首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Intercellular communication via gap junctions, as measured by dye and electrical coupling, disappears within 12 h in primary rat hepatocytes cultured in serum-supplemented media or within 24 h in cells in a serum-free, hormonally defined medium (HDM) designed for hepatocytes. Glucagon and linoleic acid/BSA were the primary factors in the HDM responsible for the extended life span of the electrical coupling. After 24 h of culture, no hormone or growth factor tested could restore the expression of gap junctions. After 4-5 d of culture, the incidence of coupling was undetectable in a serum-supplemented medium and was only 4-5% in HDM alone. However, treatment with glycosaminoglycans or proteoglycans of 24-h cultures, having no detectable gap junction protein, resulted in synthesis of gap junction protein and of reexpression of electrical and dye coupling within 48 h. Most glycosaminoglycans were inactive (heparan sulfates, chondroitin-6 sulfates) or only weakly active (dermatan sulfates, chondroitin 4-sulfates, hyaluronates), the weakly active group increasing the incidence of coupling to 10-30% with the addition of 50-100 micrograms/ml of the factor. Treatment of the cells with 50-100 micrograms/ml of heparins derived from lung or intestine resulted in cells with intermediate levels of coupling (30-50%). By contrast, 10-20 micrograms/ml of chondroitin sulfate proteoglycan, dermatan sulfate proteoglycan, or liver-derived heparin resulted in dye coupling in 80-100% of the cells, with numerous cells showing dye spread from a single injected cell. Sulfated polysaccharides of glucose (dextran sulfates) or of galactose (carrageenans) were inactive or only weakly active except for lambda-carrageenan, which induced up to 70% coupling (albeit no multiple coupling in the cultures). The abundance of mRNA (Northern blots) encoding gap junction protein and the amounts of the 27-kD gap junction polypeptide (Western blots) correlated with the degree of electrical and dye coupling indicating that the active glycosaminoglycans and proteoglycans are inducing synthesis and expression of gap junctions. Thus, proteoglycans and glycosaminoglycans, especially those found in abundance in the extracellular matrix of liver cells, are important in the regulation of expression of gap junctions and, thereby, in the regulation of intercellular communication in the liver. The relative potencies of heparins from different tissue sources at inducing gap junction expression are suggestive of functional tissue specificity for these glycosaminoglycans.  相似文献   

2.
The effects of heparin and other glycosaminoglycans (GAGs) on the mitogenicity and stability of acidic fibroblast growth factor (aFGF) were studied. The mitogenic activity of aFGF was assayed utilizing cultured adult human endothelial cells (AHECs) isolated from iliac arteries and veins as target cells. In most experiments, aFGF purified from bovine brain was employed; in some experiments recombinant bovine aFGF was used and qualitatively similar results were obtained. In the presence of heparin, bovine aFGF at doses between 0.5 and 1.0 ng/ml (30-60 pM) elicited half the maximum AHEC growth over a 4-day period depending on the cell line tested; in the absence of heparin, significant growth was not observed at aFGF concentrations less than 10-20 ng/ml. This effect of heparin was dose-dependent over the range 0.1-10 micrograms/ml (half-maximum dose, 2 micrograms/ml). The mitogenic activity of bovine aFGF for AHECs decreased by 50% after preincubation in culture medium without cells at 37 degrees C for 2 1/2 to 3 hours. In contrast, the mitogenic activity of bovine aFGF preincubated in the presence of heparin-containing culture medium without cells was dramatically stabilized (half-life 24-29 hours). These effects also were observed in serum-free medium. Several GAGs structurally related to heparin such as chondroitin-4-sulfate, chondroitin-6-sulfate, dermatan sulfate, and hyaluronic acid neither potentiated nor stabilized aFGF mitogenic activity. However, heparan sulfate from bovine lung was found to be nearly as active as heparin in both these effects. These data suggest that the binding and stabilization of mitogens by extracellular and tissue-associated heparan sulfates might play important roles in the regulation of AHEC growth.  相似文献   

3.
A cytolytic protein (perforin) was rapidly purified from a cell line of mouse cytotoxic T-lymphocytes (CTL) by DEAE-cellulose, heparin-Sepharose, and phenyl-Sepharose chromatographies. The purified perforin was activated by heparin, the half maximal concentration being 3-10 ng/ml, depending on the calcium concentration. Other acid mucopolysaccharides, such as chondroitin sulfates A and C, keratan polysulfate, and heparin sulfate, also enhanced the lysis of erythrocytes by perforin, but the concentrations required for activation were more than 100-fold higher than that of heparin. Chondroitin, hyaluronic acid, and keratan sulfate, however, had no effect on the perforin activity. It was suggested that heparin potentiates the lytic activity of perforin and acid mucopolysaccharides may actually be involved in target cell lysis by CTL.  相似文献   

4.
Chondroitin sulfates are linear sulfated polysaccharides called glycosaminoglycans. They are important nutraceutical and pharmaceutical products that are biosynthesized through the action of chondroitin sulfotransferases on either an unsulfated chondroitin or a dermatan polysaccharide precursor. While the enzymes involved in the biosynthesis of chondroitin sulfates are well known, the cloning end expression of these membrane-bound Golgi enzymes continue to pose challenges. The major chondroitin-4-sulfotransferase, Homo sapiens C4ST-1, had been previously cloned and expressed from mammalian CHO, COS-7, and HEK 293 cells, and its activity was shown to require glycosylation. In the current study, a C4ST-1 construct was designed and expressed in both Escherichia coli and Pichia pastoris in its non-glycosylated and glycosylated forms. Both constructs showed similar activity albeit different kinetic parameters when acting on a microbially prepared unsulfated chondroitin substrate. Moreover, the glycosylated form of C4ST-1 showed lower stability than the non-glycosylated form.  相似文献   

5.
Interaction between human leukocyte elastase and chondroitin sulfate   总被引:4,自引:0,他引:4  
Chondroitin sulfate (Structum) interacts with human leukocyte elastase, a potent mediator of articular cartilage degradation, producing a partial inhibition of the enzyme activity (60% at saturation). Kinetically, the inhibition mechanism can be classified as simple intersecting, hyperbolic noncompetitive and is almost identical to that found earlier for similar compounds. The best inhibitory activity of chondroitin sulfate was found in fractions having at the same time a high proportion of chondroitin-6-sulfate relative to the corresponding 4-isomer and a high molecular mass. Thus, a fraction with high Mr and containing 92% of isomer 6 inhibited leukocyte elastase with Ki = 1.8 micrograms/ml, whereas a fraction with low Mr and almost equal composition of the 4- and 6-isomer had Ki = 140 micrograms/ml. Ki for unfractionated chondroitin sulfate was 3.4 micrograms/ml. It is suggested, that the modulation of the extracellular activity of cartilage-degrading enzymes by cartilage-derived factors may explain, at least in part, the beneficial effects of some therapeutically used chondroprotective agents.  相似文献   

6.
The kinetics of neural cell adhesion molecule (NCAM) binding to heparin were studied in a heparin-Sepharose-based solid-phase binding assay. The observed binding is time dependent and saturable. A binding constant of 5.2 +/- 1.4 X 10(-8) M is observed for binding of newborn rat NCAM to heparin. This is approximately 25 times lower than the binding constant determined for newborn rat NCAM homophilic binding. Both Scatchard and Hill plot analyses suggest the presence of only one binding site. Fab' fragments of antibodies to rat NCAM significantly inhibit binding, a result indicating that a specific site on NCAM is involved in binding to heparin. The binding is inhibited by heparin (IC50, approximately 5 micrograms/ml), whereas chondroitin sulfate is a less potent inhibitor (IC50, approximately 15 micrograms/ml).  相似文献   

7.
In investigating the role of cell-extracellular matrix interactions in cell adhesion and growth control, the effects of heparin on cell-collagen interactions were examined. Exponentially growing Balb/c-3T3 fibroblasts were radiolabelled with 3H-thymidine and detached from tissue culture surfaces using EDTA, and cell attachment to various types of collagen substrata was assayed in the presence or absence of heparin or other glycosaminoglycans (GAGs) or dextran sulfate (40 K). Cells attached readily (70-90%) to films of types I and V, but not to type III collagen. The number of cells bound to types I and V collagen films was inhibited by 10-50% when heparin was present from 0.1-100 micrograms/ml. Cell-collagen attachment was also inhibited by dextran sulfate, and to a lesser extent by dermatan sulfate, but chondroitin sulfates A and C and hyaluronic acid showed no effect. Heparin was active even at early time points in the adhesion assay, suggesting it may disrupt cell-collagen attachment. To study the effects of heparin in modulating cell growth on collagen, growth arrested cells cultured on type I collagen films were serum stimulated in the presence of heparin or other GAGs for 3 days. Growth was inhibited (greater than 40%) only by heparin and dextran sulfate. Interaction of heparin fragments (Mr less than or equal to 6KD) with type I collagen was analyzed by affinity co-electrophoresis (Lee and Lander, 1991) and showed higher affinity heparin binding to native as compared with denatured collagen. These data suggest that sites within native collagen may mediate Balb cell-collagen and heparin-collagen interactions, and such interactions may be relevant towards understanding heparin's antiproliferative activity in vivo and in vitro.  相似文献   

8.
Follistatin, an activin-binding protein secreted by cultured rat granulosa cells, was shown to associate with the cell surface by affinity labeling with 125I-activin. Addition of follistatin to the cultured cells demonstrated a typical ligand-binding saturation curve, suggesting that granulosa cells have a specific binding site for follistatin. This binding was markedly inhibited by heparin and heparan sulfate, but not by chondroitin sulfates A and C, keratan sulfate, and dermatan sulfate. When granulosa cells were treated with glycosaminoglycan-degrading enzymes before or after addition of follistatin to the cultures, heparinase and heparitinase treatments resulted in significant suppression of the binding, whereas treatment with chondroitinase ABC had no effect. A competition study of the binding using heparin derivatives demonstrated that follistatin seemed to recognize O-sulfate groups in the heparin molecule. Heparitinase-treated granulosa cells exhibited almost full responsiveness to activin, indicating that the enzyme treatment had no effect on activin and receptor interaction. These results suggest that follistatin/activin-binding protein binds to heparan sulfate side chains of proteoglycans on the granulosa cell surface to regulate the various actions of activin.  相似文献   

9.
Identification of chondroitin sulfate E in human lung mast cells   总被引:3,自引:0,他引:3  
Human lung mast cells (HLMC) enriched up to 99% purity by counter current elutriation and density gradient centrifugation were labeled with 35S-sulfate to determine cell-associated proteoglycans. The 35S-labeled proteoglycans were extracted by the addition of detergent and 4 M guanidine-HCl, and separated from unincorporated precursor by Sephadex G-50 chromatography. 35S-Proteoglycans chromatographed over Sepharose 4B with a Kav of 0.48. 35S-Glycosaminoglycans separated from the parent 35S-proteoglycans by beta-elimination and chromatographed over Sepharose 4B with a Kav of 0.63. Characterization of 35S-proteoglycans by chondroitin ABC lyase treatment revealed approximately 36% of the proteoglycan to be composed of chondroitin sulfates. Analysis by HPLC of component disaccharides liberated by chondroitin ABC lyase using an amino-cyano-substituted silica column indicated that the chondroitin sulfates consisted of the monosulfated A disaccharide (GlcUA----GaINAc4SO4) (75%) and the over-sulfated E disaccharide (GlcUA----GaINAc4,6-diSO4) (25%). Nitrous acid/heparinase-susceptible heparin proteoglycans accounted for approximately 62% of the total 35S-proteoglycans present in the HLMC. Proteoglycans remaining after exposure of the original proteoglycan extract to either heparinase or chondroitin ABC lyase were of similar size, suggesting that the majority of heparin and chondroitin sulfate glycosaminoglycans were on separate protein cores. Proteoglycans extracted from HLMC were protease insensitive. Hence, in addition to heparin proteoglycans, HLMC synthesize a hitherto unrecognized quantity of chondroitin sulfate E proteoglycans.  相似文献   

10.
Snake venoms are a rich source of enzymes including many hydrolytic enzymes. Some enzymes such as phospholipase A2, proteolytic enzymes, and phosphodiesterases are well characterized. However many enzymes, such as the glycosidase, hyaluronidase, have not been studied extensively. Here we describe the characterization of snake venom hyaluronidase. In order to determine which venom was the best source for isolation of the enzyme, the hyaluronidase activity of 19 venoms from Elapidae, Viperidae, and Crotalidae snakes was determined. Since Agkistrodon contortrix contortrix venom showed the highest activity, this venom was used for purification of hyaluronidase. Molecular weight was determined by matrix-assisted laser desorption ionization mass spectroscopy and was found to be 59,290 Da. The molecular weight value as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 61,000 Da. Substrate specificity studies indicated that the snake venom enzyme was specific only for hyaluronan and did not hydrolyze similar polysaccharides of chondroitin, chondroitin sulfate A (chondroitin 4-sulfate), chondroitin sulfate B (dermatan sulfate), chondroitin sulfate C (chondroitin 6-sulfate), chondroitin sulfate D, chondroitin sulfate E, or heparin. The enzyme is an endo-glycosidase without exo-glycosidase activity, as it did not hydrolyze p-nitrophenyl-beta-D-glucuronide or p-nitrophenyl-N-acetyl-beta-D-glucosaminide. The main hydrolysis products from hyaluronan were hexa- and tetrasaccharides with N-acetylglucosamine at the reducing terminal. The cleavage point is at the beta1,4-glycosidic linkage and not at the beta1,3-glycosidic linkage. Thus, snake venom hyaluronidase is an endo-beta-N-acetylhexosaminidase specific for hyaluronan.  相似文献   

11.
Circulating macrophages and metastatic tumor cells can penetrate the vascular endothelium and migrate from the circulatory system to extravascular compartments. Both activated murine macrophages and different metastatic tumor cells (B16-BL6 melanoma; ESb T-lymphoma) attach, invade, and penetrate confluent vascular endothelial cell monlayer in vitro, by degrading heparan sulfate proteoglycans in the subendothelial extracellular matrix. The sensitivity of the enzymes from the various sources degrading the heparan sulfate proteoglycan was challenged and compared by a series of inhibitors. Activated macrophages demonstrate a heparanase with an endoglycosidase activity that cleaves from the [35S]O4 = -labeled heparan sulfate proteoglycans of the extracellular matrix 10 kDa glycosaminoglycan fragments. The macrophages do not store the heparanase intracellularly but it is instead found pericellularly and requires a continuous cell-matrix contact at the optimal pH for maintaining cell growth. The degradation of [35S]O4 = -labeled extracellular matrix proteoglycans by the macrophages' heparanase is significantly inhibited in the presence of heparan sulfate (10 micrograms/ml), arteparon (10 micrograms/ml), and heparin at a concentration of 3 micrograms/ml. In contrast, other glycosaminoglycans such as hyaluronic acid, dermatan sulfate, and chondroitin sulfate as well as the specific inhibitor of exo-beta-glucuronidase D-saccharic acid 1,4-lactone failed to inhibit the degradation of sulfated proteoglycans in the subendothelial extracellular matrix. Degradation of this heparan sulfate proteoglycan is a two-step sequential process involving protease activity followed by heparanase activity. However, the following antiproteases--alpha 2-macroglobulin, antithrombin III, leupeptin, and phenylmethylsulfony fluoride (PMSF)--failed to inhibit this degradation process, and only alpha 1-antitrypsin inhibited the heparanase activity. B16-BL6 metastatic melanoma cell heparanase, which is also a cell-associated enzyme, was inhibited by heparin to the same extent as the macrophage heparanase. On the other hand, heparanase of the highly metastatic variant (ESb) of a methylcholanthrene-induced T lymphoma, which is an extracellular enzyme released by the cells to the incubation medium, was more sensitive to heparin and arteparon than the macrophages' heparanase, inhibited at concentrations of 1 and 3 micrograms/ml, respectively. These results may indicate the potential use of heparin or other glycosaminoglycans as specific and differential inhibitors for the formation in certain cases of blood-borne tumor metastasis.  相似文献   

12.
We establish, using an ELISA approach, that recombinant human and murine IL-6 bind to an immobilized heparin-BSA complex. In the case of human IL-6, this binding is displaceable by soluble heparin, IC(50) approximately 2 microg/ml, corresponding to approximately 200 nM. This binding is specific because chondroitin sulfates B and C fail to compete, whereas chondroitin sulfate A and several heparan sulfates are weak inhibitors. Of a range of chemically modified heparins examined, the strongest competitor was the 2-O:-desulfated product, but even this showed a considerably reduced IC(50) ( approximately 30 microg/ml). The epitopes of five IL-6-specific mAbs were still accessible in heparin-bound IL-6, and the dimer formed from the association of rIL-6 with its truncated soluble receptor polypeptide, srIL-6alpha, still bound to heparin. Further analysis showed that heparin competed partially and weakly with the binding of srIL-6 to IL-6; however, it competed strongly for the binding of the rIL-6/srIL-6Ralpha dimer, to soluble glycoprotein 130. In studies of the proliferation of IL-6-sensitive Ba/F3 cells expressing glycoprotein 130, we were unable to detect any effect of either the removal of cell surface heparan sulfate, or addition of soluble heparin. By contrast, heparin was able to protect IL-6 from digestion by the bacterial endoproteinase Lys-C. Overall, our findings show that IL-6 is a heparin-binding cytokine. This interaction will tend to retain IL-6 close to its sites of secretion in the tissues by binding to heparin-like glycosaminoglycans, thus favoring a paracrine mode of activity. Moreover, this binding may serve to protect the IL-6 from proteolytic degradation.  相似文献   

13.
The effect of heparin on the biosynthetic phenotype of rat vascular smooth muscle cells (SMC) was investigated in vitro. Addition of heparin to the culture medium of early passage rat SMC resulted in a marked (3-15-fold) increase of a cell layer-associated Mr 60,000 protein that was sensitive to digestion by purified bacterial collagenase and contained significant amounts of hydroxyproline. Pulse-chase analysis of heparin-treated SMC revealed that the Mr 60,000 collagen was a primary and abundant product of these cells and was not processed extracellularly to a smaller form. The inductive effect of heparin could be mimicked by iota carrageenan or dextran sulfates but not by hyaluronic acid, dermatan sulfate, or chondroitin sulfates. The induction was concentration dependent with a maximal effect observed at a heparin concentration of 10 micrograms/ml. Synthesis of the Mr 60,000 collagen increased 18-24 h after addition of heparin to the cultures. Following induction and subsequent removal of heparin, synthesis of the protein remained maximal for at least 12 h and required 72 h to return to a basal level. These data demonstrate that the biosynthetic phenotype of vascular SMC in vitro can be controlled, at least in part, by heparin and related polyanions and suggest a role for similar molecules endogenous to the vessel wall in the regulation of SMC function.  相似文献   

14.
We have examined the cellular mechanisms by which heparin potentiates the ability of 3T3-adipocytes to stimulate the formation of new blood vessels. Both anticoagulant and non-anticoagulant heparin species enhanced the angiogenic activity of adipocyte-secreted products in the chick chorioallantoic membrane assay, indicating that the angiotropic effect of this glycosaminoglycan is independent of its effect on the coagulation cascade. Heparin alone was unable to produce a neovascular response. The ability of heparin to modulate three endothelial functions in vitro thought to be related to angiogenesis were examined: protease activity, motility, and mitogenesis. Heparin caused a 100% increase in the adipocyte-induced stimulation of endothelial cell plasminogen activator activity and motility, but had no effect on proliferation. The enhancement of plasminogen activator and chemoattractant activities had a similar ED50 (1-2 micrograms/ml) and optimum dose (10-30 micrograms/ml). When we examined the direct effect of heparin on the activity of two distinct plasminogen activator enzymes--urokinase and tissue-type--a dual action of heparin was observed: tissue-type enzyme activity was stimulated 100% by heparin at 10 micrograms/ml, whereas urokinase activity was inhibited by 77% at this dose. These data suggest that heparin potentiates angiogenesis in vivo by stimulating endothelial cell plasminogen activator, motility, or both. Our results further suggest that for adipocyte-induced blood vessel formation, in contrast to other angiogenesis systems, heparin does not appear to affect the mitogenic activity.  相似文献   

15.
A strain of Serratia marcescens that produced chondroitinase was isolated from soil. It produced a novel chondroitinase AC, which was purified to homogeneity. The enzyme was composed of two identical subunits of 35 kDa as revealed by SDS-PAGE and gel filtration. The isoelectric point for the chondroitinase AC was 7.19. Its optimal activity was at pH 7.5 and 40 °C. The purified enzyme was active on chondroitin sulfates A and C and hyaluronic acid, but was not with chondroitin sulfate B (dermatan sulfate), heparin or heparan sulfate. The apparent Km and Vmax of the chondroitinase AC for chondroitin sulfate A were 0.4 mg ml–1 and 85 mmol min–1 mg–1, respectively, and for chondroitin sulfate C, 0.5 mg ml–1 and 103 mmol min–1 mg–1, respectively.  相似文献   

16.
IL-4 induces the differentiation of monocytes toward dendritic cells (DCs). The activity of many cytokines is modulated by glycosaminoglycans (GAGs). In this study, we explored the effect of GAGs on the IL-4-induced differentiation of monocytes toward DCs. IL-4 dose-dependently up-regulated the expression of DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), CD80, CD206, and CD1a. Monocytes stained positive with Abs against heparan sulfate (HS) and chondroitin sulfate (CS) B (CSB; dermatan sulfate), but not with Abs that recognize CSA, CSC, and CSE. Inhibition of sulfation of monocyte/DC cell surface GAGs by sodium chlorate reduced the reactivity of sulfate-recognizing single-chain Abs. This correlated with hampered IL-4-induced DC differentiation as evidenced by lower expression of DC-SIGN and CD1a and a decreased DC-induced PBL proliferation, suggesting that sulfated monocyte cell surface GAGs support IL-4 activity. Furthermore, removal of cell surface chondroitin sulfates by chondroitinase ABC strongly impaired IL-4-induced STAT6 phosphorylation, whereas removal of HS by heparinase III had only a weak inhibitory effect. IL-4 bound to heparin and CSB, but not to HS, CSA, CSC, CSD, and CSE. Binding of IL-4 required iduronic acid, an N-sulfate group (heparin) and specific O sulfates (CSB and heparin). Together, these data demonstrate that monocyte cell surface chondroitin sulfates play an important role in the IL-4-driven differentiation of monocytes into DCs.  相似文献   

17.
A phosphatidylinositol-4-phosphate (PIP) kinase activity was purified from rat brain extract through several chromatographic steps to yield an active preparation (specific activity 1 mumol of 32P incorporated into phosphatidylinositol 4,5-bisphosphate/min per mg of protein) with an apparent molecular size of 100-110 kDa in the native form. The isolated PIP kinase required Mg2+ (optimally 20-30 mM) for its activity and was not influenced by Ca2+. The enzyme used ATP (Km 25 microM) and GTP (Km 133 microM) as phosphate sources and appeared specific for PIP (Km 3.3 micrograms/ml) as the lipid substrate. The PIP-phosphorylation reaction was inhibited by micromolar concentrations of heparin [ID50 (concn. giving 50% inhibition) 2 micrograms/ml] and the flavonoid quercetin (ID50 0.2 microM). Whereas heparin behaves as a competitive inhibitor to PIP, quercetin was competitive towards ATP (or GTP). Phosphorylation of the preparation by a highly active purified protein kinase C did not detectably alter PIP kinase activity. Whereas 12-O-tetradecanoylphorbol acetate and various phospholipids had no effect, phosphatidylserine elicited a dose-dependent activation of PIP activity. This suggests that a phosphatidylserine-PIP kinase interaction may be considered as a possible regulatory process at the cell-membrane level.  相似文献   

18.
Hyaluronidase from Propionibacterium acnes has been purified 13,000-fold from the culture supernatant to homogeneity (as determined by polyacrylamide disc gel electrophoresis). The molecular weight of the purified enzyme was 85,110 as determined by gel filtration. The purified enzyme had a pH optimum at 6.4, was stable between pH 5 and 5.8 and was completely inactivated after 15 min at 50 degrees C. Preliminary studies suggested that the enzyme is active against chondroitin 4- and 6-sulphates, but not against dermatan sulphate. Analysis by paper chromatography of the reaction products from the degradation of hyaluronic acid by bacterial, testicular and P. acnes enzymes suggested that the P. acnes enzyme is similar in its mode of action to other bacterial hyaluronate lyases. The enzyme from P. acnes may thus be tentatively classified as a hyaluronate lyase.  相似文献   

19.
Oligosaccharides prepared from glycosaminoglycans (GAGs) including heparin, heparan sulfate, chondroitin sulfates, dermatan sulfate, and keratan sulfate were analyzed using reverse-phase ion-pairing HPLC and ion-exchange HPLC with suppressed conductivity detection. The results were compared with those obtained by strong anion-exchange HPLC using uv detection. These oligosaccharides were first prepared by enzymatically depolymerizing the GAGs with enzymes including heparin lyase (EC 4.2.2.7), heparan sulfate lyase (EC 4.2.2.8), chondroitin ABC lyase (EC 4.2.2.4), and keratan sulfate hydrolase (EC 3.2.1.103). Analysis was then performed without derivitization under isocratic conditions with a limit of sensitivity in the picomole range. Preliminary studies suggest that this approach may be particularly useful in examining oligosaccharides having no uv chromophore such as those prepared from keratan sulfate.  相似文献   

20.
Glycosaminoglycans (GG) were isolated from commercial Ateroid and compared with those from bovine duodenal mucosa and pancreas. The major GG in Ateroid is heparin. Heparan sulfate (HS) and dermatan sulfate were also found. HS, chondroitin sulfates, and heparin were isolated from duodenal mucosa after papain digestion, but a residue, non-digestible, was mostly heparin. Pancreas contains very little GG, and the GG composition is similar to that of mucosa. The heparin isolated from Ateroid and mucosa have similar lipoprotein lipase-releasing activity, but the former has considerably less anticoagulant activity. Interestingly, papain digestion of mucosa and pancreas did not release all heparin from the tissue, suggesting that the protein to which heparin is linked is not readily accessible to the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号