首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Mycoplasma mobile binds to solid surfaces and glides smoothly and continuously by a unique mechanism. A huge protein, Gli521 (521 kDa), is involved in the gliding machinery, and it is localized in the cell neck, the base of the membrane protrusion. This protein is thought to have the role of force transmission. In this study, the Gli521 protein was purified from M. mobile cells, and its molecular shape was studied. Gel filtration analysis showed that the isolated Gli521 protein forms mainly a monomer in Tween 80-containing buffer and oligomers in Triton X-100-containing buffer. Rotary shadowing electron microscopy showed that the Gli521 monomer consisted of three parts: an oval, a rod, and a hook. The oval was 15 nm long by 11 nm wide, and the filamentous part composed of the rod and the hook was 106 nm long and 3 nm in diameter. The Gli521 molecules form a trimer, producing a “triskelion” reminiscent of eukaryotic clathrin, through association at the hook end. Image averaging of the central part of the triskelion suggested that there are stable and rigid structures. The binding site of a previously isolated monoclonal antibody on Gli521 images showed that the hook end and oval correspond to the C- and N-terminal regions, respectively. Partial digestion of Gli521 showed that the molecule could be divided into three domains, which we assigned to the oval, rod, and hook of the molecular image. The Gli521 molecule''s role in the gliding mechanism is discussed.Mycoplasmas are commensal and occasionally parasitic bacteria with small genomes that lack a peptidoglycan layer (31). Several mycoplasma species form membrane protrusions, such as the headlike structure in Mycoplasma mobile and the attachment organelle in Mycoplasma pneumoniae (15, 19, 21, 22, 25, 33, 34, 36). On solid surfaces, these species exhibit gliding motility in the direction of the protrusion; this motility is believed to be involved in the pathogenicity of mycoplasmas (12, 13, 16, 20, 21). Interestingly, mycoplasmas have no surface flagella or pili, and their genomes contain no genes related to other known bacterial motility systems. In addition, no homologs of motor proteins that are common in eukaryotic motility have been found (11).M. mobile, which was isolated from the gills of a freshwater fish in the early 1980s, is a fast gliding mycoplasma (14). It glides smoothly and continuously on glass at an average speed of 2.0 to 4.5 μm/s, or three to seven times the length of the cell per second, exerting a force of up to 27 pN (8, 9, 24, 25, 32). Previously, we identified huge proteins involved in this gliding mechanism that are localized at the so-called cell neck, the base of the membrane protrusion (17, 26, 30, 35, 37, 39); we also visualized the putative machinery and the binding protein (1, 18, 23) and identified both the direct energy source used and the direct binding target (10, 27, 38). The force generated by the gliding machinery may be supported from inside the cell by a cytoskeletal “jellyfish” structure (28, 29). On the basis of these results, we proposed a working model, called the centipede or power stroke model, where cells are propelled by “legs” composed of Gli349 that repeatedly catch and release sialic acids fixed on the glass surface (5, 19, 21). These legs are driven by the force exerted by P42 through Gli521 molecules, which is supported by the jellyfish structure, based on energy from ATP hydrolysis.The Gli521 protein, which has an unusually high molecular mass (521 kDa), is suggested to have the role of force transmission, because a monoclonal antibody against this protein stops gliding, keeping the cells on a solid surface (35). About 450 molecules are estimated to be clustered in the gliding machinery with other component proteins, although their alignment has not been clarified (35, 37, 39). In this study, we isolated the Gli521 protein and studied its molecular shape using electron microscopy (EM) and biochemical analyses in order to understand the gliding mechanism.  相似文献   

2.
3.
In this study, we identified and characterized the enzymatic properties of MG_186, a calcium-dependent Mycoplasma genitalium nuclease. MG_186 displays the hallmarks of nucleases, as indicated by its amino acid sequence similarity to other nucleases. We cloned, UGA corrected, expressed, purified, and demonstrated that recombinant MG_186 (rMG_186) exhibits nuclease activity similar to that of typical sugar-nonspecific endonucleases and exonucleases. Biochemical characterization indicated that Ca2+ alone enhances its activity, which was inhibited by divalent cations, such as Zn2+ and Mn2+. Chelating agents EGTA and EDTA also inhibited nuclease activity. Mycoplasma membrane fractionation and Triton X-114 phase separation showed that MG_186 was a membrane-associated lipoprotein, and electron microscopy revealed its surface membrane location. Incubation of purified human endometrial cell nuclei with rMG_186 resulted in DNA degradation and morphological changes typical of apoptosis. Further, immunofluorescence analysis of rMG_186-treated nuclei indicated that morphological changes were linked to the disintegration of lamin and the internalization of rMG_186. Since M. genitalium has the capacity to invade eukaryotic cells and localize to the perinuclear and nuclear region of parasitized target cells, MG_186 has the potential to provide M. genitalium, which possesses the smallest genome of any self-replicating cell, with the ability to degrade host nucleic acids both as a source of nucleotide precursors for growth and for pathogenic purposes.Mycoplasma genitalium was first identified as a urogenital tract pathogen in men and subsequently implicated in a range of women pathologies, including pelvic inflammatory diseases, cervicitis, endometritis, salpingitis, and tubal factor infertility (5, 37, 40). In addition to its urogenital niche, M. genitalium has been detected in synovial and respiratory tract specimens (3, 39). M. genitalium DNA sequencing revealed a reduced genome size of 580 kb and a low GC content, along with 482 protein-encoding genes, of which 76 were categorized as hypothetical proteins (18). The streamlined genome of M. genitalium results in gene deficits that dramatically limit its biosynthetic capabilities, leading to a complete dependence on the host for metabolic precursors, such as nucleotides, amino acids, fatty acids, and sterols.Since M. genitalium, like most mollicutes, is unable to synthesize de novo purine and pyrimidine bases (27), it must scavenge nucleotides from the host in order to replicate and persist. Only Mycoplasma penetrans has an orotate-related pathway for converting carbamoyl-phosphate to uridine-5′-monophosphate (34). The importance of nucleases in the life cycle of mycoplasmas is reinforced by their detection in at least 20 Mycoplasma species (26). Purification of membrane-associated Ca2+/Mg2+-dependent M. penetrans and Mycoplasma hyorhinis nucleases and their relation to mycoplasma survival and pathogenesis have been reported (7, 8, 29, 30). Also, a membrane nuclease gene, mnuA, was identified and cloned from Mycoplasma pulmonis (20, 25). mnuA orthologous sequences were found in M. penetrans, Mycoplasma pneumoniae, Mycoplasma hyopneumoniae, Mycoplasma gallisepticum, and Ureaplasma urealyticum but not in M. genitalium. However, recent nuclease studies with M. hyopneumoniae (nuclease gene designated mhp379) revealed the existence of orthologous sequences in M. genitalium as well as in M. pneumoniae, M. pulmonis, M. gallisepticum, and Mycoplasma synoviae (35).M. genitalium was initially described as an extracellular pathogen. Subsequently, we reported that M. genitalium can be observed in the cytoplasmic and perinuclear regions of infected mammalian cells and can persist long-term within these compartments (4, 13, 24). The latter supports the contention that M. genitalium is capable of intracellular replication and survival. Furthermore, our recent evidence suggests that M. genitalium and its protein products are capable of intranuclear localization within infected endometrial cells (41). Therefore, understanding how M. genitalium overcomes its biosynthetic deficiencies and successfully parasitizes host tissues may provide insights into its biological uniqueness as the smallest pathogen capable of “independent” growth. In this report, we characterized a putative lipoprotein, MG_186, that retains the thermostable nuclease motif found in other bacterial nucleases. The gene encoding MG_186 was cloned and expressed in Escherichia coli, and the biochemical properties of purified recombinant MG_186 (rMG_186) nuclease protein were examined along with its impact on intact nuclei isolated from endometrial cells.  相似文献   

4.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

5.
《Journal of bacteriology》2009,191(6):1951-1960
We have identified a clonal complex of Mycobacterium bovis present at high frequency in cattle in population samples from several sub-Saharan west-central African countries. This closely related group of bacteria is defined by a specific chromosomal deletion (RDAf1) and can be identified by the absence of spacer 30 in the standard spoligotype typing scheme. We have named this group of strains the African 1 (Af1) clonal complex and have defined the spoligotype signature of this clonal complex as being the same as the M. bovis BCG vaccine strain but with the deletion of spacer 30. Strains of the Af1 clonal complex were found at high frequency in population samples of M. bovis from cattle in Mali, Cameroon, Nigeria, and Chad, and using a combination of variable-number tandem repeat typing and spoligotyping, we show that the population of M. bovis in each of these countries is distinct, suggesting that the recent mixing of strains between countries is not common in this area of Africa. Strains with the Af1-specific deletion (RDAf1) were not identified in M. bovis isolates from Algeria, Burundi, Ethiopia, Madagascar, Mozambique, South Africa, Tanzania, and Uganda. Furthermore, the spoligotype signature of the Af1 clonal complex has not been identified in population samples of bovine tuberculosis from Europe, Iran, and South America. These observations suggest that the Af1 clonal complex is geographically localized, albeit to several African countries, and we suggest that the dominance of the clonal complex in this region is the result of an original introduction into cows naïve to bovine tuberculosis.Mycobacterium bovis causes bovine tuberculosis (TB), an important disease of domesticated cattle that has a major economic and health impact throughout the world (61, 64, 65). The pathogen is a member of the Mycobacterium tuberculosis complex, which includes many species and subspecies that cause similar pathologies in a variety of mammalian hosts. The most notable member of the complex is M. tuberculosis, the most important bacterial pathogen of humans. In contrast to M. tuberculosis, which is largely host restricted to humans, M. bovis is primarily maintained in bovids, in particular, domesticated cattle, although the pathogen can frequently be recovered from other mammals, including humans (61). Bovine TB is found in cattle throughout the world and has been reported on every continent where cattle are farmed (3).Bovine TB has been reduced or eliminated from domestic cattle in many developed countries by the application of a test-and-cull policy that removes infected cattle (3, 8, 16, 17, 61, 64, 65). However, in Africa, although bovine TB is known to be common in both cattle and wildlife, control policies have not been enforced in many countries due to cost implications, lack of capacity, and infrastructure limitations (8, 16, 17, 57). In 1998, Cosivi et al. reported of bovine TB, “Of all nations in Africa, only seven apply disease control measures as part of a test-and-slaughter policy and consider bovine TB a notifiable disease; the remaining 48 control the disease inadequately or not at all” (16). In the intervening years, the situation is not thought to have improved (8); however, preliminary surveys of bovine TB have been carried out in some African countries (4, 7, 12, 37, 44, 49, 53, 54, 56).The most common epidemiological molecular-typing method applied to strains of M. bovis is spoligotyping. This method identifies polymorphism in the presence of spacer units in the direct-repeat (DR) region in strains of the M. tuberculosis complex (36, 67). The DR is composed of multiple, virtually identical 36-bp regions interspersed with unique DNA spacer sequences of similar size (direct variant repeat [DVR] units). Spacer sequences are unique to the DR region, and copies are not located elsewhere in the chromosome (68). The DR region may contain over 60 DVR units; however, 43 of the spacer units were selected from the spacer sequences of the M. tuberculosis reference strain H37Rv and M. bovis BCG strain P3 and are used in the standard application of spoligotyping to strains of the M. tuberculosis complex (29, 36). The DR region is polymorphic because of the loss (deletion) of single or multiple spacers, and each spoligotype pattern from strains of M. bovis is given an identifier (http://www.Mbovis.org).Several studies of the DR regions in closely related strains of M. tuberculosis have concluded that the evolutionary trend for this region is primarily loss of single DVRs or multiple contiguous DVRs (22, 29, 68); duplication of DVR units or point mutations in spacer sequences were found to be rare. The loss of discrete units observed by Groenen et al. (29) led them to suggest that the mechanism for spacer loss was homologous recombination between repeat units. However, a study by Warren et al. (69) suggested that for strains of M. tuberculosis, insertion of IS6110 sequences into the DR region and recombination between adjacent IS6110 elements were more important mechanisms for the loss of spacer units.The population structure of the M. tuberculosis group of organisms is apparently highly clonal, without any transfer and recombination of chromosomal sequences between strains (15, 30, 60, 61). In a strictly clonal population, the loss by deletion of unique chromosomal DNA cannot be replaced by recombination from another strain, and the deleted region will act as a molecular marker for the strain and all its descendants. Deletions of specific chromosomal regions (regions of difference [RDs] or large sequence polymorphisms) have been very successful at identifying phylogenetic relationships in the M. tuberculosis complex (11, 25, 26, 35, 48, 50, 61, 62, 66). However, because the loss of spoligotype spacer sequences is so frequent, identical spoligotype patterns can occur independently in unrelated lineages (homoplasy), and therefore, the deletion of spoligotype spacers may be an unreliable indicator of phylogenetic relationship (61, 69).In samples of M. bovis strains from Cameroon, Nigeria, Chad, and Mali, spoligotyping was used to show that many of the strains had similar spoligotype patterns that lacked spacer 30, and it has been suggested that strains from these four countries are phylogenetically related (12, 18, 49, 53). We have extended the previous observations of spoligotype similarities between strains from these countries and confirmed the existence of a unique clonal complex of M. bovis, all descended from a single strain in which a specific deletion of chromosomal DNA occurred. We have named this clonal complex of M. bovis strains African 1 (Af1), and we show that this clonal complex is dominant in these four west-central African countries but rare in eastern and southern Africa. Extended genotyping, using variable-number tandem repeats (VNTR), of strains with the most common spoligotype patterns suggests that each of these four west-central African countries has a unique population structure. Evolutionary scenarios that may have led to the present day distribution of the Af1 clonal complex are discussed.  相似文献   

6.
7.
8.
Human cytomegalovirus (HCMV) UL37 proteins traffic sequentially from the endoplasmic reticulum (ER) to the mitochondria. In transiently transfected cells, UL37 proteins traffic into the mitochondrion-associated membranes (MAM), the site of contact between the ER and mitochondria. In HCMV-infected cells, the predominant UL37 exon 1 protein, pUL37x1, trafficked into the ER, the MAM, and the mitochondria. Surprisingly, a component of the MAM calcium signaling junction complex, cytosolic Grp75, was increasingly enriched in heavy MAM from HCMV-infected cells. These studies show the first documented case of a herpesvirus protein, HCMV pUL37x1, trafficking into the MAM during permissive infection and HCMV-induced alteration of the MAM protein composition.The human cytomegalovirus (HCMV) UL37 immediate early (IE) locus expresses multiple products, including the predominant UL37 exon 1 protein, pUL37x1, also known as viral mitochondrion-localized inhibitor of apoptosis (vMIA), during lytic infection (16, 22, 24, 39, 44). The UL37 glycoprotein (gpUL37) shares UL37x1 sequences and is internally cleaved, generating pUL37NH2 and gpUL37COOH (2, 22, 25, 26). pUL37x1 is essential for the growth of HCMV in humans (17) and for the growth of primary HCMV strains (20) and strain AD169 (14, 35, 39, 49) but not strain TownevarATCC in permissive human fibroblasts (HFFs) (27).pUL37x1 induces calcium (Ca2+) efflux from the endoplasmic reticulum (ER) (39), regulates viral early gene expression (5, 10), disrupts F-actin (34, 39), recruits and inactivates Bax at the mitochondrial outer membrane (MOM) (4, 31-33), and inhibits mitochondrial serine protease at late times of infection (28).Intriguingly, HCMV UL37 proteins localize dually in the ER and in the mitochondria (2, 9, 16, 17, 24-26). In contrast to other characterized, similarly localized proteins (3, 6, 11, 23, 30, 38), dual-trafficking UL37 proteins are noncompetitive and sequential, as an uncleaved gpUL37 mutant protein is ER translocated, N-glycosylated, and then imported into the mitochondria (24, 26).Ninety-nine percent of ∼1,000 mitochondrial proteins are synthesized in the cytosol and directly imported into the mitochondria (13). However, the mitochondrial import of ER-synthesized proteins is poorly understood. One potential pathway is the use of the mitochondrion-associated membrane (MAM) as a transfer waypoint. The MAM is a specialized ER subdomain enriched in lipid-synthetic enzymes, lipid-associated proteins, such as sigma-1 receptor, and chaperones (18, 45). The MAM, the site of contact between the ER and the mitochondria, permits the translocation of membrane-bound lipids, including ceramide, between the two organelles (40). The MAM also provides enriched Ca2+ microdomains for mitochondrial signaling (15, 36, 37, 43, 48). One macromolecular MAM complex involved in efficient ER-to-mitochondrion Ca2+ transfer is comprised of ER-bound inositol 1,4,5-triphosphate receptor 3 (IP3R3), cytosolic Grp75, and a MOM-localized voltage-dependent anion channel (VDAC) (42). Another MAM-stabilizing protein complex utilizes mitofusin 2 (Mfn2) to tether ER and mitochondrial organelles together (12).HCMV UL37 proteins traffic into the MAM of transiently transfected HFFs and HeLa cells, directed by their NH2-terminal leaders (8, 47). To determine whether the MAM is targeted by UL37 proteins during infection, we fractionated HCMV-infected cells and examined pUL37x1 trafficking in microsomes, mitochondria, and the MAM throughout all temporal phases of infection. Because MAM domains physically bridge two organelles, multiple markers were employed to verify the purity and identity of the fractions (7, 8, 19, 46, 47).(These studies were performed in part by Chad Williamson in partial fulfillment of his doctoral studies in the Biochemistry and Molecular Genetics Program at George Washington Institute of Biomedical Sciences.)HFFs and life-extended (LE)-HFFs were grown and not infected or infected with HCMV (strain AD169) at a multiplicity of 3 PFU/cell as previously described (8, 26, 47). Heavy (6,300 × g) and light (100,000 × g) MAM fractions, mitochondria, and microsomes were isolated at various times of infection and quantified as described previously (7, 8, 47). Ten- or 20-μg amounts of total lysate or of subcellular fractions were resolved by SDS-PAGE in 4 to 12% Bis-Tris NuPage gels (Invitrogen) and examined by Western analyses (7, 8, 26). Twenty-microgram amounts of the fractions were not treated or treated with proteinase K (3 μg) for 20 min on ice, resolved by SDS-PAGE, and probed by Western analysis. The blots were probed with rabbit anti-UL37x1 antiserum (DC35), goat anti-dolichyl phosphate mannose synthase 1 (DPM1), goat anti-COX2 (both from Santa Cruz Biotechnology), mouse anti-Grp75 (StressGen Biotechnologies), and the corresponding horseradish peroxidase-conjugated secondary antibodies (8, 47). Reactive proteins were detected by enhanced chemiluminescence (ECL) reagents (Pierce), and images were digitized as described previously (26, 47).  相似文献   

9.
10.
11.
A family 5 glycoside hydrolase from Clostridium phytofermentans was cloned and engineered through a cellulase cell surface display system in Escherichia coli. The presence of cell surface anchoring, a cellulose binding module, or a His tag greatly influenced the activities of wild-type and mutant enzymes on soluble and solid cellulosic substrates, suggesting the high complexity of cellulase engineering. The best mutant had 92%, 36%, and 46% longer half-lives at 60°C on carboxymethyl cellulose, regenerated amorphous cellulose, and Avicel, respectively.The production of biofuels from nonfood cellulosic biomass would benefit the economy, the environment, and national energy security (17, 32). The largest technological and economical obstacle is the release of soluble fermentable sugars at prices competitive with those from sugarcane or corn kernels (17, 31). One of the approaches is discovering new cellulases from cellulolytic microorganisms, followed by cellulase engineering for enhanced performance on pretreated solid substrates. However, cellulase engineering remains challenging because enzymatic cellulose hydrolysis is complicated, involving heterogeneous substrates (33, 37), different action mode cellulase components (18), synergy and/or competition among cellulase components (36, 37), and declining substrate reactivity over the course of conversion (11, 26). Directed enzyme evolution, independent of knowledge of the protein structure and the enzyme-substrate interactions (6, 34), has been conducted to generate endoglucanase mutants, such as enhanced activities on soluble substrates (14, 16, 22), prolonged thermostability (20), changed optimum pH (24, 28), or improved expression levels (21). Here, we cloned and characterized a family 5 glycoside hydrolase (Cel5A) from a cellulolytic bacterium, Clostridium phytofermentans ISDg (ATCC 700394) (29, 30), and engineered it for enhanced thermostability.  相似文献   

12.
Methanogens are of great importance in carbon cycling and alternative energy production, but quantitation with culture-based methods is time-consuming and biased against methanogen groups that are difficult to cultivate in a laboratory. For these reasons, methanogens are typically studied through culture-independent molecular techniques. We developed a SYBR green I quantitative PCR (qPCR) assay to quantify total numbers of methyl coenzyme M reductase α-subunit (mcrA) genes. TaqMan probes were also designed to target nine different phylogenetic groups of methanogens in qPCR assays. Total mcrA and mcrA levels of different methanogen phylogenetic groups were determined from six samples: four samples from anaerobic digesters used to treat either primarily cow or pig manure and two aliquots from an acidic peat sample stored at 4°C or 20°C. Only members of the Methanosaetaceae, Methanosarcina, Methanobacteriaceae, and Methanocorpusculaceae and Fen cluster were detected in the environmental samples. The three samples obtained from cow manure digesters were dominated by members of the genus Methanosarcina, whereas the sample from the pig manure digester contained detectable levels of only members of the Methanobacteriaceae. The acidic peat samples were dominated by both Methanosarcina spp. and members of the Fen cluster. In two of the manure digester samples only one methanogen group was detected, but in both of the acidic peat samples and two of the manure digester samples, multiple methanogen groups were detected. The TaqMan qPCR assays were successfully able to determine the environmental abundance of different phylogenetic groups of methanogens, including several groups with few or no cultivated members.Methanogens are integral to carbon cycling, catalyzing the production of methane and carbon dioxide, both potent greenhouse gases, during organic matter degradation in anaerobic soils and sediment (8). Methanogens are widespread in anaerobic environments, including tundra (36), freshwater lake and wetland sediments (9, 12), estuarine and marine sediments (2), acidic peatlands (4, 14), rice field soil (10, 16), animal guts (41), landfills (30), and anaerobic digesters treating animal manure (1), food processing wastewater (27), and municipal wastewater and solid waste (37, 57). Methane produced in anaerobic digesters may be captured and used for energy production, thus offsetting some or all of the cost of operation and reducing the global warming potential of methane release to the atmosphere.Methanogens are difficult to study through culture-based methods, and therefore many researchers have instead used culture-independent techniques to study methanogen populations. The 16S rRNA gene is the most widely used target for gene surveys, and a number of primers and probes have been developed to target methanogen groups (9, 11, 31, 36, 38, 40, 46, 48, 57). To eliminate potential problems with nonspecific amplification, some researchers have developed primers for the gene sequence of the α-subunit of the methyl coenzyme M reductase (mcrA) (17, 30, 49). The Mcr is exclusive to the methanogens with the exception of the methane-oxidizing Archaea (18) and shows mostly congruent phylogeny to the 16S rRNA gene, allowing mcrA analysis to be used in conjunction with, or independently of, that of the 16S rRNA gene (3, 30, 49). A number of researchers have examined methanogen communities with mcrA and have found uncultured clades quite different in sequence from cultured methanogen representatives (9, 10, 12, 14, 17, 22, 28, 47).Previous studies described methanogen communities by quantitation of different clades through the use of rRNA-targeted or rRNA gene-targeted probes with techniques such as dot blot hybridization (1, 27, 37, 38, 48) and fluorescent in situ hybridization (11, 40, 44, 57). Real-time quantitative PCR (qPCR) is an alternate technique capable of determining the copy number of a particular gene present in the DNA extracted from an environmental sample. Only a few studies have used qPCR to quantitatively examine different clades within methanogen communities, and most of these studies have exclusively targeted the 16S rRNA gene (19, 41, 42, 54-56). Far fewer researchers have used qPCR to quantify methanogen clades by targeting the mcrA (21, 34, 45), and these studies were limited to only a few phylogenetic groups.In this paper we present a methodology for determining methanogen gene copy numbers through the use of qPCR targeting the mcrA. Methanogens were quantified in total using methanogen-specific primers in SYBR green assays and also as members of nine different phylogenetic groups using TaqMan probes targeting specific subsets of methanogens.  相似文献   

13.
14.
A survey of chromosomal variation in the ST239 clonal group of methicillin-resistant Staphylococcus aureus (MRSA) revealed a novel genetic element, ICE6013. The element is 13,354 bp in length, excluding a 6,551-bp Tn552 insertion. ICE6013 is flanked by 3-bp direct repeats and is demarcated by 8-bp imperfect inverted repeats. The element was present in 6 of 15 genome-sequenced S. aureus strains, and it was detected using genetic markers in 19 of 44 diverse MRSA and methicillin-susceptible strains and in all 111 ST239 strains tested. Low integration site specificity was discerned. Multiple chromosomal copies and the presence of extrachromosomal circular forms of ICE6013 were detected in various strains. The circular forms included 3-bp coupling sequences, located between the 8-bp ends of the element, that corresponded to the 3-bp direct repeats flanking the chromosomal forms. ICE6013 is predicted to encode 15 open reading frames, including an IS30-like DDE transposase in place of a Tyr/Ser recombinase and homologs of gram-positive bacterial conjugation components. Further sequence analyses indicated that ICE6013 is more closely related to ICEBs1 from Bacillus subtilis than to the only other potential integrative conjugative element known from S. aureus, Tn5801. Evidence of recombination between ICE6013 elements is also presented. In summary, ICE6013 is the first member of a new family of active, integrative genetic elements that are widely dispersed within S. aureus strains.ST239 is a globally distributed clonal group of methicillin-resistant Staphylococcus aureus (MRSA). Currently, ST239 is a major cause of MRSA infections in Asian hospitals (5, 18, 25, 37, 45, 64, 74). Pulsed-field gel electrophoresis has detected extensive chromosomal variation in local ST239 populations (3, 24, 52, 72). As ST239 has geographically spread and diversified, its variants have been given more than a dozen different names (20, 22, 24, 25, 49, 52, 61, 67, 68, 73), which reflects their clinical significance in various locales. The molecular basis for the ecological success of ST239 is unclear, but virulence-associated traits such as enhanced biofilm development and epidemiological characteristics such as a propensity to cause device-associated bacteremia and pulmonary infections have been highlighted (3, 19, 27, 54).Multilocus genetic investigations of the ST239 chromosome revealed that it is a hybrid with estimated parental contributions of approximately 20% and 80% from distantly related ST30- and ST8-like parents, respectively (58). Unusual for naturally isolated bacteria was the finding that these parental contributions were large chromosomal replacements rather than a patchwork of localized recombinations. It was postulated that conjugation might be responsible for the natural transfer of hundreds of kilobases of contiguous chromosomal DNA that resulted in ST239 (58). Recent genomic investigations have presented evidence that large chromosomal replacements also occur within Streptococcus agalactiae strains and that they can be mimicked with laboratory conjugation experiments (12). Importantly, conjugative transfer frequencies in S. agalactiae were found to be highest near three genomic islands (12), two of which were identified as being integrative conjugative elements (ICEs) (13).ICEs and conjugative transposons are synonyms and refer to genetic elements that are maintained by integration into a replicon and are transmitted by self-encoded conjugation functions (56). ICEs abound in the genomes of S. agalactiae (11), but only one potential ICE has been identified in staphylococci to date: Tn5801 was discovered through the genomic sequencing of S. aureus strain Mu50 (46). Tn5801 is most similar to a truncated genetic element, CW459tet(M), from Clostridium perfringens (57). Both Tn5801 and CW459tet(M) have Tyr recombinases, regulatory genes, and tetM modules that are similar to those of the prototypical gram-positive conjugative transposon, Tn916. Moreover, both Tn5801 and CW459tet(M) integrate into the same locus, guaA, at a nearly identical 11-bp sequence. Although the conjugative transfer module of CW459tet(M) is deleted (57), the conjugative transfer module of Tn5801 is similar to that of Tn916.We suspected that ST239 strains might carry novel accessory genes that contribute to their chromosomal variation and ecological success. To explore this possibility, we conducted a survey of chromosomal variation in ST239 using a PCR scanning approach. We report the discovery and partial characterization of a novel genetic element, ICE6013, that resulted from the survey.  相似文献   

15.
Lipoprotein T (LppT), a membrane-located 105-kDa lipoprotein of Mycoplasma conjunctivae, the etiological agent of infectious keratoconjunctivitis (IKC) of domestic sheep and wild Caprinae, was characterized. LppT was shown to promote cell attachment to LSM 192 primary lamb joint synovial cells. Adhesion of M. conjunctivae to LSM 192 cells is inhibited by antibodies directed against LppT. The RGD (Arg-Gly-Asp) motif of LppT was found to be a specific site for binding of M. conjunctivae to these eukaryotic host cells. Recombinant LppT fixed to polymethylmethacrylate slides binds LSM 192 cells, whereas LppT lacking the RGD site is deprived of binding capacity to LSM 192, and LppT containing RGE rather than RGD shows reduced binding. Synthetic nonapeptides derived from LppT containing RGD competitively inhibit binding of LSM 192 cells to LppT-coated slides, whereas nonapeptides containing RAD rather than RGD do not inhibit. RGD-containing, LppT-derived nonapeptides are able to directly inhibit binding of M. conjunctivae to LSM 192 cells by competitive inhibition, whereas the analogous nonapeptide containing RAD rather than RGD or the fibronectin-derived RGD hexapeptide has no inhibitory effect. These results reveal LppT as the first candidate of a RGD lectin in Mycoplasma species that is assumed to bind to β integrins.Mycoplasma conjunctivae, the etiological agent of infectious keratoconjunctivitis (IKC), causes severe ocular infections that lead to blindness and perforation of the cornea, particularly in Alpine ibex (Capra ibex ibex) and chamois (Rupicapra rupicapra rupicapra) (4). In view of the harsh physiochemical conditions that protect the eye from being colonized and infected by pathogenic microorganisms, M. conjunctivae is expected to exhibit efficient adhesion functions in order to avoid being flooded off by lachrymal fluid. Adhesion is thought to play a central role in the pathogenicity of bacteria in general and of Mycoplasma species in particular, both directly as a basic condition of colonization (10, 23, 42, 43) and indirectly by adherence coupled to cytopathic functions. In the latter, adhering mycoplasmas may induce oxidative damage to the host cell by targeted release of peroxide and oxygen radical species (7, 27) or disrupt K+ channels of ciliated bronchial epithelial cells, which leads to ciliostasis (13). Extracellular matrix proteins and glycosaminoglycans play important roles as receptors for adhesion of bacterial pathogens, including those of Mycoplasma species. In Mycoplasma hyopneumoniae, protein P159 has recently been identified as a heparin binding protein that promotes adherence to eukaryotic cells (10). Furthermore, the R1 region near the carboxy terminus of protein P97 of M. hyopneumoniae has been shown to mediate adherence to swine cilia (23, 41). Mycoplasmal adhesion structures have extensively been studied in virulent Mycoplasma pneumoniae, where two surface proteins, P1 of 169 kDa and P30 of 30 kDa, are densely clustered to form the tip organelle that provides strong polarity to the cytoadherence process (12, 20). Moreover, a putative cytoskeleton-forming protein with a proline-rich, acidic domain was speculated to be involved in the formation of the adhesion tip (28). In contrast to the well-structured adherence organelle of M. pneumoniae, adhesins of most other Mycoplasma species appear to be distributed on the mycoplasmal surface, and no particular receptor-ligand mechanisms have to date been identified (29).In M. conjunctivae, a serine-rich membrane-located lipoprotein, LppS, was found to be involved in the adhesion to LSM 192 lamb joint synovial cells. LppS was shown to have sequence similarity to the fibrinogen binding protein, clumping factor A (ClfA) of Staphylococcus aureus, which has a repeated serine-aspartate domain at the analogous polyserine location (6). In the lamb joint synovial cell model, adherence of M. conjunctivae was inhibited using Fab fragments from immunoglobulin G (IgG) directed against recombinant purified LppS (6). Lipoprotein T (LppT) of M. conjunctivae, which is encoded by the same bicistronic operon downstream of lppS, shows significant similarity to the heparin binding protein P159, protein P102, and Mhp494 of M. hyopneumoniae, which are involved in adhesion to swine cilia (10, 17, 19, 38). We report here the characterization of LppT and its role in adhesion. LppT contains an RGD cell attachment motif that consists of the amino acids Arg-Gly-Asp, which is shown to be directly involved in binding to primary lamb joint synovial cells. RGD adhesins belong to a large class of integrin binding proteins that bind the extracellular matrix and which are known to induce important biological events such as cell differentiation, malignant transformation, immune recognition, and blood coagulation (25, 31).  相似文献   

16.
17.
18.
Claudin-1, a component of tight junctions between liver hepatocytes, is a hepatitis C virus (HCV) late-stage entry cofactor. To investigate the structural and functional roles of various claudin-1 domains in HCV entry, we applied a mutagenesis strategy. Putative functional intracellular claudin-1 domains were not important. However, we identified seven novel residues in the first extracellular loop that are critical for entry of HCV isolates drawn from six different subtypes. Most of the critical residues belong to the highly conserved claudin motif W30-GLW51-C54-C64. Alanine substitutions of these residues did not impair claudin-1 cell surface expression or lateral protein interactions within the plasma membrane, including claudin-1-claudin-1 and claudin-1-CD81 interactions. However, these mutants no longer localized to cell-cell contacts. Based on our observations, we propose that cell-cell contacts formed by claudin-1 may generate specialized membrane domains that are amenable to HCV entry.Hepatitis C virus (HCV) is a major human pathogen that affects approximately 3% of the global population, leading to cirrhosis and hepatocellular carcinoma in chronically infected individuals (5, 23, 42). Hepatocytes are the major target cells of HCV (11), and entry follows a complex cascade of interactions with several cellular factors (6, 8, 12, 17). Infectious viral particles are associated with lipoproteins and initially attach to target cells via glycosaminoglycans and the low-density lipoprotein receptor (1, 7, 31). These interactions are followed by direct binding of the E2 envelope glycoprotein to the scavenger receptor class B type I (SR-B1) and then to the CD81 tetraspanin (14, 15, 33, 36). Early studies showed that CD81 and SR-B1 were necessary but not sufficient for HCV entry, and claudin-1 was discovered to be a requisite HCV entry cofactor that appears to act at a very late stage of the process (18).Claudin-1 is a member of the claudin protein family that participates in the formation of tight junctions between adjacent cells (25, 30, 37). Tight junctions regulate the paracellular transport of solutes, water, and ions and also generate apical-basal cell polarity (25, 37). In the liver, the apical surfaces of hepatocytes form bile canaliculi, whereas the basolateral surfaces face the underside of the endothelial layer that lines liver sinusoids. Claudin-1 is highly expressed in tight junctions formed by liver hepatocytes as well as on all hepatoma cell lines that are permissive to HCV entry (18, 24, 28). Importantly, nonhepatic cell lines that are engineered to express claudin-1 become permissive to HCV entry (18). Claudin-6 and -9 are two other members of the human claudin family that enable HCV entry into nonpermissive cells (28, 43).The precise role of claudin-1 in HCV entry remains to be determined. A direct interaction between claudins and HCV particles or soluble E2 envelope glycoprotein has not been demonstrated (18; T. Dragic, unpublished data). It is possible that claudin-1 interacts with HCV entry receptors SR-B1 or CD81, thereby modulating their ability to bind to E2. Alternatively, claudin-1 may ferry the receptor-virus complex to fusion-permissive intracellular compartments. Recent studies show that claudin-1 colocalizes with the CD81 tetraspanin at the cell surface of permissive cell lines (22, 34, 41). With respect to nonpermissive cells, one group observed that claudin-1 was predominantly intracellular (41), whereas another reported associations of claudin-1 and CD81 at the cell surface, similar to what is observed in permissive cells (22).Claudins comprise four transmembrane domains along with two extracellular loops and two cytoplasmic domains (19, 20, 25, 30, 37). The first extracellular loop (ECL1) participates in pore formation and influences paracellular charge selectivity (25, 37). It has been shown that the ECL1 of claudin-1 is required for HCV entry (18). All human claudins comprise a highly conserved motif, W30-GLW51-C54-C64, in the crown of ECL1 (25, 37). The exact function of this domain is unknown, and we hypothesized that it is important for HCV entry. The second extracellular loop is required for the holding function and oligomerization of the protein (25). Claudin-1 also comprises various signaling domains and a PDZ binding motif in the intracellular C terminus that binds ZO-1, another major component of tight junctions (30, 32, 37). We further hypothesized that some of these domains may play a role in HCV entry.To understand the role of claudin-1 in HCV infection, we developed a mutagenesis strategy targeting the putative sites for internalization, glycosylation, palmitoylation, and phosphorylation. The functionality of these domains has been described by others (4, 16, 25, 35, 37, 40). We also mutagenized charged and bulky residues in ECL1, including all six residues within the highly conserved motif W30-GLW51-C54-C64. None of the intracellular domains were found to affect HCV entry. However, we identified seven residues in ECL1 that are critical for entry mediated by envelope glycoproteins derived from several HCV subtypes, including all six residues of the conserved motif. These mutants were still expressed at the cell surface and able to form lateral homophilic interactions within the plasma membrane as well as to engage in lateral interactions with CD81. In contrast, they no longer engaged in homophilic trans interactions at cell-cell contacts. We conclude that the highly conserved motif W30-GLW51-C54-C64 of claudin-1 is important for HCV entry into target cells and participates in the formation of cell-cell contacts.  相似文献   

19.
Cell migration is critical for normal development and for pathological processes including cancer cell metastasis. Dynamic remodeling of focal adhesions and the actin cytoskeleton are crucial determinants of cell motility. The Rho family and the mitogen-activated protein kinase (MAPK) module consisting of MEK-extracellular signal-regulated kinase (ERK) are important regulators of these processes, but mechanisms for the integration of these signals during spreading and motility are incompletely understood. Here we show that ERK activity is required for fibronectin-stimulated Rho-GTP loading, Rho-kinase function, and the maturation of focal adhesions in spreading cells. We identify p190A RhoGAP as a major target for ERK signaling in adhesion assembly and identify roles for ERK phosphorylation of the C terminus in p190A localization and activity. These observations reveal a novel role for ERK signaling in adhesion assembly in addition to its established role in adhesion disassembly.Cell migration is a highly coordinated process essential for physiological and pathological processes (69). Signaling through Rho family GTPases (e.g., Rac, Cdc42, and Rho) is crucial for cell migration. Activated Rac and Cdc42 are involved in the production of a dominant lamellipodium and filopodia, respectively, whereas Rho-stimulated contractile forces are required for tail retraction and to maintain adhesion to the matrix (57, 58, 68). Rac- and Cdc42-dependent membrane protrusions are driven by the actin cytoskeleton and the formation of peripheral focal complexes; Rho activation stabilizes protrusions by stimulating the formation of mature focal adhesions and stress fibers. Active Rho influences cytoskeletal dynamics through effectors including the Rho kinases (ROCKs) (2, 3).Rho activity is stimulated by GEFs that promote GTP binding and attenuated by GTPase-activating proteins (GAPs) that enhance Rho''s intrinsic GTPase activity. However, due to the large number of RhoGEFs and RhoGAPs expressed in mammalian cells, the molecular mechanisms responsible for regulation of Rho activity in time and space are incompletely understood. p190A RhoGAP (hereafter p190A) is implicated in adhesion and migration signaling. p190A contains an N-terminal GTPase domain, a large middle domain juxtaposed to the C-terminal GAP domain, and a short C-terminal tail (74). The C-terminal tail of ∼50 amino acids is divergent between p190A and the closely related family member p190B (14) and thus may specify the unique functional roles for p190A and p190B revealed in gene knockout studies (10, 11, 41, 77, 78). p190A activity is dynamically regulated in response to external cues during cell adhesion and migration (5, 6, 59). Arthur et al. (5) reported that p190A activity is required for the transient decrease in RhoGTP levels seen in fibroblasts adhering to fibronectin. p190A activity is positively regulated by tyrosine phosphorylation (4, 5, 8, 17, 31, 39, 40, 42): phosphorylation at Y1105 promotes its association with p120RasGAP and subsequent recruitment to membranes or cytoskeleton (8, 17, 27, 31, 71, 75, 84). However, Y1105 phosphorylation is alone insufficient to activate p190A GAP activity (39). While the functions of p190A can be irreversibly terminated by ubiquitinylation in a cell-cycle-dependent manner (80), less is known about reversible mechanisms that negatively regulate p190A GAP activity during adhesion and motility.The integration of Rho family GTPase and extracellular signal-regulated kinase (ERK) signaling is important for cell motility (48, 50, 63, 76, 79). Several studies have demonstrated a requirement for ERK signaling in the disassembly of focal adhesions in migrating cells, in part through the activation of calpain proteases (36, 37) that can downregulate focal adhesion kinase (FAK) signaling (15), locally suppress Rho activity (52), and sever cytoskeletal linkers to focal adhesions (7, 33). Inhibition of ERK signaling increases focal adhesion size and retards disassembly of focal adhesions in adherent cells (57, 64, 85, 86). It is also recognized that ERK modulates Rho-dependent cellular processes, including membrane protrusion and migration (18, 25, 64, 86). Interestingly, ERK activated in response to acute fibronectin stimulation localizes not only to mature focal adhesions, but also to peripheral focal complexes (32, 76). Since these complexes can either mature or be turned over (12), ERK may play a distinct role in focal adhesion assembly. ERK is proposed to promote focal adhesion formation by activating myosin light chain kinase (MLCK) (21, 32, 50).Here we find that ERK activity is required for Rho activation and focal adhesion formation during adhesion to fibronectin and that p190A is an essential target of ERK signaling in this context. Inspection of the p190A C terminus reveals a number of consensus ERK sites and indeed p190A is phosphorylated by recombinant ERK only on its C terminus in vitro, and on the same C-terminal peptide in vivo. Mutation of the C-terminal ERK phosphorylation sites to alanine increases the biochemical and biological activity of p190A. Finally, inhibition of MEK or mutation of the C-terminal phosphorylation sites enhances retention of p190A in peripheral membranes during spreading on fibronectin. Our data support the conclusion that ERK phosphorylation inhibits p190A allowing increases in RhoGTP and cytoskeletal changes necessary for focal adhesion formation.  相似文献   

20.
Understanding the mechanisms underlying potential altered susceptibility to human immunodeficiency virus type 1 (HIV-1) infection in highly exposed seronegative (ES) individuals and the later clinical consequences of breakthrough infection can provide insight into strategies to control HIV-1 with an effective vaccine. From our Seattle ES cohort, we identified one individual (LSC63) who seroconverted after over 2 years of repeated unprotected sexual contact with his HIV-1-infected partner (P63) and other sexual partners of unknown HIV-1 serostatus. The HIV-1 variants infecting LSC63 were genetically unrelated to those sequenced from P63. This may not be surprising, since viral load measurements in P63 were repeatedly below 50 copies/ml, making him an unlikely transmitter. However, broad HIV-1-specific cytotoxic T-lymphocyte (CTL) responses were detected in LSC63 before seroconversion. Compared to those detected after seroconversion, these responses were of lower magnitude and half of them targeted different regions of the viral proteome. Strong HLA-B27-restricted CTLs, which have been associated with disease control, were detected in LSC63 after but not before seroconversion. Furthermore, for the majority of the protein-coding regions of the HIV-1 variants in LSC63 (except gp41, nef, and the 3′ half of pol), the genetic distances between the infecting viruses and the viruses to which he was exposed through P63 (termed the exposed virus) were comparable to the distances between random subtype B HIV-1 sequences and the exposed viruses. These results suggest that broad preinfection immune responses were not able to prevent the acquisition of HIV-1 infection in LSC63, even though the infecting viruses were not particularly distant from the viruses that may have elicited these responses.Understanding the mechanisms of altered susceptibility or control of human immunodeficiency virus type 1 (HIV-1) infection in highly exposed seronegative (ES) persons may provide invaluable information aiding the design of HIV-1 vaccines and therapy (9, 14, 15, 33, 45, 57, 58). In a cohort of female commercial sex workers in Nairobi, Kenya, a small proportion of individuals remained seronegative for over 3 years despite the continued practice of unprotected sex (12, 28, 55, 56). Similarly, resistance to HIV-1 infection has been reported in homosexual men who frequently practiced unprotected sex with infected partners (1, 15, 17, 21, 61). Multiple factors have been associated with the resistance to HIV-1 infection in ES individuals (32), including host genetic factors (8, 16, 20, 37-39, 44, 46, 47, 49, 59, 63), such as certain HLA class I and II alleles (41), as well as cellular (1, 15, 26, 55, 56), humoral (25, 29), and innate immune responses (22, 35).Seroconversion in previously HIV-resistant Nairobi female commercial sex workers, despite preexisting HIV-specific cytotoxic T-lymphocyte (CTL) responses, has been reported (27). Similarly, 13 of 125 ES enrollees in our Seattle ES cohort (1, 15, 17) have become late seroconverters (H. Zhu, T. Andrus, Y. Liu, and T. Zhu, unpublished observations). Here, we analyze the virology, genetics, and immune responses of HIV-1 infection in one of the later seroconverting subjects, LSC63, who had developed broad CTL responses before seroconversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号