首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The Methoprene-tolerant (Met) protein has been established as a juvenile hormone (JH) receptor. Knockdown of the Met gene caused precocious metamorphosis and suppression of ovarian development. However, the function of Met in caste development of social insects is unclear. In termites, JH acts as a central factor for caste development, especially for soldier differentiation, which involves two molts from workers via a presoldier stage. Increased JH titer in workers is needed for the presoldier molt, and the high JH titer is maintained throughout the presoldier period. Although presoldiers have the fundamental morphological features of soldiers, the nature of the cuticle is completely different from that of soldiers. We expected that JH signals via Met are involved in soldier-specific morphogenesis of the head and mandibles during soldier differentiation, especially in the presoldier period, in natural conditions. To test this hypothesis, we focused on soldier differentiation in an incipient colony of the damp-wood termite Zootermopsis nevadensis. Met homolog (ZnMet) expression in heads increased just after the presoldier molt. This high expression was reduced by ZnMet double stranded (dsRNA) injection before the presoldier molt. Although this treatment did not cause any morphological changes in presoldiers, it caused strong effects on soldiers, their mandibles being significantly shorter and head capsules smaller than those of control soldiers. Injection of ZnMet dsRNA throughout the presoldier stage did not affect the formation of soldier morphology, including cuticle formation. These results suggested that the rapid increase in ZnMet expression and subsequent activation of JH signaling just after the presoldier molt are needed for the formation of soldier-specific weapons. Therefore, besides its established role in insect metamorphosis, the JH receptor signaling also underlies soldier development in termites.  相似文献   

2.
In social insects, all castes have characteristic phenotypes suitable for their own tasks and to engage in social behavior. The acquisition of caste-specific phenotypes was a key event in the course of social insect evolution. However, understanding of the genetic basis and the developmental mechanisms that produce these phenotypes is still very limited. In particular, termites normally possess more than two castes with specific phenotypes (i.e. workers, soldiers, and reproductives), but proximate developmental mechanisms are far from being fully understood. In this study, we focused on the pigmentation of the cuticle as a model trait for caste-specific phenotypes, during the molts of each caste; workers, soldiers, presoldiers (intermediate stage of soldiers), and alates (primary reproductives) in Zootermopsis nevadensis. Expression patterns of cuticular tanning genes (members of the tyrosine metabolic pathway) were different among each molt, and high expression levels of several “key genes” were observed during each caste differentiation. For the differentiation of castes with well-tanned cuticles (i.e. soldiers and alates), all focal genes except DDC in the former were highly expressed. On the other hand, high expression levels of yellow and aaNAT were observed during worker and presoldier molts, respectively, but most other genes in the pathway were expressed at low levels. RNA interference (RNAi) of these key genes affected caste-specific cuticular pigmentation, leading to soldiers with yellowish-white heads and pigmented mandibular tips, presoldiers with partly pigmented head cuticles, and alates with the yellow head capsules. These results suggest that the pigmentation of caste-specific cuticles is achieved by the regulation of gene expression in the tyrosine metabolic pathway.  相似文献   

3.
The regulation of caste differentiation is essential to insect eusociality. Termite soldiers are sterile and cannot eat by themselves because they have specialized mouth morphology. Almost all termite species have a soldier caste, and the soldier ratio per colony is maintained at a low level, probably by elaborate regulatory mechanisms. Although the soldier presence is considered to negatively affect soldier differentiation in all examined species, the detailed mechanism remains unclear. Presoldier differentiation can be induced artificially by juvenile hormone (JH) application to workers, showing that JH is a key factor underlying the regulation of soldier differentiation. In this study, to elucidate physiological changes in workers because of the soldier presence during the molt into presoldiers, JH III applications and JH titer quantifications were carried out in the rhinotermitid termite Reticulitermes speratus. Firstly, the effects of soldier presence before the molt into presoldiers induced by JH III application to workers were investigated. The rates of presoldier molt induced by the treatments with soldiers were significantly lower than those without soldiers. Secondly, worker JH titers in the presence or absence of soldiers were quantified by LC-MS on day 0, 5, 10, and 15 after JH application. Results indicated that the worker JH titers (endogenous + applied JH III) in the presence of soldiers were significantly lower than those without soldiers on day 5 after the JH treatment. On days 10 and 15, such soldier effects were not observed. Finally, the effective duration of soldier presence after the JH application was elucidated. A 4 day period of co-existence with soldiers suppressed presoldier differentiation, suggesting that the soldier presence rapidly decreased the JH titer in other colony members (i.e., workers), resulting in the inhibition of presoldier production.  相似文献   

4.
In termites, the soldier caste, with its specialized defensive morphology, is one of the most important characteristics for sociality. Most of the basal termite species have both male and female soldiers, and the soldier sex ratio is almost equal or only slightly biased. However, in the apical lineages (especially family Termitidae), there are many species that have soldiers with strongly biased sex ratio. Generally in termites, since high juvenile hormone (JH) titer is required for soldier differentiation from a worker via a presoldier stage, it was hypothesized that the biased soldier-sex ratio was caused by differences in JH sensitivity and/or JH titer between male and female workers. Therefore, we focused on the presoldier differentiation and the worker JH titer in species with only male soldiers (Nasutitermes takasagoensis) and with both male and female soldiers (Reticulitermes speratus) in natural conditions. In the former species, there are four types of workers; male minor, male medium, female medium and female major workers, and presoldiers differentiate from male minor workers. First, we tried to artificially induce presoldiers from male and female workers. In N. takasagoensis, the presoldier differentiation rate and mortality was significantly higher in male minor workers. Morphological analyses showed that both male and female induced presoldiers possessed normal soldier-specific morphologies. It was suggested that female workers, from which soldiers do not differentiate under natural conditions, also maintained the physiological and developmental potential for soldier differentiation. In R. speratus, however, no differences were observed in solder differentiation rate and mortality between male and female workers. Second, the JH titers of each sex/type of workers were quantified by high performance liquid chromatography–mass spectrometry in two different seasons (April and December). The results showed that, in N. takasagoensis, JH titer in male minor workers was consistently higher than those in other worker types. In R. speratus, in contrast, there were no significant differences in JH titers between male and female workers. These results suggested that, in N. takasagoensis, male minor workers maintain JH titers at a high level throughout a year, and this may cause the male-biased presoldier differentiation.  相似文献   

5.
We identified the soldier-specific compounds in the Japanese subterranean termite, Reticulitermes speratus, to clarify their ethological roles. Silica gel column chromatography separated one major soldier-specific compound in the hexane fraction accounting for 70–80% of the total amount of the fraction, while cuticular hydrocarbons constituted the rest. We identified the compound as β-selinene by gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) spectroscopy. Comparative GC analyses of the major exocrine glands detected the compound in the soldier’s frontal gland. Both soldiers and workers made aggregation to the hexane fraction, as well as to the crushed heads and head extract of the soldiers. They did not aggregate to cuticular hydrocarbons, making it likely that β-selinene was the aggregation pheromone in this species. The opportunistic predator of this termite, Lasius japonicus, was also attracted to the compounds. The ant workers, therefore, would use the termite aggregation pheromone as a kairomone for hunting them.  相似文献   

6.
The levels of ecdysteroids in Sarcophaga bullata were determined by radioimmunoassay (RIA) from the time of larviposition (0 hr) to after the 2nd ecdysis and from late larval to pupal development. Two distinct peaks of ecdysteroid activity were recorded mid-way through the first and second stadia (14 and 34 hr) and two smaller peaks occurred a few hours prior to each ecdysis. A large release of ecdysteroids occurred from 8 hr before and up to 18 hr after formation of the white prepupa. This peak initiated the formation of the prepupa, the tanning of the puparium, larval/pupal apolysis and secretion of the pupal cuticle.Assays for the cuticle tanning hormone, bursicon, in pre-ecdysial larvae were not positive and a possible role for ecdysone in pre-ecdysial tanning of larval cuticular structures is proposed.  相似文献   

7.
T. Miura 《Insectes Sociaux》2001,48(3):216-223
Summary: Since almost all termite species possess a soldier caste, there must be ubiquitous mechanisms of soldier differentiation throughout isopteran species. In order to reveal the caste differentiation mechanisms, observations during the soldier morphogenesis and identification of soldier specific gene expression are thought to be important. In this article, I summarize research approaches for analyzing caste differentiation in termites, and introduce two of our studies in Hospitalitermes medioflavus (Termitidae) and Hodotermopsis japonica (Termopsidae).¶Colonies of the nasute termite H. medioflavus have soldiers with a frontal projection (nasus) on the head, from which defensive substances are secreted. During soldier differentiation from male minor worker to presoldier, the most dynamic morphogenesis occurs. In the presumptive nasus epithelium of minor workers, a disc-like structure termed "soldier-nasus disc" rapidly develops to form the nasus of presoldiers. This rapid growth is associated with two folding layers of cuticle and epithelium.¶To identify genes specifically expressed in soldiers of the damp wood termite Hodotermopsis japonica, a differential display using RT-PCR was tried, comparing mRNA from the heads of soldiers and pseudergates. An identified gene candidate termed SOL1 was expressed specifically in terminally differentiated mature soldiers, and the product of the gene was suggested to encode a novel protein with a putative signal peptide at the N-terminus. This gene was shown to be expressed in the mandibular glands which actually develop during the soldier differentiation. Thus, these molecular techniques are applicable to reveal the proximate mechanisms of caste determination in termites and other social insects.  相似文献   

8.
The caste system of termites is well defined, with a high degree of polyphenism among colony members. Polyphenic caste characteristics are hormonally regulated, and juvenile hormone (JH) is particularly involved in caste determination, as is the case with many other social insects. In the present study, soldier differentiation in the damp-wood termite, Hodotermopsis sjostedti, was induced by treatment with a JH analog (pyriproxyfen) in order to establish the chronology of tissular modifications appearing in response to the hormone.The fat body is involved in the physiological events that prepare the insect for the molting transition. The development of the fat body started within three days after hormonal treatment, and it filled the entire abdominal cavity for about four days prior to the molt to presoldier, maintaining this state until the next molt to soldier. Fat body development was accompanied by the accumulation of protein granules in the cytoplasm, but these granules disappeared during the few days preceding the molt to presoldier. The timing of consumption of these storage proteins corresponded to the window of epidermal growth, which was conspicuous about 14 days after hormonal treatment, and synthesis of the new cuticle, which was initiated 10 days after treatment. We summarize the chronology of the histological events under hormonal control.  相似文献   

9.
Nasute termites belonging to the subfamily Nasutitermitinae, have a soldier caste that possesses a frontal projection (nasus) on the head, from which defensive substances are secreted. In the course of caste differentiation of the processional nasute termite Hospitalitermes medioflavus, the most dynamic morphogenesis occurs in the stage of moulting from male minor worker to presoldier (the stage preceding the soldier stage). We examined the presumptive nasus epithelium in minor workers and determined that the nasus develops rapidly just prior to the moulting to presoldiers. The rapid growth is associated with two folding layers of cuticle and epithelium, which we termed the soldier-nasus disc, and resembles the imaginal discs found in holometabolous insects.  相似文献   

10.
SYNOPSIS. The end of the molting process in the tobacco hornwormincludes the rapid digestion of the old cuticle, molting fluidresorption, ecdysis of the old cuticle, and expansion and hardeningof the new cuticle. The coordination of these processes is accomplishedby three hormones. Each ecdysis during the life of Manduca appearsto be triggered by eclosion hormone. Depending on developmentalstage, the hormone comes either from the brain-corpora cardiacacomplex or from the chain of ventral ganglia. The neural programstriggered by eclosion hormone include a neuroendocrine event,the release of the tanning hormone, bursicon, thereby ensuringthat tanning of the new cuticle must follow ecdysis. Ecdysis,itself, appears to be controlled by the ecdysteroid levels sinceecdysteroid injections delay ecdysis at physiological concentrationsand in a dose dependent fashion. This delay is due to inhibitionof eclosion hormone secretion and to the retardation of theterminal phases of the molt including the digestion of the oldcuticle and the onset of sensitivity to eclosion hormone. Thus,eclosion hormone secretion and the ecdysis it triggers are coordinatedwith the end of development because both are influenced by thesame endocrine signal—the decline in the ecdysteroid titer.  相似文献   

11.
Using the adult Calliphora bioassay, we found that the tanning hormone, bursicon, is present in the blood of pupal and adult Tenebrio only at the time of ecdysis, when it is released massively from the thoracic and abdominal central nervous system. The hormone's half life in the blood is short (about 1–2 h). Contrary to the findings of other workers, we could find no evidence for the presence of the hormone in the haemolymph during pharate adult development, before ecdysis begins. When newly ecdysed pupae were ligated about the neck, adult development of the thorax and abdomen proceeded normally, but postecdysial tanning of the adult cuticle was almost completely prevented. This failure to tan was not due to lack of bursicon as the hormone was released normally in the ligated animals at the time of ecdysis. This suggests that a pre-ecdysial signal may be required for the development of epidermal competence to respond to bursicon.  相似文献   

12.
Termites express polyphenism during caste differentiation that is mostly undefined at the molecular level. Using the eastern subterranean termite, Reticulitermes flavipes Kollar, we wanted (1) to test juvenile hormone (JH) model assays for their ability to induce detectable molecular changes in worker termites and (2) to investigate hemolymph proteins and their corresponding genes during JH-induced soldier caste differentiation. Our results illustrate pronounced changes in two hemolymph proteins after JH treatment, as well as differences among several caste phenotypes. Significant increases in the expression of four genes encoding hemolymph proteins, including two vitellogenins and two hexamerins, were observed after JH exposure. These findings are the first to demonstrate such protein and gene expression changes during termite caste differentiation. These results also validate the utility of JH model assays for inducing detectable molecular changes in worker termites that have begun presoldier differentiation.  相似文献   

13.
Protein fractions of insect cuticles with different mechanical properties have related values of polarity and hydrophobicity. Hydrophobicity is important for the self-assembly of cuticle which is produced prior to the moult and in plasticization of cuticle. The cuticles of soft-bodied fly larvae are quite distinct from those of exopterygotes (e.g. locusts) and this can be related to the chemistry and mode of tanning. The properties of cuticular proteins are compared: the proteins of the pliant cuticles most closely resemble globulins, and the proteins in stiff cuticles are more like fibrous and hydrophobic structural proteins. Changes in the environment of the proteins may alter their shape and hence the mechanical properties of the cuticle.  相似文献   

14.
Bursicon activity first appears in the haemolymph of the cockroach, Leucophaea maderae, early in ecdysis as the old cuticle splits and separates over the thorax. Hormonal activity reaches high levels in the haemolymph before ecdysis is complete and remains so for about 1·5 hr, with a gradual decline and disappearance by 3 hr. The sensory mechanism controlling bursicon release is located in the thorax and appears to be stimulated as the ecdysial split widens for emergence of the thorax. If the abdomen is isolated before this time no tanning of abdominal cuticle occurs, while the isolated thorax proceeds to tan. Therefore the thoracic ganglia seem to be a site of release for bursicon. Release of the hormone from abdominal and head ganglia may also occur after neural stimulation from the thoracic system. Bursicon activity was found in all ganglia of the central nervous system and the corpora cardiaca-allata complex. Removal of the old cuticle prior to the start of ecdysial behaviour does not result in tanning of the new cuticle. However, if the old cuticle is removed after the insect begins to swallow air in preparation for ecdysis, then the new cuticle tans. Mechanical prevention of ecdysis and later removal of the old cuticle also does not result in tanning of the new cuticle. Therefore, shedding of the old cuticle only activates the release of bursicon in conjunction with other normal ecdysial events.  相似文献   

15.
Laccase is a multi-copper enzyme found in variety of organisms including plants, fungi and bacteria. In insects, laccase is thought to play an important role in cuticle sclerotization with its ability to catalyze the oxidation of phenolic compounds to their corresponding quinones. From the newly ecdysed pupae of the silkworm, Bombyx mori, we purified a dimer form of cuticular laccase with 70-kDa polypeptides. Mass spectrometric analysis of the tryptic fragments and cDNA sequence analysis revealed that the gene for the purified laccase (BmLaccase2) is an ortholog of laccase2, one of the multiple laccase genes found in insect genomes. BmLaccase2 is highly expressed in the epidermis prior to ecdysis, suggesting that the BmLaccase2 protein accumulates before ecdysis. However, the cuticle of newly ecdysed pupa does not have laccase activity, and the activity only becomes detectable several hours after ecdysis. These data suggest that cuticle laccase is synthesized as an inactive precursor, which is later activated after ecdysis. We also found that urea-solubilized cuticle protein extract contains an inactive form of laccase that can be activated by trypsin treatment.  相似文献   

16.
17.
The onset of molting in all stages of Hemicycliophora arenaria was preceded by the appearance of numerous, discrete globular structures which were termed "molting bodies" because they were present in the hypodermis only during the production of the new cuticle. In all parasitic stages the molt commenced with the separation of the cuticle from the hypodermis from which the new sheath and cuticle were differentiated. Following completion of the new sheath and cuticle most of the old outer covering was apparently absorbed before ecdysis. Electronmicrographs of body wall cross sections in molting L4 male specimens revealed the final molt to be a double molt in which an additional sixth cuticle was produced. Since both a new sheath and cuticle were produced during the molt of each stage, the sheath must be considered as an integral part of the cuticle and not as a residual cuticle or the result of an incomplete additional molt. Molting in Aphelenchus avenae and Hirschmanniella gracilis was less complex and "molting bodies" were not observed. After cuticle separation the hypodermis gave rise to a new trilaminate zone, the future cortex, and (later) the matrix and striated basal layers.  相似文献   

18.
Infective larvae of the anisakine nematode Phocanema decipiens from the muscle of Atlantic cod (Gadus morhua) were fed to harbor seals (Phoca vitulina) and gray seals (Halichoerus grypus). During maturation in the stomach of seal hosts, P. decipiens molted twice; these molts are the third and fourth of its life cycle. The third molt occurred between the second and fifth days of infection. The third stage, i.e., infective larva entering the third molt, had a cuticular tooth ventral to the mouth; the fourth stage larva emerging from the third molt had three bilobed lips with dentigerous ridges. The fourth molt occurred between the 5th and 15th days in seals. A female nematode emerging from the fourth molt possesses a vulva and a vagina; a male possesses caudal alae, pre- and postanal papillae. Significant morphometric changes in nematodes were associated with both molts. Females and males of P. decipiens reached maturity after 15 to 25 days in seals. Ova were detected in the feces of the seal hosts as early as the 16th day.  相似文献   

19.
Tardigrades are microscopic metazoans that withstand environmental extremes by entering dormant states, such as cryptobiosis (latent life). In addition, they may also form cysts. Here, we present the first report of cyst formation in a marine heterotardigrade, i.e., Echiniscoides sigismundi, which constitutes a cryptic species complex present worldwide in tidal zones. The cysts were initially discovered during experimental series constructed to investigate osmotic stress tolerance. The animals, which eventually formed cysts, showed signs of an imminent molt at the beginning of experimentation. We use the term “cyst” for stages, where a total of three or more cuticles have been synthesized. Our observations show that encystment in E. sigismundi involves synthesizing of at least two new cuticle layers. Legs with discharged claws are present in connection with the first outer cuticle, as well as the second cuticular layer. In the most developed cyst, a third cuticle lacking claws seems to surround the animal, which is delineated by a fourth cuticle. Many features are shared with the well-studied cysts of eutardigrades. The cysts of E. sigismundi, however, lack pigmentation and have an extra set of claws, and the animal inside retains buccopharyngeal sclerified parts, until discharging the third cuticle. The finding of cysts in a marine heterotardigrade is novel and confirms that encystment also occurs within this major evolutionary lineage.  相似文献   

20.
Evidence obtained on the relation between the pH of the medium and the growth of intact stem sections is compatible with the acid-growth theory only if the proton conductance of the cuticle is so low that the cuticle is an effective barrier to the entry or exit of protons from the tissue. By measuring the rate at which protons cross frozen-thawed epidermal strips of sunflower (Helianthus annuus L.) and soybean hypocotyls (Glycine max Morr.) and enzymically isolated cuticles of Berberis aquifolium Persh. and tomato (Lycopersicum esculentum Mill.) fruit, we have now demonstrated the low proton conductance of the cuticular layer. Unless the conductance is enhanced by abrasion of the cuticle or by removal of the cuticular waxes, proton movement into and out of a tissue across the cuticle will be significant only over long time periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号