首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Transglutaminase activity was detected in suspensions of purified spores prepared from lysozyme-treated sporulating cells of Bacillus subtilis AJ 1307. The enzyme was easily solubilized from the spores upon incubation at pH 10.5 at 37°C. The transglutaminase activity was separated into two fractions upon purification by hydrophobic interaction chromatography (TG1 and TG2). Each enzyme was purified to electrophoretic homogeneity (about 1,000-fold). Both enzymes had the same molecular weight of 29,000 as estimated by SDS-PAGE, had the same N-terminal 30 amino acid sequence, and also showed the same optimal temperature (60°C) and pH (8.2). The purified enzyme catalyzed formation of cross-linked ε-(γ-glutamyl)lysine isopeptides, resulting in the gel-formation of protein solutions such as αs-casein and BSA.  相似文献   

4.
The involvement of transporters in multidrug resistance of bacteria is an increasingly challenging problem, and most of the pumps identified so far use the protonmotive gradient as the energy source. A new member of the ATP-binding cassette (ABC) family, known in Bacillus subtilis as YvcC and homologous to each half of mammalian P-glycoprotein and to LmrA of Lactococcus lactis, has been studied here. The yvcC gene was constitutively expressed in B. subtilis throughout its growth, and a knockout mutant showed a lower rate of ethidium efflux than the wild-type strain. Overexpression of yvcC in Escherichia coli allowed the preparation of highly enriched inverted-membrane vesicles that exhibited high transport activities of three fluorescent drugs, namely, Hoechst 33342, doxorubicin, and 7-aminoactinomycin D. After solubilization with n-dodecyl beta-D-maltoside, the hexahistidine-tagged YvcC was purified by a one-step affinity chromatography, and its ability to bind many P-glycoprotein effectors was evidenced by fluorescence spectroscopy experiments. Collectively, these results showed that YvcC is a multidrug ABC transporter functionally active in wild-type B. subtilis, and YvcC was therefore renamed BmrA for Bacillus multidrug resistance ATP. Besides, reconstitution of YvcC into liposomes led to the highest, vanadate-sensitive, ATPase activity reported so far for an ABC transporter. Interestingly, such a high ATP hydrolysis proceeds with a positive cooperativity mechanism, a property only found so far with ABC importers.  相似文献   

5.
The Bacillus subtilis strain VTT E-68013 was chosen for purification and characterization of its excreted phytase. Purified enzyme had maximal phytase activity at pH 7 and 55°C. Isolated enzyme required calcium for its activity and/or stability and was readily inhibited by EDTA. The enzyme proved to be highly specific since, of the substrates tested, only phytate, ADP, and ATP were hydrolyzed (100, 75, and 50% of the relative activity, respectively). The phytase gene (phyC) was cloned from the B. subtilis VTT E-68013 genomic library. The deduced amino acid sequence (383 residues) showed no homology to the sequences of other phytases nor to those of any known phosphatases. PhyC did not have the conserved RHGXRXP sequence found in the active site of known phytases, and therefore PhyC appears not to be a member of the phytase subfamily of histidine acid phosphatases but a novel enzyme having phytase activity. Due to its pH profile and optimum, it could be an interesting candidate for feed applications.  相似文献   

6.
7.
8.
9.
10.
Bacillus subtilis strain F3, isolated from peach rhizosphere soil, is an antifungal bacterium against many plant pathogens. In this study, the antifungal protein was isolated and purified by ammonium sulphate and chromatography, then identified by mass spectrum analysis. By sequential chromatography of Sephadex G‐50, DEAE‐Sephadex A‐25 anion exchange and Sephadex G‐100, a fraction designated as F3A was isolated to show a single protein band in SDS‐PAGE and be antagonistic towards Monilinia fructicola. The peptide mass fingerprinting of the protein band of F3A had high similarity with the amino acid sequences of several flagellin protein of B. subtilis. There were seven amino acid fragments matched with the protein having the highest score, and sequence coverage was 33%. F3A showed a strongly inhibitory effect to the growth and sporulation of M. fructicola. There were little aerial hyphae and conidia at the antifungal zone, and the hyphae were abnormal with some cell wall collapse and several vacuoles in cells.  相似文献   

11.
12.
A gene that codes for a novel intracellular poly(3-hydroxybutyrate) (PHB) depolymerase, designated PhaZ1, has been identified in the genome of Bacillus megaterium. A native PHB (nPHB) granule-binding assay showed that purified soluble PhaZ1 had strong affinity for nPHB granules. Turbidimetric analyses revealed that PhaZ1 could rapidly degrade nPHB granules in vitro without the need for protease pretreatment of the granules to remove surface proteins. Notably, almost all the final hydrolytic products produced from the in vitro degradation of nPHB granules by PhaZ1 were 3-hydroxybutyric acid (3HB) monomers. Unexpectedly, PhaZ1 could also hydrolyze denatured semicrystalline PHB, with the generation of 3HB monomers. The disruption of the phaZ1 gene significantly affected intracellular PHB mobilization during the PHB-degrading stage in B. megaterium, as demonstrated by transmission electron microscopy and the measurement of the PHB content. These results indicate that PhaZ1 is functional in intracellular PHB mobilization in vivo. Some of these features, which are in striking contrast with those of other known nPHB granule-degrading PhaZs, may provide an advantage for B. megaterium PhaZ1 in fermentative production of the biotechnologically valuable chiral compound (R)-3HB.Polyhydroxyalkanoates (PHAs) are a group of polyesters that are produced by numerous bacteria as carbon and energy storage materials in response to nutritional stress (13, 27, 29). Poly(3-hydroxybutyrate) (PHB) is the most common and intensively studied PHA. Intracellular native PHB (nPHB) granules are composed of a hydrophobic PHB core and a surface layer consisting of proteins and phospholipids (13). The PHB of intracellular nPHB granules is in an amorphous state. When intracellular nPHB granules are exposed to extracellular environments due to cell death and lysis, the amorphous PHB is transformed into a denatured semicrystalline state. nPHB granules subjected to physical damage or solvent extraction to remove the surface layer can also crystallize into denatured PHB (dPHB) (13, 15). Artificial PHB (aPHB) granules, in which PHB is in an amorphous state, can be prepared from semicrystalline dPHB and detergents (1, 11, 23, 31).Various extracellular PHB depolymerases (PhaZs) that are secreted by many PHB-degrading bacteria have been demonstrated to specifically degrade dPHB (13, 14, 37). One exception is that PhaZ7, an extracellular PHB depolymerase secreted by Paucimonas lemoignei, displays unusual substrate specificity for amorphous PHB, with 3-hydroxybutyrate (3HB) oligomers as the main products of enzymatic hydrolysis (7). PhaZ7 exhibits no enzymatic activity toward dPHB. So far, a growing number of intracellular PHB depolymerases have been characterized. The intracellular PHB depolymerase PhaZa1 of Ralstonia eutropha (also called Cupriavidus necator) H16 has recently been established to be especially important for the intracellular mobilization of accumulated PHB (42). The main in vitro hydrolytic products of PhaZa1 degradation of amorphous aPHB are 3HB oligomers (31). PhaZd1, another intracellular PHB depolymerase of R. eutropha H16, shows no significant amino acid similarity to PhaZa1. The in vitro hydrolytic products of PhaZd1 degradation of amorphous aPHB are also 3HB oligomers. A 3HB monomer is rarely detected as a hydrolytic product (1). The intracellular PHB depolymerase PhaZ of Paracoccus denitrificans was reported previously to degrade protease-treated nPHB granules in vitro, with the release of 3HB dimers and oligomers as the main hydrolytic products (6). Recently, we have identified a novel intracellular PHB depolymerase from Bacillus thuringiensis serovar “israelensis” (39). The B. thuringiensis PhaZ shows no significant amino acid similarity to any known PHB depolymerase. This PhaZ has strong amorphous PHB-hydrolyzing activity and can release a considerable amount of 3HB monomers by the hydrolysis of trypsin-treated nPHB granules (39). It is of note that purified PhaZd1 from R. eutropha, PhaZ from P. denitrificans, and PhaZ from B. thuringiensis need pretreatment of nPHB granules with protease to remove surface proteins for PHB degradation (1, 6, 39). They show only very little or no activity toward nPHB granules without trypsin pretreatment. It has been demonstrated previously that these intracellular PHB depolymerases cannot hydrolyze dPHB (1, 31, 39).(R)-3HB, a biotechnologically valuable chiral compound, has been widely used for syntheses of antibiotics, vitamins, and pheromones (3, 30, 38). One way to produce (R)-3HB is heterologous coexpression of a PHB synthetic operon and a gene encoding an amorphous PHB-degrading PhaZ in Escherichia coli (3, 18, 25, 33, 38). A common problem encountered by this method is that oligomeric and dimeric forms of 3HB often constitute a major portion of the products of enzymatic hydrolysis, thus requiring further hydrolysis by 3HB oligomer hydrolase or heating under alkaline conditions to generate 3HB monomers (3, 18, 25, 33).Bacillus megaterium genes involved in the biosynthesis of nPHB granules have been cloned from strain ATCC 11561 and characterized previously (19, 21, 22). A gene encoding the extracellular PHB depolymerase PhaZ from B. megaterium was recently cloned from strain N-18-25-9 (34). However, little is known about B. megaterium genes involved in the intracellular mobilization of PHB. In this study, we have identified in B. megaterium ATCC 11561 an intracellular PHB depolymerase that could rapidly degrade nPHB granules in vitro without the need for trypsin pretreatment of the nPHB granules. Moreover, almost all the in vitro hydrolytic products released from the degradation of amorphous PHB by this PhaZ were 3HB monomers. This PhaZ could also hydrolyze dPHB with the generation of 3HB monomers. Thus, it appears to be a novel intracellular PHB depolymerase and may have promising potential for biotechnological application in the production of enantiomerically pure (R)-3HB monomers.  相似文献   

13.
Characterization of Bacillus subtilis bacteriophages   总被引:8,自引:1,他引:8  
Brodetsky, Anna M. (University of California, Los Angeles), and W. R. Romig. Characterization of Bacillus subtilis bacteriophages. J. Bacteriol. 90:1655-1663. 1965.-A group of six phages, SP5, SP6, SP7, SP8, SP9, and SP13, which use the Marburg strain of Bacillus subtilis as host was characterized. These phages, referred to as group 1, were examined for the following properties: host range, plaque morphology, stability, adsorption kinetics, one-step growth characteristics, calcium requirements, serum neutralization, thermal inactivation, and inactivation by ultraviolet irradiation. Five unrelated B. subtilis phages, SP3, SP10, PBS1, SP alpha, and SP beta, were included in the studies. When first isolated, none of the group 1 phages was able to replicate efficiently on B. subtilis SB19, a mutant of the "transforming" B. subtilis 168. Host range mutants capable of growth in SB19 were isolated for all of the group 1 phages except SP13, and are designated the "star" phages (SP5* through SP9*). For characterization, SB19 was used as host for the star phages, and another B. subtilis mutant, 168B, was host for SP13.  相似文献   

14.
Isolation and Characterization of a Xylanase from Bacillus subtilis   总被引:1,自引:3,他引:1       下载免费PDF全文
Partial characterization of an extracellular xylanase isolated by chromatography from Bacillus subtilis gave a molecular weight of 32,000 and optimum pH and temperature of 5.0 and 50°C, respectively. Km and Vmax values, determined with a soluble larchwood xylan, were 0.16% and 7.0 × 103 μmol min−1 mg−1 of enzyme respectively. The amino acid composition showed more basic amino acid residues than in a previously characterized xylanase from a white-rot fungus.  相似文献   

15.
《Gene》1998,212(2):179-188
A new Bacillus subtilis sporulation-specific gene, yhcN, has been identified, the expression of which is dependent on the forespore-specific sigma factor σG and to a much lesser extent on σF. A translational yhcN-lacZ fusion is expressed at a very high level in the forespore, and the protein encoded by yhcN was detected in the inner spore membrane. A yhcN mutant sporulates normally and yhcN spores have identical resistance properties to wild-type spores. However, the outgrowth of yhcN spores is slower than that of wild-type spores.  相似文献   

16.
17.
The chloramphenicol-resistance (CPr) plasmid pTZ12 (2.55 kb) in Bacillus subtilis was genetically analyzed in detail, and the CPr determinant and the functional unit of replication were mapped. The plasmids pTZ12 and pBR322 were digested with suitable restriction endonucleases and ligated with T4 ligase. The ligated DNAs were introduced into E. coli by transformation and CP-resistant transformants were selected. In conclusion, the CPr determinant was mapped between a TaqI site and a BclI site (about 900 base pairs) on pTZ12. A set of pTZ12–pBR322 recombinant plasmids isolated from E. coli was introduced into B. subtilis by transformation to test for ability to replicate in B. subtilis. From the results, the region of the functional unit of pTZ12 replication was mapped. It was also proved that the gene product of this CPr determinant was chloramphenicol acetyltransferase (CAT) and the native CAT in the cells carrying pTZ12 was a dimeric protein with two identical subunits having a molecular weight of approximately 24,000 (24 K).  相似文献   

18.
19.
Identification of a new sporulation locus, spoIIIF, in Bacillus subtilis   总被引:5,自引:0,他引:5  
We have isolated a mutant of Bacillus subtilis, strain 590, which is blocked at stage III of sporulation. The spo mutation which is carried by this strain is linked to pheA by transformation and defines a previously unidentified locus, spoIIIF. The spoIIIF locus is contiguous with the spoVB locus, in which a mutation causes a block at stage V of sporulation. We also give a detailed genetic map of the pheA region of the chromosome.  相似文献   

20.
根据已知非核糖体肽合成抗生素操纵子的保守序列设计引物,从对棉花立枯病有很好拮抗作用的枯草芽孢杆菌(Bacillus subtilis)MH25菌株中克隆相关操纵子.获得了枯草芽孢杆菌MH25的一个非核糖体肽合成抗生素操纵子序列,其包括4个ORF(ORF1,ORF2,OKF3,ORF4),与枯草芽孢杆菌RB14的ituD,ituA,tiuB和ituC的同源性分别为99%,98.70%,98.99%和99.48%,4个ORF编码的氨基酸序列与ItuD,ItuA,ItuB,ItuC的相似性分别为98%,98.54%,98.69%和98%.然后将4个ORF分别进行结构域分析,ORF3的14 779~14 963序列与ituB相对应区域的相似性为86.24%.该操纵子的启动子区为TATACACA-16bp-TAGGAT,与σA-10和-35(TTGACA-17bp-TATAAAT)不同.枯草芽孢杆菌MH25的Iturin A操纵子序列已在GenBank中注册,登陆号为EU263005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号