首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insect natural enemies (predators and parasitoids) provide important ecosystem services by suppressing populations of insect pests in many agricultural crops. However, the role of natural enemies against cereal aphids in Michigan winter wheat (Triticum aestivum L.) is largely unknown. The objectives of this research were to characterize the natural enemy community in wheat fields and evaluate the role of different natural enemy foraging guilds (foliar-foraging versus ground-dwelling predators) in regulating cereal aphid population growth. We investigated these objectives during the spring and summer of 2012 and 2013 in four winter wheat fields on the Michigan State University campus farm in East Lansing, Michigan. We monitored and measured the impact of natural enemies by experimentally excluding or allowing their access to wheat plants infested with Rhopalosiphum padi (L.) and Sitobion avenae (F.) (Hemiptera: Aphidae). Our results indicate that the natural enemy community in the wheat fields consisted mostly of foliar-foraging and ground-dwelling predators with relatively few parasitoids. In combination, these natural enemy groups were very effective at reducing cereal aphid populations. We also investigated the role of each natural enemy foraging guild (foliar-foraging versus ground-dwelling predators) independently. Overall, our results suggest that, in combination, natural enemies can almost completely halt early-season aphid population increase. Independently, ground-dwelling predators were more effective at suppressing cereal aphid populations than foliar-foraging predators under the conditions we studied. Our results differ from studies in Europe and the US Great Plains where foliar foraging predators and parasitoids are frequently more important cereal aphid natural enemies.  相似文献   

2.
We investigated, within two cereal fields in Southern England, the within-canopy spatial distribution of the aphids Sitobion avenae and Metopolophium dirhodum in relation to crop yield and plant nitrogen. We extended the study to investigate the spatial distribution of aphids that fell to, or returned from, the ground in order to estimate availability of the within-canopy aphid population to ground-active predators. We revealed that crop canopy aphid spatial pattern was associated with nitrogen or yield. Differences were evident between species: S. avenae was generally negatively associated with yield or plant nitrogen, whilst M. dirhodum exhibited positive association. For both aphid species, we observed strong spatial pattern for aphids falling to the ground and conclude that this could, in part, mediate the effectiveness of ground-active predators as pest control agents.  相似文献   

3.
The cotton aphid, Aphis gossypii Glover (Homoptera: Aphididae), is an important cotton pest in northern China, especially in the seedling stage of cotton. After large scale commercial use of transgenic Bt cotton, cotton aphids became one of the most important cotton pests. A 2‐year study was conducted to evaluate the role of four winter wheat varieties that were resistant or susceptible to wheat aphid, Sitobion avenae Fabricius (Homoptera: Aphididae), in conserving arthropod natural enemies and suppressing cotton aphids in a wheat–cotton relay intercropping system in northern China. The results indicated that wheat–cotton intercropping preserved and augmented natural enemies more than a monoculture of cotton. The density of natural enemies in cotton was significantly different among relay‐intercropping fields with different wheat varieties. The highest density of natural enemies and low cotton aphid populations were found in the treatment of cotton in relay intercropped with the wheat variety Lovrin10, which is susceptible to wheat aphid. The lowest density of predators and parasitoids associated with high cotton aphid populations were found with the wheat variety KOK1679, which is resistant to wheat aphid. The results showed that wheat varieties that are susceptible or moderately resistant to wheat aphid might reduce cotton aphids more effectively than an aphid‐resistant variety in the intercropping system by enhancing predators to suppress cotton aphids during the cotton seedling stage.  相似文献   

4.
The influence of wheat (Triticum aestivumL.) resistance, the parasitoid Aphidius rhopalosiphiDe Stephani-Perez (Hymenoptera: Braconidae) and the entomopathogenic fungus Pandora neoaphidis(Remaudière et Hennebert) Humber (Zygomycetes: Entomophthorales) on the density and population growth rate of the cereal aphid Sitobion avenae(F.) (Hemiptera: Aphididae) was studied under laboratory conditions. Partial wheat resistance was based on hydroxamic acids, a family of secondary metabolites characteristic of several cultivated cereals. The partial resistance of wheat cultivar Naofén, the action of the parasitoid and the joint action of the parasitoid and fungus, reduced aphid density. The lowest aphid densities were obtained with the combination of the parasitoid and the fungus, but wheat resistance under these circumstances did not improve aphid control. Significant reductions of population growth rate (PGR) of aphids were obtained with the joint action of wheat resistance and natural enemies. In particular, the combined effects of parasitoids and fungi showed significantly lower PGR than the control without natural enemies in both wheat cultivars. Our results support the hypothesis that wheat resistance and the utilization of biological control agents could be complementary strategies in an integrated pest management program against cereal aphids.  相似文献   

5.
The differential loss of higher trophic levels in the face of natural habitat loss can result in the disruption of important trophic interactions, such as biological control. Natural enemies of herbivorous pests in cropping systems often benefit from the presence of natural habitats in surrounding landscapes, as they provide key resources such as alternative hosts. However, any benefits from a biological control perspective may be dampened if this also enhances enemies at the fourth trophic level. Remarkably, studies of the influence of landscape structure on diversity and interactions of fourth trophic‐level natural enemies are largely lacking. We carried out a large‐scale sampling study to investigate the effects of landscape complexity (i.e. the proportion of non‐crop habitat in the landscapes surrounding focal study areas) on the parasitoid communities of aphids in wheat and on an abundant extra‐field plant, stinging nettle. Primary parasitoid communities (3rd trophic level) attacking the cereal aphid, Sitobion avenae, had little overlap with the communities attacking the nettle aphid, Microlophium carnosum, while secondary parasitoids (4th trophic level) showed high levels of species overlap across these two aphids (25 vs 73% shared species respectively), resulting in significantly higher linkage density and lower specialization for secondary than primary parasitoid webs. In wheat, parasitoid diversity was not related to landscape complexity for either primary or secondary parasitoids. Rates of primary parasitism were generally low, while secondary parasitism rates were high (37–94%) and increased significantly with increasing landscape complexity, although this pattern was driven by a single secondary parasitoid species. Overall, our results demonstrate that extra‐field habitats and landscape complexity can differentially benefit fourth, over third, trophic level natural enemies, and thereby, could dampen biological control. Our results further suggest that fourth trophic‐level enemies may play an important, yet understudied, role in linking insect population dynamics across habitat types.  相似文献   

6.
The spatial structure of agricultural landscapes can have a strong impact on the distribution and diversity of insects. Here we studied the effects of within-field position (edge or center) as well as adjacent habitats on the community structure of the natural enemies of cereal aphids. Twelve agricultural sites were included in the study, with two spring wheat fields selected for each site (one adjacent to an alfalfa field, the other adjacent to a corn field). We sampled two rows per field (1 and 20 m from the edge) using pitfall trapping for ground-dwelling predators, sweep netting for leaf-dwelling predators and hand collecting of aphid mummies for parasitoids. Adjacent alfalfa areas, as opposed to corn fields, can significantly increase the abundance and diversity of leaf-dwelling predators and parasitoids near the field edges. Abundance and diversity were found significantly higher near the edges than in the centers of fields adjacent to alfalfa areas. In contrast, no significant differences were found between edges and centers of fields adjacent to corn fields. Of the fifteen most abundant species, Aphidius avenae (Haliday), A. gifuensis (Ashmead), Hippodamia variegata (Goeze) and Chrysopa sinica (Tjeder) were significantly more abundant near the edge than in the center. Being adjacent to alfalfa habitats could enhance parasitism and predator/prey ratios of leaf-dwelling predators at the edges, but has no effects on ground-dwelling predators. In conclusion, the effect of within-field position and adjacent habitats on natural enemies of agricultural pests was species specific. This should be considered for designing efficient plans of biological control.  相似文献   

7.
This paper reports on the development of a simple and robust preference meter (developed in-house) to score the host choice behavior of apterous aphids. With this tool, the preferences of two important cereal aphids Sitobion avenae (Fab.) and Metopolophium dirhodum (Walker) were investigated against four different varieties of winter wheat (Triticum aestivum L.) with a different susceptibility for Fusarium head blight (FHB). Differences in the choice behavior of both aphid species were observed for different wheat varieties. The preferred wheat variety of S. avenae and M. dirhodum was not the same. Also, both aphid species clearly had a differential preference for seedlings and ears. Using seedlings, M. dirhodum was about 1.8 times more rapid in making its choice than S. avenae. In separate experiments with ears, S. avenae was 4.5 times faster than in the experiments with seedlings. In the present study, we aim to highlight differences in preference behavior in relation to potential mechanisms for host selection.  相似文献   

8.
Wang W L  Liu Y  Chen J L  Ji X L  Zhou H B  Wang G 《农业工程》2009,29(3):186-191
The effects of intercropping of wheat cultivars and oilseed rape on the densities of wheat aphid, Sitobion avenae, and their arthropod natural enemies were evaluated. Three winter wheat cultivars with different resistant levels to S. avenae were used: ‘KOK’ (high resistance), ‘Xiaobaidongmai’ (low resistance) and ‘Hongmanghong’ (susceptible). The results showed that the densities of S. avenae were significantly higher on the monoculture pattern than on either the 8-2 intercropping pattern (eight rows of wheat with two rows of oilseed rape) or the 8-4 intercropping pattern (eight rows of wheat with four rows of oilseed rape). The mean number of predators and the mummy rates of S. avenae were significantly higher in two intercropping patterns than those in the monoculture pattern. The densities of S. avenae, ladybeetles, and mummy rate of S. avenae were significantly different among different wheat cultivars. The highest densities of S. avenae and ladybeetles were found on wheat cultivar Hongmanghong. The lowest densities of S. avenae associated with high mummy rate of S. avenae were found on wheat cultivar Xiaobaidongmai. The results showed that wheat-oilseed rape intercropping conserved more predators and parasitoids than in wheat monoculture fields, and partial resistance of wheat cultivar Xiaobaidongmai had complementary or even synergistic effects on parasitoid of S. avenae.  相似文献   

9.
Gut extracts from cereal aphids (Sitobion avenae) showed significant levels of proteolytic activity, which was inhibited by reagents specific for cysteine proteases and chymotrypsin-like proteases. Gut tissue contained cDNAs encoding cathepsin B-like cysteine proteinases, similar to those identified in the closely related pea aphid (Acyrthosiphon pisum). Analysis of honeydew (liquid excreta) from cereal aphids fed on diet containing ovalbumin showed that digestion of ingested proteins occurred in vivo. Protein could partially substitute for free amino acids in diet, although it could not support complete development. Recombinant wheat proteinase inhibitors (PIs) fed in diet were antimetabolic to cereal aphids, even when normal levels of free amino acids were present. PIs inhibited proteolysis by aphid gut extracts in vitro, and digestion of protein fed to aphids in vivo. Wheat subtilisin/chymotrypsin inhibitor, which was found to inhibit serine and cysteine proteinases, was more effective in both inhibitory and antimetabolic activity than wheat cystatin, which inhibited cysteine proteases only. Digestion of ingested protein is unlikely to contribute significantly to nutritional requirements when aphids are feeding on phloem, and the antimetabolic activity of dietary proteinase inhibitors is suggested to result from effects on proteinases involved in degradation of endogenous proteins.  相似文献   

10.
T. Bilde  S. Toft 《BioControl》1997,42(1-2):21-32
The cereal aphidRhopalosiphum padi has previously been found to be a low quality prey for a range of generalist arthropod predators. The aim of this study was to reveal, using food consumption experiments whether this applies to other cereal aphids. The question of whether predator feeding capacity increased when several aphid species were offered relative to a single aphid species was also addressed by measuring food consumption on a mixed aphid diet relative to single aphid diets. Food consumption by five carabid beetles of the three cereal aphid speciesRhopalosiphum padi, Sitobion avenae andMetopolophium dirhodum was determined relative to fruit fliesDrosophila melanogaster and the collembolanIsotoma anglicana. Feeding rate was measured as food consumption over 24 hour both for previously satiated and beetles starved for 7 days. Generally the largest aphid consumption was ofM. dirhodum and the lowest ofR. padi, withS. avenae in between. The mixed aphid consumption experiments did not reveal a higher feeding rate on mixed aphid diets relative to single aphid diets. The results indicate low preference forR. padi andS. avenae.  相似文献   

11.
Coincidental intraguild predation is expected to be less disruptive to biological control than omnivorous intraguild predation, and strong intraguild predation is not expected to occur in natural systems. Coincidental intraguild predation in a foodweb involving introduced pest and natural enemy species was examined to determine whether intraguild predation would be disruptive of biological control services in soybean agroecosystems. Introduced natural enemies are important regulators of soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), populations in North America. Seven-spotted lady beetles, Coccinella septempunctata L., and multicolored Asian lady beetles, Harmonia axyridis Pallas (Coleoptera: Coccinellidae), are key predators of soybean aphid in North America while the chalcidoid wasp, Aphelinus certus Yasnosh (Hymenoptera: Aphelinidae), is the most common parasitoid of soybean aphid in Ontario, Canada. Predation of parasitized soybean aphids at two stages (newly parasitized aphids and mummified aphids) by adults and third instar larvae of both C. septempunctata and H. axyridis was examined in laboratory experiments. In choice experiments, all stages of lady beetles preferred non-parasitized aphids over mummified aphids. In cage experiments, third instar larvae and male and female adults of both lady beetles did not discriminate between newly parasitized and non-parasitized aphids. The influence of coincidental intraguild predation on the efficacy of parasitoids as biological control agents, and implications for soybean aphid management decisions based on natural enemies, are discussed.  相似文献   

12.
1. A detailed population dynamics model was devised to provide a tool for integrated pest management against the cereal aphid Sitobion avenae on winter wheat. 2. This model allowed investigation of the relative impact of different natural enemies on aphid population dynamics. 3. The output of the model was compared with a set of data collected in the western part of France from 1976 to 1986. 4. Fungal diseases accounted for 75% of the reduction in peak aphid density and were the key factor acting on aphid dynamics in this region. 5. This study highlights the importance of detailed population dynamics modelling of keystone species, like aphids, for elucidation of the relations between the keystone species and other species associated in the ecosystem.  相似文献   

13.
A 2-year study was conducted to evaluate the role of winter wheat, Triticum aestivum L., as a potential relay crop to conserve arthropod natural enemies and suppress cotton aphids, Aphis gossypii Glover, in seedling cotton. The results suggested that the natural enemies that moved from the adjacent wheat fields to cotton fields with the maturity and harvest of wheat could keep the cotton aphid population at the edges (0--4 m) of cotton fields under the action threshold of 100 aphids/m2. Data also suggested that the wheat strip served as a reservoir to conserve arthropod predators and relayed its predators to cotton when wheat matured and senesced.  相似文献   

14.
1. Aphid natural enemies include not only predators and parasitoids but also pathogens, of which fungi are the most studied for biological control. While wing formation in aphids is induced by abiotic conditions, it is also affected by biotic interactions with their arthropod natural enemies. Wing induction via interactions with arthropod natural enemies is mediated by the increase in their physical contact when alarmed (pseudo‐crowding). Pathogenic fungi do not trigger this alarm behaviour in aphids and, therefore, no pseudo‐crowding occurs. 2. We hypothesise that, while pathogenic fungi will stimulate maternally induced wing formation, the mechanism is different and is influenced by pathogen specificity. We tested this hypothesis using two entomopathogenic fungi, Pandora neoaphidis and Beauveria bassiana, an aphid specialist and a generalist respectively, on the pea aphid, Acyrthosiphon pisum Harris. 3. We first demonstrate that pea aphids infected with either pathogen and maintained in groups on broad bean plants produced a higher proportion of winged morphs than uninfected control aphids. We then show that, when maintained in isolation, aphids infected with either pathogen also produced higher proportions of winged offspring than control aphids. There was no difference between P. neoaphidis and B. bassiana in their effects on wing induction in either experiment. 4. Unlike the effect of predators and parasitoids on pea aphid wing induction, the effect of pathogens is independent of physical contact with other aphids, suggesting that physiological cues induce wing formation in infected aphids. It is possible that aphids benefit from wing induction by escaping infected patches whilst pathogens may benefit through dispersion. Possible mechanisms of wing induction are discussed.  相似文献   

15.
The prevalent way aphids accomplish colony defense against natural enemies is a mutualistic relationship with ants or the occurrence of a specialised soldier caste typcial for eusocial aphids, or even both. Despite a group-living life style of those aphid species lacking these defense lines, communal defense against natural predators has not yet been observed there. Individuals of Aphis nerii (Oleander aphid) and Uroleucon hypochoeridis, an aphid species feeding on Hypochoeris radicata (hairy cat''s ear), show a behavioral response to visual stimulation in the form of spinning or twitching, which is often accompanied by coordinated kicks executed with hind legs. Interestingly, this behaviour is highly synchronized among members of a colony and repetitive visual stimulation caused strong habituation. Observations of natural aphid colonies revealed that a collective twitching and kicking response (CTKR) was frequently evoked during oviposition attempts of the parasitoid wasp Aphidius colemani and during attacks of aphidophagous larvae. CTKR effectively interrupted oviposition attempts of this parasitoid wasp and even repelled this parasitoid from colonies after evoking consecutive CTKRs. In contrast, solitary feeding A. nerii individuals were not able to successfully repel this parasitoid wasp. In addition, CTKR was also evoked through gentle substrate vibrations. Laser vibrometry of the substrate revealed twitching-associated vibrations that form a train of sharp acceleration peaks in the course of a CTKR. This suggests that visual signals in combination with twitching-related substrate vibrations may play an important role in synchronising defense among members of a colony. In both aphid species collective defense in encounters with different natural enemies was executed in a stereotypical way and was similar to CTKR evoked through visual stimulation. This cooperative defense behavior provides an example of a surprising sociality that can be found in some aphid species that are not expected to be social at all.  相似文献   

16.
Landscape complexity may provide ecosystem services to agriculture through the provision of natural enemies of agricultural pests. Strong positive effect of adjacent semi-natural habitats on natural enemies in croplands has been evidenced, but the resulting impact on biological control remains unclear. Taking into account the temporal dynamics of pest and natural enemies in agricultural landscapes provides better resolution to the studies and better understanding of the biological control service.In this study, the population dynamics of aphids and two groups of predators (coccinellid and carabid beetles) were examined. Insects were sampled in 20 wheat fields, surrounded by structurally simple and complex landscapes in Chilean central valley. Considering the whole sampling period, the diversity of aphids and natural enemies were similar in wheat crops surrounded by both types of landscapes, and the abundance of ladybirds was higher in crops in the complex landscapes. The dynamics of predators was more advanced in complex landscapes than in the simple ones, whereas the dynamics of aphids were similar in both types of landscape. Negative correlation between abundance of predators and aphid population growth rate in both landscape contexts were observed suggesting a control of the pest population by the predators. Different temporal patterns were observed in these correlations in the two landscape contexts, which suggests differences in the biological control related to the landscape composition.The present study shows that colonization of crops by natural enemies occurs sooner in structurally complex landscapes and suggests that this early colonization may facilitate an early and efficient control of aphid populations, nevertheless the biological control efficiency seems to be higher in structurally simple landscapes later in the season.  相似文献   

17.
Soybean varieties that exhibit resistance to the soybean aphid Aphis glycines have been developed for use in North America. In principle, host-plant resistance to soybean aphid can influence the interactions between the soybean aphid and its natural enemies. Resistance could change the quality of soybean aphids as a food source, the availability of soybean aphids, or resistance traits could directly affect aphid predators and parasitoids. Here, we focus on the effect of soybean aphid resistance on the interactions between soybean aphids, the parasitoid Binodoxys communis (Hymenoptera: Braconidae), and predators of these two species. We determined whether host-plant resistance affected within-season persistence of B. communis by releasing parasitoids into resistant and susceptible soybean plots. We observed higher B. communis densities in susceptible soybean plots than in resistant plots. There were also higher overall levels of intraguild predation of B. communis in susceptible plots, although the per-capita risk of intraguild predation of B. communis was affected neither by plant genotype nor by aphid density. We discuss these effects and whether they were caused by direct effects of the resistant plants on B. communis or indirect effects through soybean aphid or predators.  相似文献   

18.
The trapping of alate aphids in emergence cages each 1 yd2 (0–83 m2) over cereal crops from mid-June to the end of July, 1964 to 1971, always revealed colonies of cereal aphids within the crop. Four species, Sitobion avenae, S. fragariae, Metopolophium dirhodum and Rhopalosiphum padi occurred every year in different proportions. Alate aphids from winter wheat were most numerous in 1968 and fewest in 1967. Alatae developed slightly earlier in cages than in the field and peak catches were a few days earlier than in a nearby 12-2 m suction trap. Cereal aphid colonies were adversely affected by bad weather in May, e.g. in 1969, and by predators. Coccinellidae (chiefly Propylea 14-punctata) were the dominant predators in 1971 and 1968, Syrphidae in 1966, 1971 and 1968 and Chrysopidae in 1970. Parasites belonging mainly to the genus Aphidius were numerous every year. When hyperparasites such as Asaphes vulgaris, Lygocerus sp., Conostigmus sp. and Phaenoglyphis sp. were abundant as in 1967, they affected numbers of aphids in the current year and increased them in the following year (1968), possibly by hindering early, heavy parasitism. Hyperparasites could have an important influence in fluctuations of cereal aphid populations from year to year. Aphids of one species or another are always present in cereal crops in sufficient numbers during the summer months to provide copious quantities of honey dew, and this is unlikely to be a limiting factor in the biology of the wheat bulb fly, Leptohylemyia coarctata.  相似文献   

19.
Landscape changes are known to exacerbate the impacts of climate change. As such, understanding the combined effect of climate and landscape on agroecosystems is vital if we are to maintain the function of agroecosystems. This study aimed to elucidate the effects of agricultural landscape complexity on the microclimate and thermal tolerance of an aphid pest to better understand how landscape and climate may interact to affect the thermal tolerance of pest species within the context of global climate change. Meteorological data were measured at the landscape level, and cereal aphids (Sitobion avenae, Metopolophium dirhodum and Rhopalosiphum padi) sampled, from contrasting landscapes (simple and complex) in winter 2013/2014 and spring 2014 in cereal fields of Brittany, France. Aphids were returned to the laboratory and the effect of landscape of origin on aphid cold tolerance (as determined by CTmin) was investigated. Results revealed that local landscape complexity significantly affected microclimate, with simple homogenous landscapes being on average warmer, but with greater temperature variation. Landscape complexity was shown to impact aphid cold tolerance, with aphids from complex landscapes being more cold tolerant than those from simple landscapes in both winter and spring, but with differences among species. This study highlights that future changes to land use could have implications for the thermal tolerance and adaptability of insects. Furthermore, not all insect species respond in a similar way to microhabitat and microclimate, which could disrupt important predator–prey relationships and the ecosystem service they provide.  相似文献   

20.
Sitobion avenae was introduced into areas within a field of winter wheat in Norfolk in mid-May 1985, when the indigenous population was negligible. Aphid numbers in these areas increased for the first 3 wk and declined for the next 4. A second S. avenue introduction into the same areas and into previously uninfested areas was carried out 5 wk after the first introduction, when the crop was at ear emergence complete (G.S. 59). This increased aphid numbers in the previously uninfested areas, but numbers in the previously infested areas continued to decline to below the level in control areas during the subsequent 2 wk. Populations in all areas then increased rapidly to a maximum, followed by a rapid final decline. Monitoring of the aphid and natural enemy populations, and caging aphids onto the crop, revealed that the principal cause of the population decline around G.S. 59 was predation by syrphids. The relevance of these findings to the problem of forecasting S. avenae outbreaks is discussed, and a general explanation for cereal aphid outbreaks is put forward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号