首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We measured the frequency of appearance of spontaneous mutants resistant to gentamicin, kanamycin, streptomycin, and spectinomycin in saprophytic and pathogenic Leptospira strains. The mutations responsible for the spontaneous resistance to streptomycin and spectinomycin were identified in the rpsL and rrs genes, respectively. We also generated a gentamicin resistance cassette that allows the use of a third selectable marker in leptospires. These results may facilitate further advances in gene transfer systems in Leptospira spp.Our understanding of leptospiral pathogenesis depends on reliable genetic tools for fully characterizing genes of interest. Significant advances in genetics of Leptospira spp. have been made over the last few years (8, 11). For generating antibiotic resistance genetic markers, our group focused on antibiotics other than those used therapeutically. We therefore excluded the use of β-lactams, as they are used to treat leptospirosis, which is an emerging disease with more 500,000 severe cases occurring annually (8). Plasmid DNA can be introduced into Leptospira by electroporation (2, 21) or conjugation (16). In 1990, Saint Girons et al. used the replication origin of the LE1 leptophage (22) to generate a plasmid that was able to replicate autonomously in both the saprophyte Leptospira biflexa and Escherichia coli (21). They used resistance to kanamycin (Kan), which was conferred by a gene from the Gram-positive bacterium Enterococcus faecalis, as a genetic marker to select for introduced DNA. Another marker, a spectinomycin (Spc) resistance cassette from Staphylococcus aureus, was also used as a selectable marker in Leptospira spp. (1). Further studies have used Spc and Kan markers to screen for transformants resulting from plasmid replication or chromosomal integration in leptospires (8, 11). As the proportion of allelic-exchange mutants is low and as chromosomal integration generally occurs through a single recombination event, a plasmid containing the rpsL wild-type gene as a counterselectable marker in a streptomycin (Str)-resistant strain of L. biflexa (due to a mutation in rpsL) was also used to eliminate clones harboring the plasmid and/or clones that have integrated the plasmid through a single-crossover event (9, 17, 20).  相似文献   

4.
Using both sequence- and function-based metagenomic approaches, multiple antibiotic resistance determinants were identified within metagenomic libraries constructed from DNA extracted from bacterial chromosomes, plasmids, or viruses within an activated sludge microbial assemblage. Metagenomic clones and a plasmid that in Escherichia coli expressed resistance to chloramphenicol, ampicillin, or kanamycin were isolated, with many cloned DNA sequences lacking any significant homology to known antibiotic resistance determinants.Activated sludge in wastewater treatment plants is an open system with a dynamic and phylogenetically diverse microbial community (2, 3, 6, 7, 10, 11). Since the activated sludge process promotes cellular interactions among diverse microorganisms, there is great potential for the lateral transfer of antibiotic resistance genes between microbes in activated sludge and in downstream environments. Several studies have previously identified antibiotic resistance determinants from wastewater communities that are carried on bacterial chromosomes (1, 4, 14) and plasmids (9, 12, 13), but to our knowledge, a simultaneous metagenomic survey of antibiotic resistance determinants from all three genetic reservoirs (i.e., chromosomes, plasmids, and viruses) has never been performed within the same environment. To achieve a more comprehensive assessment of antibiotic resistance genes in the activated sludge microbial community, this study used both function- and sequence-based metagenomic approaches to identify antibiotic resistance determinants carried on bacterial chromosomes, plasmids, or viruses within an activated sludge microbial assemblage.  相似文献   

5.
6.
7.
8.
Spores of Bacillus subtilis contain a number of small, acid-soluble spore proteins (SASP) which comprise up to 20% of total spore core protein. The multiple α/β-type SASP have been shown to confer resistance to UV radiation, heat, peroxides, and other sporicidal treatments. In this study, SASP-defective mutants of B. subtilis and spores deficient in dacB, a mutation leading to an increased core water content, were used to study the relative contributions of SASP and increased core water content to spore resistance to germicidal 254-nm and simulated environmental UV exposure (280 to 400 nm, 290 to 400 nm, and 320 to 400 nm). Spores of strains carrying mutations in sspA, sspB, and both sspA and sspB (lacking the major SASP-α and/or SASP-β) were significantly more sensitive to 254-nm and all polychromatic UV exposures, whereas the UV resistance of spores of the sspE strain (lacking SASP-γ) was essentially identical to that of the wild type. Spores of the dacB-defective strain were as resistant to 254-nm UV-C radiation as wild-type spores. However, spores of the dacB strain were significantly more sensitive than wild-type spores to environmental UV treatments of >280 nm. Air-dried spores of the dacB mutant strain had a significantly higher water content than air-dried wild-type spores. Our results indicate that α/β-type SASP and decreased spore core water content play an essential role in spore resistance to environmentally relevant UV wavelengths whereas SASP-γ does not.Spores of Bacillus spp. are highly resistant to inactivation by different physical stresses, such as toxic chemicals and biocidal agents, desiccation, pressure and temperature extremes, and high fluences of UV or ionizing radiation (reviewed in references 33, 34, and 48). Under stressful environmental conditions, cells of Bacillus spp. produce endospores that can stay dormant for extended periods. The reason for the high resistance of bacterial spores to environmental extremes lies in the structure of the spore. Spores possess thick layers of highly cross-linked coat proteins, a modified peptidoglycan spore cortex, a low core water content, and abundant intracellular constituents, such as the calcium chelate of dipicolinic acid and α/β-type small, acid-soluble spore proteins (α/β-type SASP), the last two of which protect spore DNA (6, 42, 46, 48, 52). DNA damage accumulated during spore dormancy is also efficiently repaired during spore germination (33, 47, 48). UV-induced DNA photoproducts are repaired by spore photoproduct lyase and nucleotide excision repair, DNA double-strand breaks (DSB) by nonhomologous end joining, and oxidative stress-induced apurinic/apyrimidinic (AP) sites by AP endonucleases and base excision repair (15, 26-29, 34, 43, 53, 57).Monochromatic 254-nm UV radiation has been used as an efficient and cost-effective means of disinfecting surfaces, building air, and drinking water supplies (31). Commonly used test organisms for inactivation studies are bacterial spores, usually spores of Bacillus subtilis, due to their high degree of resistance to various sporicidal treatments, reproducible inactivation response, and safety (1, 8, 19, 31, 48). Depending on the Bacillus species analyzed, spores are 10 to 50 times more resistant than growing cells to 254-nm UV radiation. In addition, most of the laboratory studies of spore inactivation and radiation biology have been performed using monochromatic 254-nm UV radiation (33, 34). Although 254-nm UV-C radiation is a convenient germicidal treatment and relevant to disinfection procedures, results obtained by using 254-nm UV-C are not truly representative of results obtained using UV wavelengths that endospores encounter in their natural environments (34, 42, 50, 51, 59). However, sunlight reaching the Earth''s surface is not monochromatic 254-nm radiation but a mixture of UV, visible, and infrared radiation, with the UV portion spanning approximately 290 to 400 nm (33, 34, 36). Thus, our knowledge of spore UV resistance has been constructed largely using a wavelength of UV radiation not normally reaching the Earth''s surface, even though ample evidence exists that both DNA photochemistry and microbial responses to UV are strongly wavelength dependent (2, 30, 33, 36).Of recent interest in our laboratories has been the exploration of factors that confer on B. subtilis spores resistance to environmentally relevant extreme conditions, particularly solar UV radiation and extreme desiccation (23, 28, 30, 34 36, 48, 52). It has been reported that α/β-type SASP but not SASP-γ play a major role in spore resistance to 254-nm UV-C radiation (20, 21) and to wet heat, dry heat, and oxidizing agents (48). In contrast, increased spore water content was reported to affect B. subtilis spore resistance to moist heat and hydrogen peroxide but not to 254-nm UV-C (12, 40, 48). However, the possible roles of SASP-α, -β, and -γ and core water content in spore resistance to environmentally relevant solar UV wavelengths have not been explored. Therefore, in this study, we have used B. subtilis strains carrying mutations in the sspA, sspB, sspE, sspA and sspB, or dacB gene to investigate the contributions of SASP and increased core water content to the resistance of B. subtilis spores to 254-nm UV-C and environmentally relevant polychromatic UV radiation encountered on Earth''s surface.  相似文献   

9.
Biofilms are considered to be highly resistant to antimicrobial agents. Several mechanisms have been proposed to explain this high resistance of biofilms, including restricted penetration of antimicrobial agents into biofilms, slow growth owing to nutrient limitation, expression of genes involved in the general stress response, and emergence of a biofilm-specific phenotype. However, since combinations of these factors are involved in most biofilm studies, it is still difficult to fully understand the mechanisms of biofilm resistance to antibiotics. In this study, the antibiotic susceptibility of Escherichia coli cells in biofilms was investigated with exclusion of the effects of the restricted penetration of antimicrobial agents into biofilms and the slow growth owing to nutrient limitation. Three different antibiotics, ampicillin (100 μg/ml), kanamycin (25 μg/ml), and ofloxacin (10 μg/ml), were applied directly to cells in the deeper layers of mature biofilms that developed in flow cells after removal of the surface layers of the biofilms. The results of the antibiotic treatment analyses revealed that ofloxacin and kanamycin were effective against biofilm cells, whereas ampicillin did not kill the cells, resulting in regrowth of the biofilm after the ampicillin treatment was discontinued. LIVE/DEAD staining revealed that a small fraction of resistant cells emerged in the deeper layers of the mature biofilms and that these cells were still alive even after 24 h of ampicillin treatment. Furthermore, to determine which genes in the biofilm cells are induced, allowing increased resistance to ampicillin, global gene expression was analyzed at different stages of biofilm formation, the attachment, colony formation, and maturation stages. The results showed that significant changes in gene expression occurred during biofilm formation, which were partly induced by rpoS expression. Based on the experimental data, it is likely that the observed resistance of biofilms can be attributed to formation of ampicillin-resistant subpopulations in the deeper layers of mature biofilms but not in young colony biofilms and that the production and resistance of the subpopulations were aided by biofilm-specific phenotypes, like slow growth and induction of rpoS-mediated stress responses.Reduced susceptibility of biofilm bacteria to antimicrobial agents is a crucial problem for treatment of chronic infections (11, 29, 48). It has been estimated that 65% of microbial infections are associated with biofilms (11, 29, 37), and biofilm cells are 100 to 1,000 times more resistant to antimicrobial agents than planktonic bacterial cells (11, 29, 32).The molecular nature of this apparent resistance has not been elucidated well, and a number of mechanisms have been proposed to explain the reduced susceptibility, such as restricted antibiotic penetration (47), decreased growth rates and metabolism (7, 52), quorum sensing and induction of a biofilm-specific phenotype (8, 29, 35, 39, 49), stress response activation (7, 52), and an increase in expression of efflux pumps (14). Biofilm resistance has generally been assumed to be due to the fact that the cells in the deeper layers of thick biofilms, which grow more slowly, have less access to antibiotics and nutrients. However, this is not the only reason in many cases. Familiar mechanisms of antibiotic resistance, such as modifying enzymes and target mutations, do not seem to be responsible for the biofilm resistance. Even sensitive bacteria that do not have a known genetic basis for resistance can exhibit profoundly reduced susceptibility when they form biofilms (48).It was reported previously that changes in gene expression induced a biofilm-specific phenotype (5, 13, 22, 35, 41, 42). Several genes have been proposed to be particularly important for biofilm formation, and the importance of the rpoS gene in Escherichia coli biofilm formation was suggested recently (1, 10, 22, 42). It has been suggested that induction of an rpoS-mediated stress response results in physiological changes that could contribute to antibiotic resistance (29). Although several mechanisms and genes have been proposed to explain biofilm resistance to antibiotics, this resistance is not still fully understood because these mechanisms seem to work together within a biofilm community. In addition, the physiology of biofilm cells is remarkably heterogeneous and varies according to the location of individual cells within biofilms (33, 34, 46).In this study, susceptibility of E. coli cells in biofilms to antibiotics was investigated. The E. coli cells in the deeper layers of mature biofilms were directly treated with three antibiotics with different molecular targets, the β-lactam ampicillin, the aminoglycoside kanamycin, and the fluoroquinolone ofloxacin. The biofilm biomass was removed before antibiotic treatment, and only the cells located in the deeper layers of the mature biofilms were directly exposed to antibiotics; thus, the effects of restricted antibiotic and nutrient penetration, as well as heterogeneous physiological states in biofilms, were reduced. Although ofloxacin and kanamycin effectively killed the biofilm cells, ampicillin could not kill the cells, which led to regrowth of biofilms. However, the cells in young colony biofilms were completely killed by ampicillin. Therefore, to determine which genes are induced in the mature biofilm cells, allowing increased resistance to ampicillin, global gene expression was analyzed at different stages of biofilm formation, the attachment, colony formation, and maturation stages. Based on the experimental data obtained, possible mechanisms of the increased biofilm resistance to ampicillin are discussed below.  相似文献   

10.
11.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

12.
13.
The use of antibiotic resistance genes in plasmids causes potential biosafety and clinical hazards, such as the possibility of horizontal spread of resistance genes or the rapid emergence of multidrug-resistant pathogens. This paper introduces a novel auxotrophy complementation system that allowed plasmids and host cells to be effectively selected and maintained without the use of antibiotics. An Escherichia coli strain carrying a defect in NAD de novo biosynthesis was constructed by knocking out the chromosomal quinolinic acid phosphoribosyltransferase (QAPRTase) gene. The resistance gene in the plasmids was replaced by the QAPRTase gene of E. coli or the mouse. As a result, only expression of the QAPRTase gene from plasmids can complement and rescue E. coli host cells in minimal medium. This is the first time that a vertebrate gene has been used to construct a nonantibiotic selection system, and it can be widely applied in DNA vaccine and gene therapy. As the QAPRTase gene is ubiquitous in species ranging from bacteria to mammals, the potential environmental biosafety problems caused by horizontal gene transfer can be eliminated.Antibiotic resistance genes are the most commonly used markers for selecting and maintaining recombinant plasmids in hosts, such as Escherichia coli. However, the use of these genes has several drawbacks. For example, horizontal transfer of the antibiotic resistance gene can potentially contribute to the rapid emergence of multidrug-resistant organisms (e.g., superbacteria) (11, 29). Another significant concern is that the antibiotic resistance genes in DNA vaccines may become integrated into human chromosomes (23). The possibility arises, although the probability is low, that once the antibiotic resistance gene is translated into a functional protein, the vaccinee might be resistant to the corresponding antibiotic. This would add to the difficulty of curing diseases caused by infectious pathogens. Accordingly, the use of antibiotic resistance genes is undesirable in many areas of biotechnology, especially in gene therapy products and genetically engineered microorganisms (17, 23, 28). Furthermore, the addition of antibiotics is costly in large-scale cultivation, and there are risks of contamination of the final product with antibiotics (2, 3). Finally, the constitutively expressed antibiotic resistance genes impose a metabolic burden on the host cells, resulting in reduced growth rate and cell density (4, 27). An alternative strategy is to utilize antibiotic-free host-plasmid balanced lethal systems to select and maintain the recombinant plasmids.To date, several such systems have been developed to replace traditional antibiotic selection systems. They include auxotrophy complementation (AC), postsegregational killing (PSK), and operator-repressor titration (ORT) (8). The AC system is based on a strain auxotrophic for an essential metabolite, obtained by mutating or knocking out the corresponding chromosomal gene, which can be complemented with the plasmid-borne selection gene. The choice of the essential gene used for complementation of host auxotrophy is critical, and it is mainly involved in DNA precursor, amino acid, or cell wall biosynthetic pathways. Various essential genes, such as asd, thyA, and glnA, have been utilized to construct AC systems (5, 9, 21, 22, 24, 26, 28). However, all of these systems require extra nutrients or expensive reagents. The PSK system relies on the balance between toxin and antitoxin, expressed from genome and plasmid, respectively. If a cell loses the plasmid, the corresponding antitoxin is degraded and the toxin then kills the cell. Unfortunately, this system has proven ineffective for plasmid maintenance during prolonged culture (6, 14). The ORT system utilizes plasmids with the lac operator to derepress a modified essential chromosomal gene. Loss of these types of plasmids no longer titrates the repressor and leads to the death of the bacterium. This system requires short, nonexpressed lac operator functions as the vector-borne selection marker and enables the selection and maintenance of plasmids free from expressed selectable marker genes (7, 8, 15, 30). Additionally, several other nonantibiotic selection systems (e.g., the fabI-triclosan system) have recently been developed (12, 17, 18).Among the antibiotic-free selection systems that have been developed, the AC system has drawn much attention and has now been applied in numerous bacterial species, such as Lactococcus lactis, Salmonella spp., Vibrio cholerae, Mycobacterium bovis, and E. coli (5, 16, 21, 22, 24). However, all of the AC systems utilize plasmid-borne bacterial-origin genes to complement the auxotrophy. These systems may suffer from a potential risk that the bacterial-origin genes may be integrated into human chromosome when they are used in transgenic products, such as DNA vaccines. Therefore, a better strategy would be to use the genes of the vaccinees themselves to construct an AC system. Not only would this type of approach select and maintain plasmids in bacteria, but it could also be widely applied in the production of safer DNA vaccines.In the present study, we successfully developed a novel antibiotic-free plasmid selection system based on complementation of host auxotrophy in the NAD synthesis pathway. The NAD synthesis pathway, including de novo and salvage pathways, differs among species. However, by comparison of NAD metabolism in different species, quinolinic acid phosphoribosyltransferase (QAPRTase) appears to be a common enzyme for de novo NAD biosynthesis in both prokaryotes and eukaryotes (13). Therefore, the QAPRTase gene was viewed as a favorable candidate that could potentially be utilized to construct a new AC system.  相似文献   

14.
Mutation frequencies were studied in 174 Stenotrophomonas maltophilia isolates from clinical and nonclinical environments by detecting spontaneous rifampin-resistant mutants in otherwise-susceptible populations. The distribution of mutation frequencies followed a pattern similar to that found for other bacterial species, with a modal value of 1 × 10−8. Nevertheless, the proportion of isolates showing mutation frequencies below the modal value (hypomutators) was significantly higher for S. maltophilia than those so far reported in other organisms. Low mutation frequencies were particularly frequent among environmental S. maltophilia strains (58.3%), whereas strong mutators were found only among isolates with a clinical origin. These results indicate that clinical environments might select bacterial populations with high mutation frequencies, likely by second-order selection processes. In several of the strong-mutator isolates, functional-complementation assays with a wild-type allele of the mutS gene demonstrated that the mutator phenotype was due to the impairment of MutS activity. In silico analysis of the amino acid changes present in the MutS proteins of these hypermutator strains in comparison with the normomutator isolates suggests that the cause of the defect in MutS might be a H683P amino acid change.Stenotrophomonas maltophilia is a Gram-negative, nonfermenting environmental bacterial species often isolated from the rhizosphere and from water sources (11, 12, 63). Some S. maltophilia strains have been used for bioremediation (13, 24, 73) or bioaugmentation (37). However, besides its environmental origin and potential relevance for biotechnological purposes, S. maltophilia is also a relevant human opportunistic pathogen (44) associated with a broad spectrum of clinical syndromes, such as bacteremia (79, 81), endocarditis (18), infection in cancer patients (1), and respiratory tract infections, including those suffered by cystic fibrosis (CF) patients (72, 77). One of the most problematic characteristics of S. maltophilia is its intrinsic high resistance to several antibiotics (4). This intrinsic antibiotic resistance is at least partly due to the presence in the genome of S. maltophilia (17) of genes encoding antibiotic-inactivating enzymes (6, 9, 30, 39, 42, 58) and multidrug resistance (MDR) efflux pumps (2, 3, 43, 78). More recently, a chromosomally encoded Qnr protein that contributes to the intrinsic resistance to quinolones of S. maltophilia has been described (67, 68).A clear difference between infective (clinical) and environmental (nonclinical) S. maltophilia strains has not been reported (12, 63). However, although the available data fit the concept that opportunistic pathogens have not specifically evolved to infect humans (48), this does not mean that they do not evolve during the infective process. For most acute infections, we can presume that the time of in-host evolution is probably too short to detect relevant adaptive changes. Nevertheless, the situation might be different in chronic infections, such as those involving the bronchial compartment in CF patients. In this case, the same bacterial clone can be maintained and grow inside the host for years (62). This produces strong diversification over time and in different compartments of the lung (25, 71, 80), a process in which the acquisition of a mutator phenotype is important (52). Thus, isolates derived from an initial clone but presenting different morphotypes (47), different phenotypes of susceptibility to antibiotics (26) or in the expression of virulence determinants (14, 15, 36), or with different mutation frequencies (49, 60) are recovered from each individual patient suffering chronic infections. More recently, intraclonal diversification has also been described for Pseudomonas aeruginosa causing acute infections in intubated patients (38). Taken together, this indicates that bacteria can evolve during infection.For different bacterial species, strains isolated from CF patients with chronic lung infections show high mutation frequencies (hypermutable strains) (19, 60, 61, 66), whereas hypermutators have rarely been found in isolates from acute infections (33). An explanation for this difference could be that hypermutable strains tend to be selected for in the highly compartmentalized environment of the infected lung by intensive antibiotic therapy, as well as by the stressful conditions of the habitat. This is a second-order selection process (75, 76), in which mutations are selected because they confer an advantage in clinical environments in such a way that mutator strains are selected because they can produce more mutants (both advantageous and deleterious) for selection. In cases of chronic infections that are treated, strong and maintained selective local processes might occur, either by antibiotic treatment or by the actions of the anti-infective systems of the host. Natural out-of-host open environments obviously might have local stresses. However, the intensity of selection is expected to be lower in these habitats, and a constant replacement of potentially lost organisms by migration of neighbor populations probably mitigates the local selection of mutators and favors the enrichment of bacteria presenting low mutation frequencies. In the case of chronic infections, the replacement of mutators by neighbor normomutators is unlikely, because those infections are produced by a single clone that remains for several years in the host (62). Furthermore, although the infection process presents strong evolutionary bottlenecks for bacterial populations, the human host also provides a constant temperature, reliable nutrient supplies, and a habitat largely free from predators and competitors. Thus, while hypermutation might increase the capability of bacteria to adapt to some specific challenges in the clinical environment, the cost of hypermutation in terms of deleterious mutations might also be diminished, and these effects might be mutually reinforcing.The hypothesis explored in this paper is that S. maltophilia is adapted to deal with out-of-host fluctuating environmental variations but that once the organism enters a patient as an opportunistic pathogen, its adaptive needs significantly increase due to the actions of stressful local environmental conditions, such as the immune response and, when present, antibiotics. This enhanced stress under infective conditions might result in the selection of variants with increased mutation frequencies in a second-order selection process (75, 76). To test this hypothesis, the mutation frequencies of S. maltophilia clinical isolates (obtained from CF and non-CF patients) and from the environment (nonclinical origin) were compared. Most works that have been published on the different mutation frequencies in bacterial populations have focused on the detection of strains showing a high mutation frequency (mutators). In our work, we describe for the first time the presence of mutators in clinical isolates of S. maltophilia and demonstrate that hypermutation in several of those isolates is due to defects in MutS.Nevertheless, our main goal has been the analysis of the global distribution of mutation frequencies in an ample number of samples from clinical and nonclinical environments. Our results indicate not only that mutators are more frequent in clinical S. maltophilia isolates, but also that the overall distribution of mutation frequencies is different in S. maltophilia populations with environmental or clinical origins, with a tendency toward mutation frequencies lower than the modal mutation value (hypomutators) in the environmental isolates.  相似文献   

15.
16.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

17.
The cationic lytic peptide cecropin B (CB), isolated from the giant silk moth (Hyalophora cecropia), has been shown to effectively eliminate Gram-negative and some Gram-positive bacteria. In this study, the effects of chemically synthesized CB on plant pathogens were investigated. The S50s (the peptide concentrations causing 50% survival of a pathogenic bacterium) of CB against two major pathogens of the tomato, Ralstonia solanacearum and Xanthomonas campestris pv. vesicatoria, were 529.6 μg/ml and 0.29 μg/ml, respectively. The CB gene was then fused to the secretory signal peptide (sp) sequence from the barley α-amylase gene, and the new construct, pBI121-spCB, was used for the transformation of tomato plants. Integration of the CB gene into the tomato genome was confirmed by PCR, and its expression was confirmed by Western blot analyses. In vivo studies of the transgenic tomato plant demonstrated significant resistance to bacterial wilt and bacterial spot. The levels of CB expressed in transgenic tomato plants (∼0.05 μg in 50 mg of leaves) were far lower than the S50 determined in vitro. CB transgenic tomatoes could therefore be a new mode of bioprotection against these two plant diseases with significant agricultural applications.Bacterial plant diseases are a source of great losses in the annual yields of most crops (5). The agrochemical methods and conventional breeding commonly used to control these bacterially induced diseases have many drawbacks. Indiscriminate use of agrochemicals has a negative impact on human, as well as animal, health and contributes to environmental pollution. Conventional plant-breeding strategies have limited scope due to the paucity of genes with these traits in the usable gene pools and their time-consuming nature. Consequently, genetic engineering and transformation technology offer better tools to test the efficacies of genes for crop improvement and to provide a better understanding of their mechanisms. One advance is the possibility of creating transgenic plants that overexpress recombinant DNA or novel genes with resistance to pathogens (36). In particular, strengthening the biological defenses of a crop by the production of antibacterial proteins with other origins (not from plants) offers a novel strategy to increase the resistance of crops to diseases (35, 39, 41). These antimicrobial peptides (AMPs) include such peptides as cecropins (2, 15, 20, 23-24, 27, 31, 42, 50), magainins (1, 9, 14, 29, 47), sarcotoxin IA (35, 40), and tachyplesin I (3). The genes encoding these small AMPs in plants have been used in practice to enhance their resistance to bacterial and fungal pathogens (8, 22, 40). The expression of AMPs in vivo (mostly cecropins and a synthetic analog of cecropin and magainin) with either specific or broad-spectrum disease resistance in tobacco (14, 24, 27), potato (17, 42), rice (46), banana (9), and hybrid poplar (32) have been reported. The transgenic plants showed considerably greater resistance to certain pathogens than the wild types (4, 13, 24, 27, 42, 46, 50). However, detailed studies of transgenic tomatoes expressing natural cecropin have not yet been reported.The tomato (Solanum lycopersicum) is one of the most commonly consumed vegetables worldwide. The annual yield of tomatoes, however, is severely affected by two common bacterial diseases, bacterial wilt and bacterial spot, which are caused by infection with the Gram-negative bacteria Ralstonia solanacearum and Xanthomonas campestris pv. vesicatoria, respectively. Currently available pesticides are ineffective against R. solanacearum, and thus bacterial wilt is a serious problem.Cecropins, one of the natural lytic peptides found in the giant silk moth, Hyalophora cecropia (25), are synthesized in lipid bodies as proteins consisting of 31 to 39 amino acid residues. They adopt an α-helical structure on interaction with bacterial membranes, resulting in the formation of ion channels (12). At low concentrations (0.1 μM to 5 μM), cecropins exhibit lytic antibacterial activity against a number of Gram-negative and some Gram-positive bacteria, but not against eukaryotic cells (11, 26, 33), thus making them potentially powerful tools for engineering bacterial resistance in crops. Moreover, cecropin B (CB) shows the strongest activity against Gram-negative bacteria within the cecropin family and therefore has been considered an excellent candidate for transformation into plants to improve their resistance against bacterial diseases.The introduction of genes encoding cecropins and their analogs into tobacco has been reported to have contradictory results regarding resistance against pathogens (20). However, subsequent investigations of these tobacco plants showed that the expression of CB in the plants did not result in accumulation of detectable levels of CB, presumably due to degradation of the peptide by host peptidases (20, 34). Therefore, protection of CB from cellular degradation is considered to be vital for the exploitation of its antibacterial activity in transgenic plants. The secretory sequences of several genes are helpful, because they cooperate with the desired genes to enhance extracellular secretion (24, 40, 46). In the present study, a natural CB gene was successfully transferred into tomatoes. The transgenic plants showed significant resistance to the tomato diseases bacterial wilt and bacterial spot, as well as with a chemically synthesized CB peptide.  相似文献   

18.
Tripartite efflux pumps found in Gram-negative bacteria are involved in antibiotic resistance and toxic-protein secretion. In this study, we show, using site-directed mutational analyses, that the conserved residues located in the tip region of the α-hairpin of the membrane fusion protein (MFP) AcrA play an essential role in the action of the tripartite efflux pump AcrAB-TolC. In addition, we provide in vivo functional data showing that both the length and the amino acid sequence of the α-hairpin of AcrA can be flexible for the formation of a functional AcrAB-TolC pump. Genetic-complementation experiments further indicated functional interrelationships between the AcrA hairpin tip region and the TolC aperture tip region. Our findings may offer a molecular basis for understanding the multidrug resistance of pathogenic bacteria.The tripartite efflux pumps that are found in Gram-negative bacteria have been implicated in their intrinsic resistance to diverse antibiotics, as well as their secretion of protein toxins (10, 12, 24, 31). The bacterial efflux pump is typically assembled from three essential components: an inner membrane transporter (IMT), an outer membrane factor (OMF), and a periplasmic membrane fusion protein (MFP) (10, 12, 24, 31). The IMT provides energy for transporters, like the resistance nodulation cell division (RND) type and the ATP-binding cassette (ABC) type (18). The OMF connects to the IMT in the periplasm, providing a continuous conduit to the external medium. This conduit uses the central channel, which is opened only when in complex with other components (11, 18). The third essential component of the pump is the MFP, which is an adapter protein for the direct interaction between the IMT and OMF in the periplasm (32). The MFP consists of four linearly arranged domains: the membrane-proximal (MP) domain, the β-barrel domain, the lipoyl domain, and the α-hairpin domain (1, 6, 16, 22, 30). The MFP α-hairpin domain is known to interact with OMF, while the other domains are related to interaction with the IMT (15, 22).The Escherichia coli AcrAB-TolC pump, comprised of RND-type IMT-AcrB, MFP-AcrA, and OMF-TolC, is the major contributor to the multidrug resistance phenotype of the bacteria (7, 8, 25). The AcrAB-TolC pump, together with its homolog, the Pseudomonas aeruginosa MexAB-OprM pump (7, 13), has primarily been studied in order to elucidate the molecular mechanisms underlying the actions of the tripartite efflux pumps. Whereas the crystal structures of these proteins have revealed that RND-type IMTs (AcrB and MexB) and OMFs (TolC and OprM) are homotrimeric in their functional states (1, 6, 11, 16, 22, 30), the oligomeric state of MFP remains a topic of debate, despite the presence of crystal structures (3, 5, 17, 18, 22, 27, 30).MacAB-TolC, which was identified as a macrolide-specific extrusion pump (9), has also been implicated in E. coli enterotoxin secretion (29). While MFP-MacA shares high sequence similarity with AcrA and MexA, IMT-MacB is a homodimeric ABC transporter that uses ATP hydrolysis as the driving force (9, 14). MacA forms hexamers, and the funnel-like hexameric structure of MacA is physiologically relevant for the formation of a functional MacAB-TolC pump (30). Although the α-hairpins from AcrA and MacA are commonly involved in the interaction with TolC (30, 32), the interaction mode between AcrA and TolC remains to be elucidated. In this study, we provide experimental evidence showing that the conserved amino acid residues in the AcrA hairpin tip region is important for the action of the AcrAB-TolC efflux pump and is functionally related to the TolC aperture tip region.  相似文献   

19.
20.
Magnetosome biomineralization and magnetotaxis in magnetotactic bacteria are controlled by numerous, mostly unknown gene functions that are predominantly encoded by several operons located within the genomic magnetosome island (MAI). Genetic analysis of magnetotactic bacteria has remained difficult and requires the development of novel tools. We established a Cre-lox-based deletion method which allows the excision of large genomic fragments in Magnetospirillum gryphiswaldense. Two conjugative suicide plasmids harboring lox sites that flanked the target region were subsequently inserted into the chromosome by homologous recombination, requiring only one single-crossover event, respectively, and resulting in a double cointegrate. Excision of the targeted chromosomal segment that included the inserted plasmids and their resistance markers was induced by trans expression of Cre recombinase, which leaves behind a scar of only a single loxP site. The Cre helper plasmid was then cured from the deletant strain by relief of antibiotic selection. We have used this method for the deletion of 16.3-kb, 61-kb, and 67.3-kb fragments from the genomic MAI, either in a single round or in subsequent rounds of deletion, covering a region of approximately 87 kb that comprises the mamAB, mms6, and mamGFDC operons. As expected, all mutants were Mag and some were Mot; otherwise, they showed normal growth patterns, which indicates that the deleted region is not essential for viability in the laboratory. The method will facilitate future functional analysis of magnetosome genes and also can be utilized for large-scale genome engineering in magnetotactic bacteria.Magnetosomes are unique membrane-enveloped organelles that are formed by magnetotactic bacteria (MTB) for magnetic navigation (2, 37). The mechanism of magnetosome formation is within the focus of a multidisciplinary interest and has relevance for biotechnological applications (5). It has been recognized that the biomineralization of inorganic magnetite crystals and their assembly into highly ordered magnetosome chains are under strict genetic control. Recent studies combining proteomic and bioinformatic approaches suggested that the genetic determination of magnetosome formation is complex and may potentially involve 25 to 50 gene functions (15), with unknown numbers of accessory genes and those controlling signal transduction and motility to achieve effective magnetotaxis (8, 9, 12, 26, 27, 29). However, the functional characterization of these candidate genes has been lagging behind. This is due to technical difficulties and the lack of facile tools for genetic manipulation of MTB. Allelic replacement systems have been established for Magnetospirillum magneticum (18) and Magnetospirillum gryphiswaldense (39, 40), but so far, there are only few examples of these for magnetosome genes that were functionally characterized because of the tedious and cumbersome procedures required for mutant generation (11, 19, 28, 31-32). Most genes controlling magnetosome formation in these and other MTB are located within a genomic magnetosome island (MAI) (34), which is genetically instable during stationary growth (47) and more or less conserved in other MTB (12, 13, 35). Most known magnetosome genes are organized within several conserved operons, which are interspersed with large, poorly conserved genome sections of unknown functions that have been speculated to represent genetic junk irrelevant for magnetotaxis but to cause genetic instability by their high content of repeats and transposable elements (34, 47). Thus, for large-scale functional genome analysis and rearrangements of the MAI, there is a great need for additional and more efficient genetic methods.Artificial genome recombination systems have been described for a number of bacteria. Many of them are based on the Cre-loxP system of the P1 phage (42). The Cre-loxP recombination system is a simple two-component system that is recognized as a powerful genetic tool in a multitude of eukaryotic and prokaryotic organisms (4, 6, 48). The Cre protein belongs to the integrase family of site-specific recombinases and catalyzes reciprocal site-specific recombination of DNA at 34-bp loxP sites, resulting in either excision or inversion, depending on the parallel or antiparallel orientation of the loxP sites, respectively (21). It does not require any host cofactors or accessory proteins (7). Cre-lox deletion has several advantages over other methods, such as a high efficiency and the independency of the length of DNA located between the two lox sites. The utility of Cre-lox systems has been demonstrated in a wide variety of Gram-positive and Gram-negative bacteria (17, 22-23). In several studies, it was applied for the generation of large-scale deletions, as in for example, the Gram-positive Corynebacterium glutamicum (43-46) and Bacillus subtilis (49).In M. gryphiswaldense, the functionality of a Cre-loxP antibiotic marker recycling system (25) has been previously demonstrated by deletion of a single gene based on double-crossover insertion of two loxP sites, followed by subsequent Cre-mediated excision (31). In this study, we describe a novel strategy for Cre-loxP-mediated deletion of large genomic fragments which requires only two single crossovers. The system has been validated by the generation of three large deletions, two single and one combination within the MAI, which demonstrated that the total deleted region of approximately 87 kb is not essential for viability and growth in the laboratory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号