首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potassium voltage-gated channel, KQT-like subfamily member 1 (KCNQ1) is a member of 11 mammalian Kv channel families that plays a key role for the repolarization of the cardiac action potential as well as water and salt transport. Genome-wide association studies have identified KCNQ1 as a type 2 diabetes (T2D) susceptibility gene in populations of Asian descent. After that, a number of studies reported that the rs2237892, rs2237895, rs2237897, rs2283228, and rs231362 polymorphism in KCNQ1 has been implicated in T2D risk. However, studies on the association between these polymorphism and T2D remain conflicting. To derive a more precise estimation of the relationship, a meta-analysis of 114,140 patients and 167,322 controls from 30 published case–control studies was performed. Overall, significantly elevated T2D risk was associated with rs2237892, rs2237895, rs2237897, rs2283228, and rs231362 risk allele when all studies were pooled into the meta-analysis. In the subgroup analysis by ethnicity, sample size, and Hardy–Weinberg equilibrium status of controls, significantly increased risks were found for these polymorphisms. In conclusion, this meta-analysis suggests that rs2237892, rs2237895, rs2237897, rs2283228, and rs231362 polymorphisms in KCNQ1 are associated with elevated T2D risk.  相似文献   

2.
Four single nucleotide polymorphisms (SNPs, rs2237892, rs2237895, rs2237897, rs2283228) in KCNQ1 are associated with type 2 diabetes mellitus in different ancestral groups. We investigated whether these 4 genetic markers are determinants of type 2 diabetes and premature coronary artery disease (CAD) in a Chinese population. We studied 398 consecutive patients, including 180 with coronary stenosis ≥50% or previous myocardial infarction (male <55 years, female <65 years) and 218 controls without documented CAD. CAD cases and controls were genotyped for 4 SNPs by using the ligase detection reaction method. The 3 genotypes AA, AC, and CC were present in rs2283228 and rs2237895, and the 3 genotypes CC, CT, TT were present in rs2237897 and rs2237892. No differences were found in genotype distribution and allele frequencies of these 4 SNPs between subjects with and without type 2 diabetes. Logistic regression showed that the risk of premature CAD in subjects carrying the CC genotype at rs2237892 was reduced by 90% in relation to individuals carrying the TT genotype (OR = 0.100, 95% CI: 0.018–0.564, P = 0.009). The association of other 3 SNPs with premature CAD could not be detected, nor did there exist any association of these 4 SNPs among groups of patients with 0, 1, 2, and 3-vessel disease (all P > 0.05). Our data implicate rs2237892 in KCNQ1 as a protective gene variant against premature CAD and we couldn’t replicate any association of these 4 SNPs with T2DM or extent of coronary lesions in a Chinese population.  相似文献   

3.
Recent genome-wide association studies in East Asian poulations reported the association of KCNQ1 variants with type 2 diabetes. In the present study, we first investigated the association between rs2237892 in KCNQ1 and type 2 diabetes in a Hubei Han Chinese population (223 type 2 diabetes patients and 201 controls). The frequencies of CC genotype and C allele in type 2 diabetes patients were significantly higher than those of controls group (CC: 51.6% vs 39.3%, P=0.001; C: 72.2% vs 61.2%, P=0.001). The odds ratio for the risk allele C was 1.65 (95%CI 1.23–2.2, P=0.001). Then, we systematically reviewed the association of SNPs (rs2237892, rs2237895, rs2237897, rs2074196) in KCNQ1 with type 2 diabetes risk in a meta-analysis. Significant heterogeneity between studies was found for SNPs rs2237892 and rs2237897. Combined odds ratios of the rs2237892 C, rs2237895 C, rs2237897 C, rs2074196 G allele were 1.35 (95% CI 1.29–1.41, P<0.0001), 1.27 (95%CI 1.23–1.32, P<0.0001), 1.32 (95%CI 1.21–1.43, P<0.0001), 1.30 (95%CI 1.25–1.35, P<0.0001) respectively. Our results and meta-analysis demonstrated that KCNQ1 polymorphisms were reproducibly associated with the risk of type 2 diabetes in Han Chinese and East Asian populations.  相似文献   

4.

Background

Genome-wide association studies in Japanese populations recently identified common variants in the KCNQ1 gene to be associated with type 2 diabetes. We examined the association of these variants within KCNQ1 with type 2 diabetes in a Dutch population, investigated their effects on insulin secretion and metabolic traits and on the risk of developing complications in type 2 diabetes patients.

Methodology

The KCNQ1 variants rs151290, rs2237892, and rs2237895 were genotyped in a total of 4620 type 2 diabetes patients and 5285 healthy controls from the Netherlands. Data on macrovascular complications, nephropathy and retinopathy were available in a subset of diabetic patients. Association between genotype and insulin secretion/action was assessed in the additional sample of 335 individuals who underwent a hyperglycaemic clamp.

Principal Findings

We found that all the genotyped KCNQ1 variants were significantly associated with type 2 diabetes in our Dutch population, and the association of rs151290 was the strongest (OR 1.20, 95% CI 1.07–1.35, p = 0.002). The risk C-allele of rs151290 was nominally associated with reduced first-phase glucose-stimulated insulin secretion, while the non-risk T-allele of rs2237892 was significantly correlated with increased second-phase glucose-stimulated insulin secretion (p = 0.025 and 0.0016, respectively). In addition, the risk C-allele of rs2237892 was associated with higher LDL and total cholesterol levels (p = 0.015 and 0.003, respectively). We found no evidence for an association of KCNQ1 with diabetic complications.

Conclusions

Common variants in the KCNQ1 gene are associated with type 2 diabetes in a Dutch population, which can be explained at least in part by an effect on insulin secretion. Furthermore, our data suggest that KCNQ1 is also associated with lipid metabolism.  相似文献   

5.

Background

KCNQ1 (potassium voltage-gated channel KQT-like sub-family, member 1) encodes a pore-forming subunit of a voltage-gated K+ channel (KvLQT1) that plays a key role for the repolarization of the cardiac action potential as well as water and salt transport in epithelial tissues. Recently, genome-wide association studies have identified KCNQ1 as a type 2 diabetes (T2D) susceptibility gene in populations of Asian descent. After that, a number of studies reported that the rs2237892 and rs2237895 polymorphism in KCNQ1 has been implicated in T2D risk. However, studies on the association between these polymorphism and T2D remain conflicting. To investigate this inconsistency, we performed this meta-analysis.

Methods

Databases including Pubmed, EMBASE, Web of Science and China National Knowledge Infrastructure (CNKI) were searched to find relevant studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association. Potential sources of heterogeneity were also assessed by subgroup analysis and meta-regression.

Results

A total of 25 articles involving 70,577 T2D cases and 99,068 controls were included. Overall, the summary odds ratio of C allele for T2D was 1.32 (95% CI 1.26–1.38; P<10−5) and 1.24 (95% CI: 1.20–1.29; P<10−5) for KCNQ1 rs2237892 and rs2237895 polymorphisms, respectively. Significant results were also observed using co-dominant, dominant and recessive genetic models. After stratifying by ethnicity, sample size, and diagnostic criteria, significant associations were also obtained.

Conclusions

This meta-analysis suggests that the rs2237892 and rs2237895 polymorphisms in KCNQ1 are associated with elevated type 2 diabetes susceptibility.  相似文献   

6.

Background

Insulin resistance and type 2 diabetes are more prevalent in people of South Asian ethnicity than in people of Western European origin. To investigate the source of these differences, we compared insulin sensitivity, insulin secretion, glucose and lipid metabolism in South Asian and Nordic subjects with type 2 diabetes.

Methods

Forty-three Nordic and 19 South Asian subjects with type 2 diabetes were examined with intra-venous glucose tolerance test, euglycemic clamp including measurement of endogenous glucose production, indirect calorimetry measuring glucose and lipid oxidation, and dual x-ray absorptiometry measuring body composition.

Results

Despite younger mean ± SD age (49.7±9.4 vs 58.3±8.3 years, p = 0.001), subjects of South Asian ethnicity had the same diabetes duration (9.3±5.5 vs 9.6±7.0 years, p = 0.86), significantly higher median [inter-quartile range] HbA1c (8.5 [1.6] vs 7.3 [1.6] %, p = 0.024) and lower BMI (28.7±4.0 vs 33.2±4.7 kg/m2, p<0.001). The South Asian group exhibited significantly higher basal endogenous glucose production (19.1 [9.1] vs 14.4 [6.8] µmol/kgFFM⋅min, p = 0.003). There were no significant differences between the groups in total glucose disposal (39.1±20.4 vs 39.2±17.6 µmol/kgFFM⋅min, p = 0.99) or first phase insulin secretion (AUC0–8 min: 220 [302] vs 124 [275] pM, p = 0.35). In South Asian subjects there was a tendency towards positive correlations between endogenous glucose production and resting and clamp energy expenditure.

Conclusions

Subjects of South Asian ethnicity with type 2 diabetes, despite being younger and leaner, had higher basal endogenous glucose production, indicating higher hepatic insulin resistance, and a trend towards higher use of carbohydrates as fasting energy substrate compared to Nordic subjects. These findings may contribute to the understanding of the observed differences in prevalence of type 2 diabetes between the ethnic groups.  相似文献   

7.

Objective

Recent genetic studies have shown that potassium voltage-gated channel, KQT-like subfamily, member1 (KCNQ1) gene is related to gestational diabetes mellitus (GDM). However, studies for the rs2237892 polymorphism in KCNQ1 and GDM remain conflicting in Asians. Furthermore, associations of this polymorphism with glucose levels during oral glucose tolerance test (OGTT) have not been described in Chinese pregnant women. The present study aimed to provide evidence for the associations of rs2237892 in KCNQ1 with GDM and glucose levels, and to systematically evaluate the effect of rs2237892 on GDM in Asians.

Methods

A case-control study on 562 women with GDM and 453 controls was conducted in Beijing, China. The association of rs2237892 with risk of GDM was analyzed using logistic regression. The associations with quantitative glucose levels were assessed using linear regression models. A meta-analysis including the present case-control study and four previously published reports in Asians was conducted.

Results

The rs2237892 polymorphism in KCNQ1 was associated with GDM (OR (95%CI) =1.99(1.26-3.15)). Additionally, the polymorphism was associated with levels of 1h and 2h glucose during OGTT. The pre-pregnancy BMI, age and genotypes of KCNQ1 polymorphism were independent risk factors of GDM. Subsequently, we performed a meta-analysis in Asians. In total, C-allele carriers of rs2237892 polymorphism had a 50% higher risk for GDM (OR (95%CI) =1.50(1.15-1.78)).

Conclusion

The study demonstrated for the first time that the KCNQ1 rs2237892 polymorphism was associated with GDM and glucose levels in Chinese women. The study provides systematic evidence for the association between this polymorphism and GDM in Asians.  相似文献   

8.
Chen XD  Yang YJ  Li SY  Peng QQ  Zheng LJ  Jin L  Wang XF 《PloS one》2012,7(3):e34229

Background

Potassium voltage-gated channel, KQT-like subfamily, member 1 (KCNQ1) is thought to be an important candidate gene of diabetes. Several single nucleotide polymorphisms (SNPs) in a 40-kb linkage disequilibrium (LD) block in its intron 15 have been identified to be associated with diabetes in East Asian populations in recent genome-wide association studies. The aim of this study was to investigate whether KCNQ1 polymorphisms influence the levels of the metabolic phenotypes in general Chinese populations.

Methodology/Principal Findings

We investigated the associations of two SNPs (rs2237892 and rs2237895) in the aforementioned 40-kb LD block, a missense variant rs12720449 (P448R) in exon 10, and a synonymous variant rs1057128 (S546S) in exon 13 with metabolic phenotypes in a Uyghur population (n = 478) and replicated these associations in a Han population (n = 2,485). We found that rs2237892-T allele was significantly associated with decreased triglyceride levels (pcombined = 0.001). The minor G allele of the rs12720449, with sharp difference of the allelic frequency between European and East Asian populations (0.2% versus 14%, respectively), was associated with a lower triglyceride levels than G allele in Uyghur subjects (p = 0.004), in Han subjects (p = 0.052), and in subjects of meta-analysis (pcombined = 0.001). Moreover, the minor A allele of the rs1057128 was also associated with decreased triglyceride levels in meta-analysis (pcombined = 0.010).

Conclusions

To the best of our knowledge, this is the first report associating a missense mutation of KCNQ1, rs12720449, with triglyceride levels. Rs2237892, representing the 40-kb LD block, is also associated with triglyceride levels in Han population. Further studies are required to replicate these findings in other East Asian populations.  相似文献   

9.

Background

Single nucleotide polymorphisms (SNPs) from GCK, GCKR, G6PC2 and MTNR1B were found to modulate the fasting glucose levels. The current study aimed to replicate this association in the Chinese population and further analyze their effects on biphasic insulin secretion.

Methods/Principal Findings

SNPs from GCK, GCKR, G6PC2 and MTNR1B were genotyped in the Shanghai Chinese, including 3,410 type 2 diabetes patients and 3,412 controls. The controls were extensively phenotyped for the traits related to glucose metabolism and insulin secretion. We replicated the association between GCK rs1799884, G6PC2 rs16856187 and MTNR1B rs10830963 and fasting glucose in our samples (p = 0.0003∼2.0×10−8). GCK rs1799884 and G6PC2 rs16856187 showed association to HOMA-β, insulinogenic index and both first- and second-phases insulin secretion (p = 0.0030∼0.0396). MTNR1B rs10830963 was associated to HOMA-β, insulinogenic index and first-phase insulin secretion (p = 0.0102∼0.0426), but not second-phase insulin secretion (p = 0.9933). Combined effect analyses showed individuals carrying more risk allele for high fasting glucose tended to have a higher glucose levels at both fasting and 2 h during OGTTs (p = 1.7×10−13 and 0.0009, respectively), as well as lower HOMA-β, insulinogenic index and both first- and second-phases insulin secretion (p = 0.0321∼1.1×10−7).

Conclusions/Significance

We showed that SNPs from GCK, G6PC2 and MTNR1B modulated the fasting glucose levels in the normoglycaemic population while SNPs from G6PC2 and GCKR was associated with type 2 diabetes. Moreover, we found GCK and G6PC2 genetic variants were associated to both first- and second-phases insulin secretion while MTNR1B genetic variant was associated with first-phase insulin secretion, but not second-phase insulin secretion.  相似文献   

10.

Backround

A meta-analysis combining results from three genome-wide association studies and followed by large-scale replication identified six novel type 2 diabetes loci. Subsequent studies of the effect of these variants on estimates of the beta-cell function and insulin sensitivity have been inconclusive. We examined these variants located in or near the JAZF1 (rs864745), THADA (rs7578597), TSPAN8 (rs7961581), ADAMTS9 (rs4607103), NOTCH2 (rs10923931) and the CDC123/CAMK1D (rs12779790) genes for associations with measures of pancreatic beta-cell function and insulin sensitivity.

Methodology/Results

Oral and intravenous glucose stimulated insulin release (n = 849) and insulin sensitivity (n = 596) estimated from a hyperinsulinemic euglycemic clamp were measured in non-diabetic offspring of type 2 diabetic patients from five European populations. Assuming an additive genetic model the diabetes-associated major C-allele of rs4607103 near ADAMTS9 associated with reduced insulin-stimulated glucose uptake (p = 0.002) during a hyperinsulinemic euglycemic clamp. However, following intravenous and oral administration of glucose serum insulin release was increased in individuals with the C-allele (p = 0.003 and p = 0.01, respectively). A meta-analyse combining clamp and IVGTT data from a total of 905 non-diabetic individuals showed that the C-risk allele associated with decreased insulin sensitivity (p = 0.003) and increased insulin release (p = 0.002). The major T-allele of the intronic JAZF1 rs864745 conferring increased diabetes risk was associated with increased 2nd phase serum insulin release during an IVGTT (p = 0.03), and an increased fasting serum insulin level (p = 0.001). The remaining variants did not show any associations with insulin response, insulin sensitivity or any other measured quantitative traits.

Conclusion

The present studies suggest that the diabetogenic impact of the C-allele of rs4607103 near ADAMTS9 may in part be mediated through decreased insulin sensitivity of peripheral tissues.  相似文献   

11.
Endoplasmic reticulum (ER) stress is one of the contributing factors to the development of β-cell failure in type 2 diabetes. ER stress response through ATF6 has been shown to play an important role in insulin resistance and pancreatic β-cell function. We investigated whether genetic polymorphisms in ATF6 were associated with the risk of pre-diabetes in a Chinese Han population, and whether they had a synergistic effect with obesity. Our samples included 828 individuals who were diagnosed as pre-diabetic, and 620 controls. The minor allele A at rs2340721 was associated with increased risk for pre-diabetes(p = 0.013), and this association was still significant after adjusting for gender, age, body mass index (BMI), and waist-hip ratio(p′ = 0.011). BMI, treated as a continuous variable, and rs2340721 had an interactive effect on pre-diabetic risk(p for interaction = 0.003, β = 0.106). Carriers of GG at rs7522210 were also at a higher risk compared to non-carriers (OR = 1.390, 95%CI:1.206–1.818, p = 0.013, adjusted OR′ = 1.516, 95%CI:1.101–2.006, p′ = 0.006). GG homozygotes had increased fasting blood glucose (FBG) levels(GG vs CX: 5.6±0.52 vs 5.5±0.57 mmol/L, p = 0.016), lower insulin levels (0,30,120 minutes after glucose load) (p<0.05), and reduced areas under the insulin curve than non-carriers(GG vs CX:67.3(44.2–102.3) vs 73.1(49.4–111.4), p = 0.014). rs10918270 was associated with FBG, and rs4657103 with 2 hour glucose levels after a 75 g glucose load. We also identified a haplotype of TTAG composed of rs4657103, rs2134697, rs2340721, and rs12079579, which was associated with pre-diabetes. The genetic variation in ATF6 is associated with pre-diabetes and has interactive effects with BMI on pre-diabetes in the Chinese Han population.  相似文献   

12.

Background

Very recently, a novel type 2 diabetes risk gene, i.e., MTNR1B, was identified and reported to affect fasting glycemia. Using our thoroughly phenotyped cohort of subjects at an increased risk for type 2 diabetes, we assessed the association of common genetic variation within the MTNR1B locus with obesity and prediabetes traits, namely impaired insulin secretion and insulin resistance.

Methodology/Principal Findings

We genotyped 1,578 non-diabetic subjects, metabolically characterized by oral glucose tolerance test, for five tagging single nucleotide polymorphisms (SNPs) covering 100% of common genetic variation (minor allele frequency >0.05) within the MTNR1B locus (rs10830962, rs4753426, rs12804291, rs10830963, rs3781638). In a subgroup (N = 513), insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamp, and in a further subgroup (N = 301), glucose-stimulated insulin secretion was determined by intravenous glucose tolerance test. After appropriate adjustment for confounding variables and Bonferroni correction for multiple comparisons, none of the tagging SNPs was reliably associated with measures of adiposity. SNPs rs10830962, rs4753426, and rs10830963 were significantly associated with higher fasting plasma glucose concentrations (p<0.0001) and reduced OGTT- and IVGTT-induced insulin release (p≤0.0007 and p≤0.01, respectively). By contrast, SNP rs3781638 displayed significant association with lower fasting plasma glucose levels and increased OGTT-induced insulin release (p<0.0001 and p≤0.0002, respectively). Moreover, SNP rs3781638 revealed significant association with elevated fasting- and OGTT-derived insulin sensitivity (p≤0.0021). None of the MTNR1B tagging SNPs altered proinsulin-to-insulin conversion.

Conclusions/Significance

In conclusion, common genetic variation within MTNR1B determines glucose-stimulated insulin secretion and plasma glucose concentrations. Their impact on β-cell function might represent the prevailing pathomechanism how MTNR1B variants increase the type 2 diabetes risk.  相似文献   

13.

Introduction

Insulin sensitizing drugs such as pioglitazone are not uniformly treatment effective among individual type 2 diabetic patients. Here, the relationship of pioglitazone efficacy to single nucleotide polymorphisms (SNP) of the adiponectin gene, a critical gene directly regulated by the drug, was examined in a cohort of Chinese Han type 2 diabetic patients.

Methods

Eighty type 2 diabetic patients were treated with pioglitazone (15 mg/day) for 12 weeks without interruption of their current therapeutic regimen. Fasting plasma glucose, fasting insulin, homeostasis model assessment for insulin resistance (HOMA-IR), and glycated hemoglobin (HbA1c%) were collected both prior to and following pioglitazone treatment. Response to pioglitazone was defined as a decrease of at least 15% in HbA1c% levels. Three regions of the adiponectin gene containing SNPs (promoter, intron 2 and exon 2, and exon 3) were amplified and sequenced to determine genotype.

Results

Serum adiponectin levels were significantly increased (p<0.001) whereas fasting plasma glucose, fasting insulin, HOMA-IR, and HbA1c% values were significantly decreased relative to baseline measurements (p<0.001). Response of patients with TG and TT genotypes at rs2241766 (exon2; 52.9% vs. 12.7%, respectively p = 0.001) was statistically significant relative to all other patients. Amongst rs2241766 TG and TT patients, the mean decrease in HbA1c% levels was greater where the genotype was TG (1.15±0.80 vs. 0.52±0.64, p = 0.001).

Conclusions

The adiponectin gene polymorphism rs2241766 T/G is associated with pioglitazone efficacy in type 2 diabetic patients, and status of the polymorphism may be an important clinical factor to consider prior to pioglitazone treatment.  相似文献   

14.

Objective

To evaluate the effects of study participation per se at the beginning of a sleep extension trial between screening, randomization, and the run-in visit.

Design

Subjects were screened, returned for randomization (Comparison vs. Intervention) after 81 days (median), and attended run-in visit 121 days later.

Setting

Outpatient.

Patients

Obese (N = 125; M/F, 30/95; Blacks/Whites/Other, N = 73/44/8), mean weight 107.6±19.7 kg, <6.5 h sleep/night.

Intervention

Non-pharmacological sleep extension.

Measurements

Sleep duration (diaries and actigraphy watch), sleep quality (Pittsburgh Sleep Quality Index), daily sleepiness (Epworth Sleepiness Scale), fasting glucose, insulin and lipids.

Results

Prior to any intervention, marked improvements occurred between screening and randomization. Sleep duration increased (diaries: 357.4 ±51.2 vs. 388.1±48.6 min/night; mean±SD; P<0.001 screening vs. randomization; actigraphy: 344.3 ±41.9 vs. 358.6±48.2 min/night; P<0.001) sleep quality improved (9.1±3.2 vs. 8.2±3.0 PSQI score; P<0.001), sleepiness tended to improve (8.9±4.6 vs. 8.3±4.5 ESS score; P = 0.06), insulin resistance decreased (0.327±0.038 vs. 0.351±0.045; Quicki index; P<0.001), and lipids improved, except for HDL-C. Abnormal fasting glucose (25% vs. 11%; P = 0.007), and metabolic syndrome (42% vs. 29%; P = 0.007) both decreased. In absence of intervention, the earlier metabolic improvements disappeared at the run-in visit.

Limitations

Relatively small sample size.

Conclusions

Improvements in biochemical and behavioral parameters between screening and randomization changed the “true” study baseline, thereby potentially affecting outcome. While regression to the mean and placebo effect were considered, these findings are most consistent with the “Hawthorne effect”, according to which behavior measured in the setting of an experimental study changes in response to the attention received from study investigators. This is the first time that biochemical changes were documented with respect to the Hawthorne effect. The findings have implications for the design and conduct of clinical research.

Trial Registration

ClinicalTrials.gov NCT00261898.  相似文献   

15.

Objective

Polypyrimidine tract-binding protein 1 (PTBP1) promotes stability and translation of mRNAs coding for insulin secretion granule proteins and thereby plays a role in β-cells function. We studied whether common genetic variations within the PTBP1 locus influence insulin secretion, and/or proinsulin conversion.

Methods

We genotyped 1,502 healthy German subjects for four tagging single nucleotide polymorphisms (SNPs) within the PTBP1 locus (rs351974, rs11085226, rs736926, and rs123698) covering 100% of genetic variation with an r2≥0.8. The subjects were metabolically characterized by an oral glucose tolerance test with insulin, proinsulin, and C-peptide measurements. A subgroup of 320 subjects also underwent an IVGTT.

Results

PTBP1 SNP rs11085226 was nominally associated with lower insulinogenic index and lower cleared insulin response in the OGTT (p≤0.04). The other tested SNPs did not show any association with the analyzed OGTT-derived secretion parameters. In the IVGTT subgroup, SNP rs11085226 was accordingly associated with lower insulin levels within the first ten minutes following glucose injection (p = 0.0103). Furthermore, SNP rs351974 was associated with insulin levels in the IVGTT (p = 0.0108). Upon interrogation of MAGIC HOMA-B data, our rs11085226 result was replicated (MAGIC p = 0.018), but the rs351974 was not.

Conclusions

We conclude that common genetic variation in PTBP1 influences glucose-stimulated insulin secretion. This underlines the importance of PTBP1 for beta cell function in vivo.  相似文献   

16.
17.
Mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) is expressed in all diabetes-relevant tissues and mediates cytokine-induced insulin resistance. We investigated whether common single nucleotide polymorphisms (SNPs) in the MAP4K4 locus associate with glucose intolerance, insulin resistance, impaired insulin release, or elevated plasma cytokines. The best hit was tested for association with type 2 diabetes. Subjects (N = 1,769) were recruited from the Tübingen Family (TÜF) study for type 2 diabetes and genotyped for tagging SNPs. In a subgroup, cytokines were measured. Association with type 2 diabetes was tested in a prospective case-cohort study (N = 2,971) derived from the EPIC-Potsdam study. Three SNPs (rs6543087, rs17801985, rs1003376) revealed nominal and two SNPs (rs11674694, rs11678405) significant associations with 2-hour glucose levels. SNPs rs6543087 and rs11674694 were also nominally associated with decreased insulin sensitivity. Another two SNPs (rs2236936, rs2236935) showed associations with reduced insulin release, driven by effects in lean subjects only. Three SNPs (rs11674694, rs13003883, rs2236936) revealed nominal associations with IL-6 levels. SNP rs11674694 was significantly associated with type 2 diabetes. In conclusion, common variation in MAP4K4 is associated with insulin resistance and β-cell dysfunction, possibly via this gene’s role in inflammatory signalling. This variation’s impact on insulin sensitivity may be more important since its effect on insulin release vanishes with increasing BMI.  相似文献   

18.

Background

A meta-analysis of genome-wide data reported the discovery of the rs35767 polymorphism near IGF1 with genome-wide significant association with fasting insulin levels. However, it is unclear whether the effects of this polymorphism on fasting insulin are mediated by a reduced insulin sensitivity or impaired insulin clearance. We investigated the effects of the rs35767 polymorphism on circulating IGF-1 levels, insulin sensitivity, and insulin clearance.

Methodology/Principal Findings

Two samples of adult nondiabetic white Europeans were studied. In sample 1 (n=569), IGF-1 levels were lower in GG genotype carriers compared with A allele carriers (190±77 vs. 218±97 ng/ml, respectively; P=0.007 after adjusting for age, gender, and BMI). Insulin sensitivity assessed by euglycaemic-hyperinsulinemic clamp was lower in GG genotype carriers compared with A allele carriers (8.9±4.1 vs. 10.1±5.1 mg x Kg-1 free fat mass x min-1, respectively; P=0.03 after adjusting for age, gender, and BMI). The rs35767 polymorphism did not show significant association with insulin clearance. In sample 2 (n=859), IGF-1 levels were lower in GG genotype carriers compared with A allele carriers (155±60 vs. 164±63 ng/ml, respectively; P=0.02 after adjusting for age, gender, and BMI). Insulin sensitivity, as estimated by the HOMA index, was lower in GG genotype carriers compared with A allele carriers (2.8±2.2 vs. 2.5±1.3, respectively; P=0.03 after adjusting for age, gender, and BMI).

Conclusion/Significance

The rs35767 polymorphism near IGF1 was associated with circulating IGF-1 levels, and insulin sensitivity with carriers of the GG genotype exhibiting lower IGF-1 concentrations and insulin sensitivity as compared with subjects carrying the A allele.  相似文献   

19.

Background

Insulin resistance impairs nitric oxide (NO) bioavailability and obesity promotes a state of chronic inflammation and damages the vascular endothelium. Phosphodiesterase-5 inhibitors restore NO signaling and may reduce circulating inflammatory markers, and improve metabolic parameters through a number of mechanisms. We hypothesized that daily administration of the PDE-5 inhibitor, tadalafil (TAD) will attenuate inflammation, improve fasting plasma glucose and triglyceride levels, body weight, and reduce infarct size after ischemia/reperfusion injury in obese, diabetic mice.

Methods

Twenty leptin receptor null (db/db) mice underwent treatment with TAD (1 mg/Kg) or 10% DMSO for 28 days. Body weight and fasting plasma glucose levels were determined weekly. Upon completion, hearts were isolated and subjected to 30 min global ischemia followed by 60 min reperfusion in a Langendorff model. Plasma samples were taken for cytokine analysis and fasting triglyceride levels. Infarct size was measured using computer morphometry of tetrazolium stained sections. Additionally, ventricular cardiomyocytes were isolated and subjected to 40 min of simulated ischemia and reoxygenation. Necrosis was determined using trypan blue exclusion and LDH release assay and apoptosis was assessed by TUNEL assay after 1 h or 18 h of reoxygenation, respectively.

Results

Treatment with TAD caused a reduction in infarct size in the diabetic heart (23.2±1.5 vs. 47.8±3.7%, p<0.01, n = 6/group), reduced fasting glucose levels (292±31.8 vs. 511±19.3 mg/dL, p<0.001) and fasting triglycerides (43.3±21 vs. 129.7±29 mg/dL, p<0.05) as compared to DMSO, however body weight was not significantly reduced. Circulating tumor necrosis factor-α and interleukin-1β were reduced after treatment compared to control (257±16.51 vs. 402.3±17.26 and 150.8±12.55 vs. 264±31.85 pg/mL, respectively; P<0.001) Isolated cardiomyocytes from TAD-treated mice showed reduced apoptosis and necrosis.

Conclusion

We have provided the first evidence that TAD therapy ameliorates circulating inflammatory cytokines and chemokines in a diabetic animal model while improving fasting glucose levels and reducing infarct size following ischemia-reperfusion injury in the heart.  相似文献   

20.

Objective

To determine the association between left ventricular hypertrophy and insulin resistance in Gambians.

Design

Cross-sectional study.

Setting

Outpatient clinics of Royal Victoria Teaching Hospital and Medical Research Council Laboratories in Banjul.

Participants

Three hundred and sixteen consecutive patients were enrolled from outpatient clinics. The data of 275 participants (89 males) were included in the analysis with a mean (± standard deviation) age of 53.7 (±11.9) years.

Interventions

A questionnaire was filled and anthropometric measurements were taken. 2-D guided M-mode echocardiography, standard 12-1ead electrocardiogram, fasting insulin and the oral glucose tolerance test were performed.

Main Outcome Measures

The Penn formula was used to determine the left ventricular mass index, 125 g/m2 in males and 110 g/m2 in females as the cut-off for left ventricular hypertrophy. Using the fasting insulin and fasting glucose levels, the insulin resistance was estimated by the homeostatic model assessment formula. Logistic regression analysis was used to determine the association between left ventricular hypertrophy and insulin resistance.

Results

The mean Penn left ventricular mass index was 119.5 (±54.3) and the prevalence of Penn left ventricular mass index left ventricular hypertrophy was 41%. The mean fasting glucose was 5.6 (±2.5) mmol/l, fasting insulin was 6.39 (±5.49) μU/ml and insulin resistance was 1.58 (±1.45). There was no association between Penn left ventricular mass index left ventricular hypertrophy and log of insulin resistance in univariate (OR = 0.98, 95% CI = 0.80 – 1.19, p = 0.819) and multivariate logistic regression (OR = 0.93, 95% CI = 0.76–1.15, p = 0.516) analysis.

Conclusion

No association was found in this study between left ventricular hypertrophy and insulin resistance in Gambians and this does not support the suggestion that insulin is an independent determinant of left ventricular hypertrophy in hypertensives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号