrations. Dissolved concentrations of Cd and Zn were found to be most important in influencing the sorption densities for these two metals associated with the oxides fraction. The sorption behaviour appears to follow Freundlich isotherm behaviour where the amount sorbed is a function of the dissolved concentration.  相似文献   

11.
Ye FX  Li Y 《Biodegradation》2007,18(5):617-624
In order to understand the fate of PCP in upflow anaerobic sludge blanket reactor (UASB) more completely, the sorption and biodegradation of pentachlorophenol (PCP) by anaerobic sludge granules were investigated. The anaerobic granular sludge degrading PCP was formed in UASB reactor, which was seeded with anaerobic sludge acclimated by chlorophenols. At the hydraulic retention time (HRT) of 20–22 h, and PCP loading rate of 200–220 mg l−1 d−1, UASB reactor exhibited good performance in treating wastewater which containing 170–180 mg l−1 PCP and the PCP removal rate of 99.5% was achieved. Sequential appearance of tetra-, tri-, di-, and mono-chlorophenol was observed in the reactor effluent after 20 mg l−1 PCP introduction. Sorption and desorption of PCP on the anaerobic sludge granules were all fitted to the Freundlich isotherm equation. Sorption of PCP was partly irreversible. The Freundlich equation could describe the behavior of PCP amount sorbed by granular sludge in anaerobic reactor reasonably well. The results demonstrated that the main mechanism leading to removal of PCP on anaerobic granular sludge was biodegradation, not sorption or volatization.  相似文献   

12.
The effects of dissolved organic matter (DOM), water soluble organic matter derived from sewage sludge, on the sorption of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-trazine) by soils were studied using a batch equilibrium technique. Six paddy soils, chosen so as to have different organic carbon contents, were experimented in this investigation. Atrazine sorption isotherms on soils were described by the linear equation, and the distribution coefficients without DOM (Kd) or with DOM (Kd*) were obtained. Generally, the values of Kd*/Kd initially insoil-solution system form. Critical concentrations of DOM (DOMnp) were obtained where the value of Kd* was equal to Kd. The presence of DOM with concentrations lower than DOMnp promoted atrazine sorption on soils (Kd* > Kd), whereas the presence of DOM with concentrations higher than DOMnp tended to inhibit atrazine sorption (Kd* < Kd). Interestingly, DOMnp for tested soils was negatively correlated to the soil organic carbon content, and the maximum of Kd*/Kd (i.e.Kmax) correlated positively with the maximum of DOM sorption on soil (Xmax). Further investigations showed that the presence of hydrophobic fraction of DOM evidently promoted the atrazine sorption on soils, whereas the presence of hydrophilic DOM fraction obviously tended to inhibit the atrazine sorption. Interactions of soil surfaces with DOM and its fractions were suggested to be the major processes determining atrazine sorption on soils. The results of this work provide a reference to the agricultural use of organic amendment such as sewage sludge for improving the availability of atrazine in soils.  相似文献   

13.
Phosphorus (P) is considered a primary cause for surface water eutrophication that leads to anoxia. Understanding the relationships between soil particle size and P sorption helps devise effective best management practices (BMPs) to control P transport by erosion, leaching, and overland flow from agricultural land. Consequently, this study examined the effect of surface soil particle size on the sorption of P in five soil series (four Ultisols and one Entisol) from the Mid-Atlantic region. The sorption of P in each soil was assessed by equilibrating (after shaking for 24?h) 5?g soil containing varied amounts of KH2PO4 in 20?mL of 0.01?M KCl solution. Phosphorus in solution was determined by the molybdate blue method of Murphy and Riley. The P adsorption characteristics of these soils were described using the Langmuir isotherm. Results indicated that variability in P sorption was related to particle size and soil type. Soil organic matter content contributed a great deal to P sorption in the Entisol. However, soil clay had influence on the P sorption characteristics of each soil. The maximum P retentive capacities of soils (as determined by Sm from Langmuir equation) and P sorbed at 500?mg P kg?1 addition showed a linear relationship (r2 = 0.94). Therefore, based on the results obtained, the single point method of Bache and Williams may be appropriate to describe the maximum P sorption capacity of non-sandy soils, as observed in this study.  相似文献   

14.
Leaching column experiments were conducted to determine the degree of mobility and the distribution of zinc (Zn), cadmium (Cd), and lead (Pb) because of an application of spiked sewage sludge in calcareous soils. A total of 20 leaching columns were set up for four calcareous soils. Each column was leached with one of these inflows: sewage sludge (only for two soils), spiked sewage sludge, or artificial well water (control). The columns were irrigated with spiked sewage sludge containing 8.5 mg Zn l?1, 8.5 mg Cd l?1, and 170 mg Pb l?1 and then allowed to equilibrate for 30 days. At the end of leaching experiments, soil samples from each column were divided into 18 layers, each being 1 cm down to 6 cm and 2 cm below that, and analyzed for total and extractable Zn, Cd and Pb. The fractionation of the heavy metals in the top three layers of the surface soil samples was investigated by the sequential extraction method. Spiked sewage sludge had little effect on metal mobility. In all soils, the surface soil layers (0-1 cm) of the columns receiving spiked sewage sludge had significantly higher concentrations of total Zn, Cd and Pb than control soils. Concentration of the heavy metals declined significantly with depth. The mobility of Zn was usually greater than Cd and Pb. The proportion of exchangeable heavy metals in soils receiving spiked sewage sludge was significantly higher than that found in the control columns. Sequential extraction results showed that in native soils the major proportion of Zn and Pb was associated with residual (RES) and organic matter (OM) fractions and major proportion of Cd was associated with carbonate (CARB) fraction, whereas after leaching with spiked sewage sludge, the major proportion of Zn and Pb was associated with Fe-oxcide (FEO), RES, and CARB fractions and major proportion of Cd was associated with CARB, RES and exchangeable (EXCH) fractions. Based on relative percent, Cd in the EXCH fraction was higher than Zn and Pb in soils leached with spiked sewage sludge.  相似文献   

15.
Incubation of humic podzol at soil moisture of 60 and 100% field capacity (FC) and after addition of peat and glucose increased the content of nickel and cobalt compounds in the water-soluble, exchangeable, organic matter-bound, and amorphous iron-bound fractions. At the same time, the content of elements bound to crystallized iron compounds decreased twofold and fourfold at 60 and 100% FC, respectively. The content of cobalt and nickel decreased in the residual fraction by 25 and 50%, respectively. The transformation of cobalt and nickel in soil is closely related to the transformation of iron and manganese compounds as well as to redox processes. The lowest pH and redox potential (RP) as well as the highest increase in the mobility of the elements was observed after soil incubation with glucose at 100% FC.  相似文献   

16.
The losses of weight and organic matter of a sludge caused by thermal treatments at 180 degrees C, 300 degrees C and 400 degrees C were determined in order to assess how the possibilities of sludge use were influenced. The sludge heated at 180 degrees C lost small amounts of weight and organic matter (9.8%) but the losses from the two other treatments were large enough (92.2% and 99.9% in organic matter) to preclude the use of the sludges as organic amendments. The concentration and potential lability and leachability of Cr, Cu, Fe, Mn, Ni, Pb and Zn in the native sludge and in the thermal-treated sludge samples were studied by means of a five-step chemical fractionation method and a column experiment. As a consequence of heating, the trace metals were more strongly fixed in the treated sludges, as could be seen by the decrease with temperature of the ratio between the sum of the first two sequential-extracted fractions and the residual fraction. The leaching results showed that, for the native sludge, the quantities of studied metals leached were larger than for the sludge heated to 180 degrees C. The order of leachability of metals was the same in both cases, and the same equation could be used to calculate the quantities of metals leached. The amounts of metals leached correlated significantly with the first extracted fraction (exchangeable metals) and an equation could be used to calculate the quantities leached, as a function of that fraction.  相似文献   

17.
The sorption of Cu(II) and Pb(II) by Pithophora markedly decreased as the concentration of the secondary metal ion, Cu(II) or Pb(II), increased in the binary metal solution. However, the test alga showed a greater affinity to sorb Cu(II) than Pb(II) from the binary metal solution. Mono-component Freundlich, Langmuir, Redlich-Peterson and Sips isotherms successfully predicted the sorption of Cu(II) and Pb(II) from both single and binary metal solutions. None of the tested binary sorption isotherms could realistically predict Cu(II) and Pb(II) sorption capacity and affinity of the test alga for the binary metal solutions of varying composition, which mono-component isotherms could very well accomplish. Hence, mono-component isotherm modeling at different concentrations of the secondary metal ion seems to be a better option than binary isotherms for metal sorption from binary metal solution.  相似文献   

18.
Factors affecting the microbial degradation of phenanthrene in soil   总被引:9,自引:0,他引:9  
Summary Because phenanthrene was mineralized more slowly in soils than in liquid media, a study was conducted to determine the environmental factors that may account for the slow biodegradation in soil. Mineralization was enhanced by additions of phosphate but not potassium, and it was reduced by additions of nitrate. Aeration or amending the soil with glucose affected the rate of mineralization, although not markedly. Phenanthrene was sorbed to soil constituents, the extent of sorption being directly related to the percentage of organic matter in the soil. Soluble phenanthrene was not detected after addition of the compound to a muck soil. The rate of mineralization was slow in the organic soil and higher in mineral soils with lower percentages of organic matter. We suggest that sorption by soil organic matter slows the biodegradation of polycyclic aromatic hydrocarbons that are otherwise readily metabolized. Offprint requests to: M. Alexander  相似文献   

19.
AIM: To study the microbiology of intensive, in-vessel biodegradation of a mixture of sewage sludge and vegetable food waste. METHODS AND RESULTS: The biodegradation was performed in a closed reactor with the addition of a starter culture of Bacillus thermoamylovorans SW25 under conditions of controlled aeration, stirring, pH and temperature (60 degrees C). The content of viable bacterial cells, determined by flow cytometry, increased from 5 x 108 g-1 of dry matter to 61 x 108 g-1 for 6 days of the process and then dropped to the initial value at the end of the process. The reductions of organic matter, 16S rRNA of methanogens and coenzyme F420 fluorescence during 10 days of the treatment were 67, 54 and 87% of the initial values, respectively. The biodegradability of the organic matter decreased during the 10 days of the treatment from 3.8 to 1.3 mg CO2 g-1 of organic matter per day. The treatment of sewage sludge and food waste at 60 degrees C did not remove enterobacteria, which are the agents of intestinal infections, from the material. The percentage of viable enterobacterial cells, determined by fluorescent in situ hybridization (FISH) with Enterobacteriaceae-specific oligonucleotide probe and flow cytometry, varied from 1 to 14% of the viable bacterial cells. CONCLUSIONS: The mixture of sewage sludge and food waste can be degraded by the aerobic thermophilic bacteria; the starter culture of Bacillus thermoamylovorans SW25 can be used to perform this process; and enterobacteria can survive under treatment of sewage sludge and food waste at 60 degrees C for 13 days. SIGNIFICANCE AND IMPACT OF THE STUDY: The results show that FISH with an oligonucleotide probe can be used to study not only the growth but also the degradation of biomass. Obtained results could be used to design the bioconversion of sewage sludge and food waste into organic fertilizer.  相似文献   

20.
This paper deals with the characteristics of anaerobic microbial granules grown in an UASB reactor treating catechol bearing synthetic wastewater (SWW). The specific methanogenic activity of the sludge showed an increase in trend with an increase in the organic loading rate and the catechol concentration in the SWW. The settling velocity of individual granules in the size range of 0.5-2.5mm was found to be in the range of 30-75mh(-1). The ash content in the sludge was 11.7% with a sludge volume index of 18-20mlg(-1). The inorganic elemental distribution within the granules showed a decrease except that for phosphorous and cobalt, which increased by approximately 12% and 18%, respectively, after the treatment of SWW. Scanning electron microscopy (SEM) coupled with electron disperse X-ray analysis showed an increase in the sulphur content by approximately 300% after the treatment of SWW. Surface mineral composition of the granules determined by XRD analysis indicated the existence of vuagnatite (CaAlSiO(4)(OH)). SEM observation of the granules showed the predominance of Methanosaeta and Methanobacterium type of species on the surface along with a variety of other species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号