首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have earlier published observations showing that endogenous alterations in growth rate during gravitropism in maize roots (Zea mays L.) are unaffected by the orientation of cuts which remove epidermal and cortical tissue in the growing zone (Björkman and Cleland, 1988, Planta 176, 513–518). We concluded that the epidermis and cortex are not essential for transporting a growth-regulating signal in gravitropism or straight growth, nor for regulating the rate of tissue expansion. This conclusion has been challenged by Yang et al. (1990, Planta 180, 530–536), who contend that a shallow girdle around the entire perimeter of the root blocks gravitropic curvature and that this inhibition is the result of a requirement for epidermal cells to transport the growth-regulating signal. In this paper we demonstrate that the entire epidermis can be removed without blocking gravitropic curvature and show that the position of narrow girdles does not affect the location of curvature. We therefore conclude that the epidermis is not required for transport of a growth-regulating substance from the root cap to the growing zone, nor does it regulate the growth rate of the elongating zone of roots.  相似文献   

2.
Roots of many species respond to gravity (gravitropism) and grow downward only if illuminated. This light-regulated root gravitropism is phytochrome-dependent, mediated by calcium, and inhibited by KN-93, a specific inhibitor of calcium/calmodulin-dependent protein kinase II (CaMK II). A cDNA encoding MCK1, a maize homolog of mammalian CaMK, has been isolated from roots of maize (Zea mays L.). The MCK1 gene is expressed in root tips, the site of perception for both light and gravity. Using the [35S]CaM gel-overlay assay we showed that calmodulin-binding activity of the MCK1 is abolished by 50 M KN-93, but binding is not affected by 5 M KN-93, paralleling physiological findings that light-regulated root gravitropism is inhibited by 50 M KN-93, but not by 5 M KN-93. KN-93 inhibits light-regulated gravitropism by interrupting transduction of the light signal, not light perception, suggesting that MCK1 may play a role in transducing light. This is the first report suggesting a physiological function for a CaMK homolog in light signal transduction.Abbreviations CaM calmodulin - CaMK (II) Ca2+/calmodulin-dependent protein kinase (II) - CBP CaM-binding protein - CDPK Ca2+-dependent protein kinase - MCK1 maize homolog of mamalian CaMK This work is supported by the National Aeronautics and Space Administration grant No: NAGW 238.  相似文献   

3.
Moritoshi Iino 《Planta》1988,176(2):183-188
The effects of pretreatments with red and blue light (RL, BL) on the fluence-response curve for the phototropism induced by a BL pulse (first positive curvature) were investigated with darkadapted maize (Zea mays L.) coleoptiles. A pulse of RL, giving a fluence sufficient to saturate phytochrome-mediated responses in this material, shifted the bell-shaped phototropic fluence-response curve to higher fluences and increased its peak height. A pulse of high-fluence BL given immediately prior to this RL treatment temporarily suppressed the phototropic fluence-response curve, and shifted the curve to higher fluences than induced by RL alone. The shift by BL progressed rapidly compared to that by RL. The results indicate (1) that first positive curvature is desensitized by both phytochrome and a BL system, (2) that desensitization by BL occurs with respect to both the maximal response and the quantum efficiency, and (3) that the desensitization responses mediated by phytochrome and the BL system can be induced simultaneously but develop following different kinetics. It is suggested that theses desensitization responses contribute to the induction of second positive curvature, a response induced by prolonged irradiation.Abbreviations BL blue light - RL red light CIW-DPB Publication No. 1001  相似文献   

4.
Nick P  Schafer E 《Planta》1991,185(3):415-424
Phototropic stimulation induces a spatial memory. This was inferred from experiments with maize (Zea mays L.) coleoptiles involving opposing blue-light pulses, separated by variable time intervals, and rotation on a horizontal clinostat (Nick and Schafer, 1988b, Planta 175, 380-388). In those experiments, individual seedlings either curved towards the first or towards the second pulse, or they remained straight. Bending, if it occurred, seemed to be an all-or-none response. Intermediates, i.e. plants, bending only weakly, were not observed. In the first part of the present study it was attempted to create such intermediates. For this purpose the strength of the first, inducing, and the second, opposing, pulse was varied. The result was complex: (i) Individual seedlings maintained the all-or-none expression of spatial memory. (ii) However, on the level of the whole population, the time intervals at which a given response type dominated depended on the fluence ratio. (iii) Furthermore, the final curvature was determined by the fluence ratio. These results are discussed in terms of a blue-light-induced transverse polarity. This polarity initiates from a labile precursor, which can be reoriented by an opposing stimulation (indicated by the strong bending towards the second pulse). The strong curvatures towards the first pulse over long time intervals reveal that, eventually, the blue-light-induced transverse polarity becomes stabilised and thus immune to the counterpulse. In the second part of the study, the relation between phototropic transduction and transverse polarity was characterised by a phenomenological approach involving the following points: (i) Sensory adaptation for induction of transverse polarity disappears with a time course similar to that for phototropic sensory adaptatation. (ii) The fluence response for induction of transverse polarity is a saturation curve and not bell-shaped like the curve for phototropism (iii) For strong counterpulses and long time intervals the clinostat-elicited nastic response (Nick and Schafer 1989, Planta 179, 123-131) becomes manifest and causes an "aiming error" towards the caryopsis. (iv) Temperature-sensitivity of polarity induction was high in the first 20 min after induction, then dropped sharply and rose again with the approach of polarity fixation. (v) Stimulus-summation experiments indicated that, for different inducing fluences, the actual fixation of polarity happened at about 2 h after induction. These experiments point towards an early separation of the transduction chains mediating phototropism and transverse polarity, possibly before phototrophic asymmetry is formed.  相似文献   

5.
There is general agreement that during root gravitropism some sort of growth-modifying signal moves from the cap to the elongation zone and that this signal ultimately induces the curvature that leads to reorientation of the root. However, there is disagreement regarding both the nature of the signal and the pathway of its movement from the root cap to the elongation zone. We examined the pathway of movement by testing gravitropism in primary roots of maize (Zea mays L.) from which narrow (0.5 mm) rings of epidermal and cortical tissue were surgically removed from various positions within the elongation zone. When roots were girdled in the apical part of the elongation zone gravitropic curvature occurred apical to the girdle but not basal to the girdle. Filling the girdle with agar allowed curvature basal to the girdle to occur. Shallow girdles, in which only two or three cell layers (epidermis plus one or two cortical cell layers) were removed, prevented or greatly delayed gravitropic curvature basal to the girdle. The results indicate that the gravitropic signal moves basipetally through the outermost cell layers, perhaps through the epidermis itself.  相似文献   

6.
Gravitropism in roots has been proposed to depend on a downward redistribution of calcium across the root cap. However, because of the many calcium-binding sites in the apoplast, redistribution might not result in a physiologically effective change in the apoplasmic calcium activity. To test whether there is such a change, we measured the effect of gravistimulation on the calcium activity of statocyte cell walls with calcium-specific microelectrodes. Such a measurement must be made on a tissue with gravity sensing cells at the surface. To obtain such a tissue, decapped maize roots (Zea mays L. cv. Golden Cross Bantam) were grown for 31 h to regenerate gravitropic sensitivity, but not root caps. The calcium activity in the apoplasm surrounding the gravity-sensing cells could then be measured. The initial pCa was 2.60 ± 0.28 (approx 2.5 mM). The calcium activity on the upper side of the root tip remained constant for 10 min after gravistimulation, then decreased 1.7-fold. On the lower side, after a similar lag the calcium activity increased 1.6-fold. Control roots, which were decapped but measured before recovering gravisensitivity (19 h), showed no change in calcium activity. To test whether this gradient is necessary for gravitropic curvature, we eliminated the calcium activity gradient during gravitropism by applying a mobile calcium-binding site (di-nitro-BAPTA; 1,2-bis(2-amino-5-nitro-phenoxy)ethane-N,N,N,N-tetraacetic acid) to the root cap; this treatment eliminated gravicurvature. A calcium gradient may be formed by proton-induced calcium desorption if there is a proton gradient. Preventing the formation of apoplastic pH gradients, using 10 and 50 mM 2-(N-morpholino)ethanesulfonic acid (Mes) buffer or 10 mM fusicoccin to stimulate proton excretion maximally, did not inhibit curvature; therefore the calcium gradient is not a secondary effect of a proton gradient. We have found a distinct and rapid differential in the apoplasmic calcium activity between the upper and lower sides of gravistimulated maize root tips which is necessary for gravitropism.Abbreviations BAPTA 1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid - FC fusicoccin - Mes 2-(N-morpholino)ethanesulfonic acid The authors thank Phyllis Woolwine for drawing Fig. 1, Dr. Sarbjit Virk for assistance with total calcium measurements, Dr. Paul Sampson for statistical advice, and Michael Newton for developing the EM algorithm to analyze the time-series data. This work was supported by NASA grant NAGW-1394 and by a NASA Research Associateship to T.B. through NASA grant NAGW-70.  相似文献   

7.
Unrolling of the second leaf of 8-day-old rice (Oryza sativa L.) seedlings was promoted by weak blue light (B), but not by red light (R). The effect of B was counteracted by irradiation with R just before or after the B. The counteracting effect of R was reversed by subsequent irradiation with far-red light but not by B, even if B was applied for 10 h. The B was effective when the region 0.5–2 cm from the tip of the leaf was irradiated. These results indicate that in rice photoreceptors for blue light located in the region 0.5–2 cm from the tip of the leaf play a key role in leaf unrolling and that a B-absorbing pigment and phytochrome participate in leaf unrolling in a closely related manner.Abbreviations B blue light - R red light - FR far-red light - W white light - D dark This work was presented at the Annual Meeting of the Japanese Society of Plant Physiologists on April 4, 1978, in Hiroshima  相似文献   

8.
Björkman T  Cleland RE 《Planta》1988,176(4):513-518
In order to determine the role of the epidermis and cortex in gravitropic curvature of seedling roots of maize (Zea mays L. cv. Merit), the cortex on the two opposite flanks was removed from the meristem through the growing zone; gravitropic curvature was measured with the roots oriented horizontally with the cut flanks either on the upper and lower side, or on the lateral sides as a wound control. Curvature was slower in both these treatments (53° in 5 h) than in intact roots (82°), but there was no difference between the two orientations in extent and rate of curvature, nor in the latent time, showing that epidermis and cortex were not the site of action of the growth-regulating signal. The amount of cortex removed made no difference in the extent of curvature. Curvature was eliminated when the endodermis was damaged, raising the possibility that the endodermis or the stele-cortex interface controls gravitropic curvature in roots. The elongation rate of roots from which just the epidermis had been peeled was reduced by 0.01 mM auxin (indole-3-acetic acid) from 0.42 to 0.27 mm h-1, contradicting the hypothesis that only the epidermis responds to changes in auxin activity during gravistimulation. These observations indicate that gravitropic curvature in maize roots is not driven by differential cortical cell enlargement, and that movement of growth regulator(s) from the tip to the elongating zone is unlikely to occur in the cortex.Abbreviations df degrees of freedom - IAA indole-3-acetic acid  相似文献   

9.
Primary roots of maize (Zea mays L.) and pea (Pisum sativum L.) exhibit strong positive gravitropism. In both species, gravistimulation induces polar movement of calcium across the root tip from the upper side to the lower side. Roots of onion (Allium cepa L.) are not responsive to gravity and gravistimulation induces little or no polar movement of calcium across the root tip. Treatment of maize or pea roots with inhibitors of auxin transport (morphactin, naphthylphthalamic acid, 2,3,5-triiodobenzoic acid) prevents both gravitropism and gravity-induced polar movement of calcium across the root tip. The results indicate that calcium movement and auxin movement are closely linked in roots and that gravity-induced redistribution of calcium across the root cap may play an important role in the development of gravitropic curvature.Abbreviations 9-HFCA 9-hydroxyfluorenecarboxylic acid - NPA naphthylphthalamic acid - TIBA 2,3,5-triiodobenzoic acid - IAA indole-3-acetic acid  相似文献   

10.
Randy Moore  James D. Smith 《Planta》1985,164(1):126-128
The abscisic-acid (ABA) content of roots of the carotenoid-deficient w-3, vp-5, and vp-7 mutants of Z. mays was analyzed using gas chromatography-mass spectrometry with an analysis sensitivity of 6 ng ABA g–1 fresh weight (FW). Roots of normal seedlings of the same lines were characterized by the following amounts of ABA (as ng ABA g–1 FW,±standard deviation): w-3, 279±43; vp-5, 237±26; vp-7, 338±61. We did not detect any ABA in roots of any of the mutants. Thus, the lack of carotenoids in these mutants correlated positively with the apparent absence of ABA. Primary roots of normal and mutant seedlings were positively gravitropic, with no significant differences in the curvatures of roots of normal as compared with mutant seedlings. These results indicate that ABA 1) is synthesized in maize roots via the carotenoid pathway, and 2) is not necesary for positive gravitropism by primary roots of Z. mays.Abbreviation ABA abscisic acid  相似文献   

11.
Kutschera U  Siebert C  Masuda Y  Sievers A 《Planta》1991,183(1):112-119
Caryopses of rice (Oryza sativa L. cv. Sasanishiki) were germinated in air or under water. In submerged seedlings a twofold increase in coleoptile growth rate and an inhibition of root growth was observed. The amount of starch in the amyloplasts of submerged coleoptiles was substantially reduced compared to the air-grown control plants and plastids had a proplastidic character. During the rapid elongation of coleoptiles under water, the osmotic concentration of the press sap remained constant, whereas in air-grown coleoptiles a decrease was measured. Determination of curvature of gravistimulated air-grown and submerged shoots was carried out by placing the coleoptiles horizontally in air of 98% relative humidity. Air-grown coleoptiles reached a vertical orientation within 5 h after onset of gravistimulation. In coleoptiles germinated under water the first signs of consistent negative gravitropic bending occurred after 4–5 h and curvature was complete after 24 h. During the first 5 h of gravistimulation the water-grown coleoptiles grew at an average rate of 0.39 mm·h–1, whereas in air-grown coleoptiles a rate of 0.27 mm·h–1 was measured. Concomitant with the delayed onset of gravitropic bending of the water-grown coleoptiles, a change in plastid ultrastructure and an increase in starch content was observed. We conclude that the gravitropic responsiveness of the rice coleoptile depends on the presence of starch-filled amyloplasts.We wish to thank H.-J. Ensikat for technical assistance with the scanning electron microscopy. Supported by the Bundesminister für Forschung und Technologie and the Deutsche Forschungsgemeinschaft.  相似文献   

12.
Nick P  Schafer E 《Planta》1988,173(2):213-220
The influence of gravitropic stimulation upon blue-light-induced first positive phototropism for stimulations in the same (light source and center of gravity opposite to each other) and in opposing directions was investigated in maize cole-optiles by measuring fluence-response patterns. As a result of gravitropic counterstimulation, phototropic bending was transient with maximum curvature occurring 100 min after stimulation. On a horizontal clinostat, however, the seedlings curved for 20 h. Gravistimulation in the opposite direction acted additively upon blue-light curvature. Gravistimulation in the same direction as phototropic stimulation produced a complex behaviour deviating from simple additivity. This pattern can be explained by a gravitropically mediated sensitization of the phototropic reaction, an optimal dependence of differential growth on the sum of photo-and gravistimulation, and blue-light-induced inhibition of gravitropic curvature at high fluences. These findings indicate that several steps of photo-and gravitransduction are separate. Preirradiation with red light desensitized the system independently of applied gravity-treatment, indicating that the site of red-light interaction is common to both transduction chains.Abbreviations BL blue light - G+ stimulation by light and gravity in the same direction (i.e. light source and center of gravity opposite to each other) - G- stimulation by light and gravity in opposing directions  相似文献   

13.
Phototropism of Avena sativa L. has been characterized using a clinostat to negate the gravitropic response. The kinetics for development of curvature was measured following induction by a single pulse of blue light (BL), five pulses of BL at 20-min intervals, and this same pulsed-light regime following a 2-h red light (RL) pre-irradiation. A final curvature of about 14° is expressed within 180 min following the single pulse; a final curvature of about 62° in about 240 min following five pulses without pre-irradiation; and a curvature of over 125° in 360 min following five pulses after the RL pre-irradiation. For seedlings not pre-irradiated, the final curvature to five pulses of BL at a total fluence of 9.4 pmol·cm-2 increases with time of darkness between pulses up to 15 min; with seedlings pre-irradiated with RL, curvature increased more slowly with time of darkness between pulses to a maximum at 35 min. The final curvature induced by a constant fluence of 9.4 pmol·cm-2 increases linearly with time between the first pulse and last pulse of a five-pulse sequence. The curvature induced by a single BL pulse with a 5-min RL co-irradiation increases with fluence to a maximum of about 60° at about 10 pmol·cm-2, and then decreases to 0° at about 200 pmol·cm-2. Curvature induced by five BL pulses following a 2-h RL pre-irradiation increased with fluence from a threshold of about 0.05 pmol·cm-2 to a maximum of 90° at about 10 pmol·cm-2, and then gradually decreased with fluence to 50° at 1 000 pmol·cm-2. Based on these data, it is concluded that the initial photoproduct formed by a BL pulse has a limited lifetime, that there is a kinetic limitation downstream of the photoreceptor pigment for phototropism, and that the additivive effect of pulsed BL is distinct from the potentiating effect of RL on phototropism. Thus, any degree of curvature from 0° to over 90° may be induced by a fluence in the ascending arm of what is traditionally called the first positive phototropic response.Abbreviations BL blue light - RL red light  相似文献   

14.
Ishikawa H  Hasenstein KH  Evans ML 《Planta》1991,183(3):381-390
We used a video digitizer system to measure surface extension and curvature in gravistimulated primary roots of maize (Zea mays L.). Downward curvature began about 25 +/- 7 min after gravistimulation and resulted from a combination of enhanced growth along the upper surface and reduced growth along the lower surface relative to growth in vertically oriented controls. The roots curved at a rate of 1.4 +/- 0.5 degrees min-1 but the pattern of curvature varied somewhat. In about 35% of the samples the roots curved steadily downward and the rate of curvature slowed as the root neared 90 degrees. A final angle of about 90 degrees was reached 110 +/- 35 min after the start of gravistimulation. In about 65% of the samples there was a period of backward curvature (partial reversal of curvature) during the response. In some cases (about 15% of those showing a period of reverse bending) this period of backward curvature occurred before the root reached 90 degrees. Following transient backward curvature, downward curvature resumed and the root approached a final angle of about 90 degrees. In about 65% of the roots showing a period of reverse curvature, the roots curved steadily past the vertical, reaching maximum curvature about 205 +/- 65 min after gravistimulation. The direction of curvature then reversed back toward the vertical. After one or two oscillations about the vertical the roots obtained a vertical orientation and the distribution of growth within the root tip became the same as that prior to gravistimulation. The period of transient backward curvature coincided with and was evidently caused by enhancement of growth along the concave and inhibition of growth along the convex side of the curve, a pattern opposite to that prevailing in the earlier stages of downward curvature. There were periods during the gravitropic response when the normally unimodal growth-rate distribution within the elongation zone became bimodal with two peaks of rapid elongation separated by a region of reduced elongation rate. This occurred at different times on the convex and concave sides of the graviresponding root. During the period of steady downward curvature the elongation zone along the convex side extended farther toward the tip than in the vertical control. During the period of reduced rate of curvature, the zone of elongation extended farther toward the tip along the concave side of the root. The data show that the gravitropic response pattern varies with time and involves changes in localized elongation rates as well as changes in the length and position of the elongation zone. Models of root gravitropic curvature based on simple unimodal inhibition of growth along the lower side cannot account for these complex growth patterns.  相似文献   

15.
Nick P  Schafer E 《Planta》1989,179(1):123-131
Rotation of unstimulated maize (Zea mays L.) seedlings on a horizontal clinostat is accompanied by a strong bending response of the coleoptiles towards the caryopsis, yielding curvatures exceding 100°. The corresponding azimuthal distribution shows two peaks, each of which is displayed by 30° from the symmetry axis connecting the shortest coleoptile and caryopsis cross sections. It is argued that this spatial pattern is not the result of two independent bending preferences, but caused by a one-peaked distribution encountering an obstacle in its central part and thus being split into the two subpeaks. The existence of one preferential direction justifies considering this response to be a nastic movement. Its time course consists of an early negative phase (coleoptiles bend away from the caryopsis) followed 2 h later by a longlasting positive bending towards the caryopsis. In light-interaction experiments, fluence-response curves for different angles between blue light and the direction of the nastic response were measured. These experiments indicate that blue light interacts with the nastic response at two levels: (i) phototonic inhibition, and (ii) addition of nastic and phototropic curvatures. It is concluded that phototropic and phototonic transduction bifurcate before the formation of phototropic transverse polarity. The additivity of nastic and phototropic responses was followed at the population level. At the level of the individual seedling, one observes, in the case of phototropic induction opposing nastic movement, three distinct responses: either strong phototropism, or nastic bending, or an avoidance response which involves strong curvature perpendicular to the stimulation plane. With time the nastic bending becomes increasingly stable against opposing phototropic stimulation. This can be seen from a growing proportion of seedlings exhibiting nastic bending when light is applied at variable intervals after the onset of clinostat rotation. At the transition from instability to stability, this type of experiment produces a high percentage of seedlings displaying the avoidance response. However, no cancelling resulting in zero curvature can be observed. It is concluded that the endogenous polarity underlying the nastic response is different in its very nature from the blue-light-elicited stable transverse polarity described earlier (Nick and Schäfer 1988 b).Abbreviation BL blue light (449 nm)  相似文献   

16.
After a prolonged period of red light the formation of a new whorl of lateral hairs can be induced inAcetabularia mediterranea Lamouroux (=A. acetabulum (L.) Silva) by a pulse of blue light. It has previously been shown that the response to blue light obeys the law of reciprocity. In this paper we demonstrate that the responses to blue light are additive only within 10 min after the onset of blue-light treatment, since the responsiveness of the cells is also affected by blue light. One hour after a short blue-light pulse the response to a second blue-light pulse has come to a minimum. After that, the responsiveness is restored in a refractory period of several hours. The fluenceresponse curves for hair-whorl formation at the time of minimum responsiveness are shifted parallel to the original fluence-response curves without preirradiation. Again, the law of reciprocity applies. This indicates an increased light requirement only for the same degree of hair-formation response. The sensitivity to blue light of the reduction of responsiveness response is higher by a factor of about 50 than the induction of hairformation response.  相似文献   

17.
H. Gabryś 《Planta》1985,166(1):134-140
The profile-to-face chloroplast movement in the green alga Mougeotia has been induced by strong blue and near-ultraviolet light pulses (6 J m-2). Simultaneously, strong red or far-red light (10 W m-2) was applied perpendicularly to the inducing beam. The response was measured photometrically. Against the far-red background the reciprocity law was found to hold for pulse durations varying two orders of magnitude. The action spectrum exhibited a maximum near 450 nm and a distinct increase in near-ultraviolet. The time-course and the spectral dependence of pulse responses of chloroplasts in Mougeotia were similar to those recorded for other plants which are sensitive only to blue. This points to an alternative sensor system active in the short-wavelength region in addition to the phytochrome system.Abbreviations FR far-red light - Pr red absorbing form of phytochrome - Pfr far-red absorbing form of phytochrome - R red light This paper is dedicated to the memory of Professor Jan Zurzycki  相似文献   

18.
Immunofluorescence labeling of cortical microtubules (MTs) was used to investigate the relationship between MT arrangement and changes in growth rate of the upper and lower sides of horizontally placed roots of maize (Zea mays L. cv. Merit). Cap cells and cells of the elongation zone of roots grown vertically in light or darkness showed MT arrangements that were transverse (perpendicular) to the growth direction. Microtubules of cells basal to the elongation zone typically showed oblique orientation. Two hours after horizontal reorientation, cap cells of gravicompetent, light-grown and curving roots contained MTs parallel to the gravity vector. The MT arrangement on the upper side of the elongation zone remained transverse but the MTs of the outer four to five layers of cortical cells along the lower side of the elongation zone showed reorientation parallel to the axis of the root. The MTs of the lower epidermis retained their transverse orientation. Dark-grown roots did not curve and did not show reorientation of MTs in cells of the root cap or elongation zone. The data indicate that MT depolymerization and reorientation is correlated with reduction in growth rate, and that MT reorientation is one of the steps of growth control of graviresponding roots.Abbreviations MT microtubule - QC quiescent center This work was supported by National Science Foundation grant IBN-9118094.  相似文献   

19.
The occurrence and distribution of abscisic acid (ABA), xanthoxin (Xa) and the carotenoid violaxanthin (Va) were investigated in root tips of maize (Zea mays L. cv. Merit). In roots grown in the dark, Va and ABA were present in relatively high amounts in the root cap and in low amounts in the adjacent terminal 1.5 mm of the root. Xanthoxin was present in equal concentrations in both regions. In roots exposed to light, the ABA distribution was reversed, with relatively low levels in the root cap and high levels in the adjacent 1.5-mm segment. Light also caused a decrease in Va in both regions of the root and an increase in Xa, especially in the cap. In the maize cultivar used for this work, light is necessary for gravitropic curving. This response occurs within the same time frame as the light-induced ABA redistribution as well as the changes in the levels of Va and Xa. These data are consistent with a role for ABA in root gravitropism and support the proposal that Xa may arise from the turnover of Va.Abbreviations ABA abscisic acid - GC gas chromatography - HPLC high-performance liquid chromatography - GC-MS gas chromatography-mass spectroscopy - Va violaxanthin - Xa xanthoxin  相似文献   

20.
In a previous study (Nick and Schäfer 1991, Planta 185, 415–424), unilateral blue light had been shown, in maize coleoptiles, to induce phototropism and a stable transverse polarity, which became detectable as stable curvature if counteracting gravitropic stimulation was removed by rotation on a horizontal clinostat. This response was accompanied by a reorientation of cortical microtubules in the outer epidermis (Nick et al. 1990, Planta 181, 162–168). In the present study, this stable transverse polarity is shown to be correlated with stability of microtubule orientation against blue light and changes of auxin content. The role of auxin in this stabilisation was assessed. Although auxin can induce reorientation of microtubules it fails to induce the stabilisation of microtubule orientation induced by blue light. This was even true for gradients of auxin able to induce a bending response similar to that ellicited by phototropic stimulation. Experiments involving partial irradiation demonstrated different perception sites for phototropism and polarity induction. Phototropism starts from the very coleoptile tip and involves transmission of a signal (auxin) towards the subapical elongation zone. In contrast, polarity induction requires local action of blue light in the elongation zone itself. This blue-light response is independent of auxin.This work was supported by the Deutsche Forschungsgemeinschaft and two grants of the Studienstiftung des Deutschen Volkes and the Human Frontier Science Program Organization to P.N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号