首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human embryonic stem cells (hESC) are able to maintain pluripotency in culture, to proliferate indefinitely and to differentiate into all somatic cell types. Due to these unique properties, hESC may become an exceptional source of tissues for transplantation and have a great potential for the therapy of incurable diseases. Here, we review new developments in the area of embryonic stem cells and discuss major challenges — standardization of protocols for cell derivation and cultivation, identification of specific molecular markers, development of new approaches for directed differentiation, etc. — which remain to be settled, prior to safe and successful clinical application of stem cells. We appraise several potential approaches in hESC-based therapy including derivation of autologous cells via therapeutic cloning (1), generation of immune tolerance to allogenic donor cells via hematopoetic chimerism (2), and development of the banks of hESC lines compatible with the main antigens and exhibiting equivalent pluripotency (3). In addition, we discuss briefly induced pluripotent cells, which are derived via genetic modification of autologous somatic cells and are analogous to ESC. Our analysis demonstrates that uncontrollable differentiation in vivo and teratogenic potential of hESC are critical limitations of their application in clinical practice. Therefore, the major approach in hESC therapy is derivation of a specific differentiated progeny, which has lower proliferative potential and immune privilege, yet poses fewer risks for organism. The review demonstrates that cell therapy is far more complex and resource-consuming process as compared with drug-based medicine and consequently pluripotent stem cell biology and technology still requires further investigation and development before these cells can be used in clinical practice.  相似文献   

2.
3.
Gene therapy is the straightforward approach for the application of recent advances in molecular biology into clinical practice. One of the major obstacles in the development of gene therapy is the delivery of the effector to and into the target cell. Unfortunately, most methods commonly used in laboratory practice are poorly suited for clinical use. Viral vectors are one of the most promising methods for gene therapy delivery. Millions of years of evolution of viruses have resulted in the development of various molecular mechanisms for entry into cells, long-term survival within cells, and activation, inhibition, or modification of the host defense mechanisms at all levels. The relatively simple organization of viruses, small genome size, and evolutionary plasticity allow modifying them to create effective instruments for gene therapy approaches. This review summarizes the latest trends in the development of gene therapy, in particular, various aspects and prospects of the development of clinical products based on viral delivery systems.  相似文献   

4.
Recent technological advances in the generation, characterization, and bioprocessing of human pluripotent stem cells (hPSCs) have created new hope for their use as a source for production of cell-based therapeutic products. To date, a few clinical trials that have used therapeutic cells derived from hESCs have been approved by the Food and Drug Administration (FDA), but numerous new hPSC-based cell therapy products are under various stages of development in cell therapy-specialized companies and their future market is estimated to be very promising. However, the multitude of critical challenges regarding different aspects of hPSC-based therapeutic product manufacturing and their therapies have made progress for the introduction of new products and clinical applications very slow. These challenges include scientific, technological, clinical, policy, and financial aspects. The technological aspects of manufacturing hPSC-based therapeutic products for allogeneic and autologous cell therapies according to good manufacturing practice (cGMP) quality requirements is one of the most important challenging and emerging topics in the development of new hPSCs for clinical use. In this review, we describe main critical challenges and highlight a series of technological advances in all aspects of hPSC-based therapeutic product manufacturing including clinical grade cell line development, large-scale banking, upstream processing, downstream processing, and quality assessment of final cell therapeutic products that have brought hPSCs closer to clinical application and commercial cGMP manufacturing.  相似文献   

5.
Human induced pluripotent stem cells (iPSCs) are potential renewable sources of hepatocytes for drug development and cell therapy. Differentiation of human iPSCs into different developmental stages of hepatic cells has been achieved and improved during the last several years. We have recently demonstrated the liver engraftment and regenerative capabilities of human iPSC-derived multistage hepatic cells in vivo. Here we describe the in vitro and in vivo activities of hepatic cells derived from patient specific iPSCs, including multiple lines established from either inherited or acquired liver diseases, and discuss basic and clinical applications of these cells for disease modeling, drug screening and discovery, gene therapy and cell replacement therapy.  相似文献   

6.
Novel immunotherapeutic agents targeting tumor-site microenvironment are revolutionizing cancer therapy. Chimeric antigen receptor (CAR)-engineered T cells are widely studied for cancer immunotherapy. CD19-specific CAR-T cells, tisagenlecleucel, have been recently approved for clinical application. Ongoing clinical trials are testing CAR designs directed at novel targets involved in hematological and solid malignancies. In addition to trials of single-target CAR-T cells, simultaneous and sequential CAR-T cells are being studied for clinical applications. Multi-target CAR-engineered T cells are also entering clinical trials. T cell receptor-engineered CAR-T and universal CAR-T cells represent new frontiers in CAR-T cell development. In this study, we analyzed the characteristics of CAR constructs and registered clinical trials of CAR-T cells in China and provided a quick glimpse of the landscape of CAR-T studies in China.  相似文献   

7.
The derivation of embryonic stem cells (hESC) from human embryos a decade ago started a new era in perspectives for cell therapy as well as understanding human development and disease. More recently, reprogramming of somatic cells to an embryonic stem cell‐like state (induced pluripotent stem cells, iPS) presented a new milestone in this area, making it possible to derive all cells types from any patients bearing specific genetic mutations. With the development of efficient differentiation protocols we are now able to use the derivatives of pluripotent stem cells to study mechanisms of disease and as human models for drug and toxicology testing. In addition derivatives of pluripotent stem cells are now close to be used in clinical practice although for the heart, specific additional challenges have been identified that preclude short‐term application in cell therapy. Here we review techniques presently used to induce differentiation of pluripotent stem cells into cardiomyocytes and the potential these cells have as disease models and for therapy. J. Cell. Biochem. 107: 592–599, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Although molecular remission is now detected, it is still unknown whether we have the tools to cure B cell chronic lymphocytic leukemia (referred to as CLL). Nonetheless, several new therapeutic approaches have been introduced in cancer therapy during the last decade, including antiangiogenic therapy, apoptosis-inducing treatment and inhibition of heat shock proteins, farnesyl transferase, tyrosine kinases and proteasomes. These modalities may also be considered in CLL, but additional experimental characterization is required. Further characterization and development of CLL animal models should be a part of this preclinical work (especially xenografting in NOD/SCID animals, but also murine leukemia) to allow a more extensive evaluation prior to clinical trials. Animal models are particularly important for preclinical comparison of pharmacological effects between different disease compartments and for in vivo evaluation of antileukemic immune reactivity. However, T cell targeting therapy seems to have several advantages in comparison to other approaches: (1) based on the current clinical experience one would expect low toxicity for several of these strategies, especially vaccine treatment; (2) several studies have demonstrated that autologous T cells can recognize CLL cells; (3) experimental and clinical evidence suggests that immunotherapy can be combined with chemotherapy. Thus, T cell therapy has a relatively strong scientific basis that justifies further clinical studies of immunotherapy in CLL. Although several of the new pharmacological agents seem to have immunosuppressive effects, at least some of them (e.g. heat shock protein 90 inhibitors, proteasome inhibitors, inhibition of angiogenesis) appear to affect T cells only at relatively high concentrations and may thus be used in combination with immunotherapy.  相似文献   

9.
B cells have been implicated in the pathogenesis of rheumatoid arthritis (RA) since the discovery of RA as an autoimmune disease. There is renewed interest in B cells in RA based on the clinical efficacy of B cell depletion therapy in RA patients. Although, reduced titers of rheumatoid factor and anti-cyclic citrullinated peptide Abs are recorded, the mechanisms that convey clinical improvement are incompletely understood. In the proteoglycan-induced arthritis (PGIA) mouse model of RA, we reported that Ag-specific B cells have two important functions in the development of arthritis. PG-specific B cells are required as autoantibody-producing cells as well as Ag-specific APCs. Herein we report on the effects of anti-CD20 mAb B cell depletion therapy in PGIA. Mice were sensitized to PG and treated with anti-CD20 Ab at a time when PG-specific autoantibodies and T cell activation were evident but before acute arthritis. In mice treated with anti-CD20 mAb, development of arthritis was significantly reduced in comparison to control mAb-treated mice. B cell depletion reduced the PG-specific autoantibody response. Furthermore, there was a significant reduction in the PG-specific CD4(+) T cell recall response as well as significantly fewer PG-specific CD4(+) T cells producing IFN-gamma and IL-17, but not IL-4. The reduction in PG-specific T cells was confirmed by the inability of CD4(+) T cells from B cell-depleted mice to adoptively transfer disease into SCID mice. Overall, B cell depletion during PGIA significantly reduced disease and inhibited both autoreactive B cell and T cell function.  相似文献   

10.
The cancer stem cell (CSC) model states that tumors contain a reservoir of self-renewing cells that maintain the heterogeneous cell population of the tumor. These cells appear to be resistant to therapy and can therefore survive to repopulate the tumor during progression to therapy resistant disease. The biology of CSCs is still not definitive since it is difficult to isolate them from solid tumors and analyze their characteristics in vitro. Another challenge is to correlate these characteristics with tumor development and progression in vivo. Using the prostate CSC as a model, this review presents the CSC hypothesis, reviews the origin, identification and functions of prostate CSCs, and discusses the clinical implications and therapeutic challenges CSCs have for cancer therapy.  相似文献   

11.
Many neurodegenerative disorders, such as Parkinson's disease (PD), are characterized by progressive neuronal loss in different regions of the central nervous system, contributing to brain dysfunction in the relevant patients. Stem cell therapy holds great promise for PD patients, including with foetal ventral mesencephalic cells, human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). Moreover, stem cells can be used to model neurodegenerative diseases in order to screen potential medication and explore their mechanisms of disease. However, related ethical issues, immunological rejection and lack of canonical grafting protocols limit common clinical use of stem cells. iPSCs, derived from reprogrammed somatic cells, provide new hope for cell replacement therapy. In this review, recent development in stem cell treatment for PD, using hiPSCs, as well as the potential value of hiPSCs in modelling for PD, have been summarized for application of iPSCs technology to clinical translation for PD treatment.  相似文献   

12.
Human induced pluripotent stem cells (iPSCs) are potential renewable sources of hepatocytes for drug development and cell therapy. Differentiation of human iPSCs into different developmental stages of hepatic cells has been achieved and improved during the last several years. We have recently demonstrated the liver engraftment and regenerative capabilities of human iPSC-derived multistage hepatic cells in vivo. Here we describe the in vitro and in vivo activities of hepatic cells derived from patientspecific iPSCs, including multiple lines established from either inherited or acquired liver diseases, and discuss basic and clinical applications of these cells for disease modeling, drug screening and discovery, gene therapy and cell replacement therapy.Key words: induced pluripotent stem cells (iPSCs), hepatic differentiation, liver ngraftment, disease modeling, drug testing, alpha-1 antitrypsin, liver cirrhosis, hepatocellular carcinoma, cell therapy  相似文献   

13.
Breast cancer rises as the most commonly diagnosed cancer in 2020. Among women, breast cancer ranks first in both cancer incidence rate and mortality. Treatment resistance developed from the current clinical therapies limits the efficacy of therapeutic outcomes, thus new treatment approaches are urgently needed. Chimeric antigen receptor (CAR) T cell therapy is a type of immunotherapy developed from adoptive T cell transfer, which typically uses patients'' own immune cells to combat cancer. CAR-T cells are armed with specific antibodies to recognize antigens in self-tumor cells thus eliciting cytotoxic effects. In recent years, CAR-T cell therapy has achieved remarkable successes in treating hematologic malignancies; however, the therapeutic effects in solid tumors are not up to expectations including breast cancer. This review aims to discuss the development of CAR-T cell therapy in breast cancer from preclinical studies to ongoing clinical trials. Specifically, we summarize tumor-associated antigens in breast cancer, ongoing clinical trials, obstacles interfering with the therapeutic effects of CAR-T cell therapy, and discuss potential strategies to improve treatment efficacy. Overall, we hope our review provides a landscape view of recent progress for CAR-T cell therapy in breast cancer and ignites interest for further research directions.  相似文献   

14.
Pluripotent stem cells derived from somatic cells through such processes as nuclear transfer or induced pluripotent stem (iPS) cells present an important model for biomedical research and provide potential resources for cell replacement therapies. However, the overall efficiency of the conversional nuclear transfer is very low and the safety issue remains a major concern for iPS cells. Embryonic stem cells (ESCs) generated from parthenogenetic embryos are one attractive alternative as a source of histocompatible cells and tissues for cell therapy. Recent studies on human parthenogenetic embryonic stem cells (hPG ESCs) have revealed that these ESCs are very similar to the hESCs derived from IVF or in vivo produced blastocysts in gene expression and other characteristics, but full differentiation and development potential of these hPG ESCs have to be further investigated before clinical research and therapeutic interventions. To generate various pluripotent stem cells, diverse reprogramming techniques and approaches will be developed and integrated. This may help elucidate the fundamental mechanisms underlying reprogramming and stem cell biology, and ultimately benefit cell therapy and regenerative medicine. Supported by the National High Technology Research and Development Program of China (Grant No. 2006AA02A101).  相似文献   

15.
CAR-T cell therapy has already achieved world-renowned clinical effects in the treatment of hematological malignancies. Due to the tumor heterogeneity, immunosuppressive microenvironment, and other factors, CAR-T cell therapy has still not shown obvious clinical efficacy in clinical treatment of solid tumors. However, great progress has been made in the preparation of CAR-T cells in recent years, including T cells redirected for universal cytokine mediated killing, universal CAR -T cells, non-viral vector CAR-T cells, SynNotch technology, SUPRA CAR technology, regulated CAR-T cells, and bi-specific CAR-T cells, etc. Future research and development of CAR-T cell therapy will be focused on these following aspects: the combined application of CAR-T cells with different targets, known as "Cocktail CAR-T cells", is expected to increase efficiency toward solid tumors; based on systemic biology/synthetic biology theories, CAR-T cells are likely to be transformed to robot or intelligent system by introducing sensors, logic gates, and logic circuits. This article mainly comments on research progress and perspectives on CAR-T cell therapy in solid tumor treatment.  相似文献   

16.
The discovery that mature cells can be reprogrammed to become pluripotent and the development of engineered endonucleases for enhancing genome editing are two of the most exciting and impactful technology advances in modern medicine and science. Human pluripotent stem cells have the potential to establish new model systems for studying human developmental biology and disease mechanisms. Gene correction in patient-specific iPSCs can also provide a novel source for autologous cell therapy. Although historically challenging, precise genome editing in human iPSCs is becoming more feasible with the development of new genome-editing tools, including ZFNs, TALENs, and CRISPR. iPSCs derived from patients of a variety of diseases have been edited to correct disease-associated mutations and to generate isogenic cell lines. After directed differentiation, many of the corrected iPSCs showed restored functionality and demonstrated their potential in cell replacement therapy. Genome-wide analyses of gene-corrected iPSCs have collectively demonstrated a high fidelity of the engineered endonucleases. Remaining challenges in clinical translation of these technologies include maintaining genome integrity of the iPSC clones and the differentiated cells. Given the rapid advances in genome-editing technologies, gene correction is no longer the bottleneck in developing iPSC-based gene and cell therapies; generating functional and transplantable cell types from iPSCs remains the biggest challenge needing to be addressed by the research field.  相似文献   

17.
Koh MB  Suck G 《Biologicals》2012,40(3):214-217
Cellular immunotherapy has been widely accepted as a new powerful modality of cancer treatment. The last 2 decades have seen impressive results in its application against haemato-oncologic malignancies, melanomas and prostate carcinoma. Cellular immunotherapy has since found applicability beyond cancer into autoimmunity and continues to expand in its clinical applicability. The discovery that stem cells have the ability to differentiate into more mature cell types, like neurones and myocardium, has focused research on using exogenous cells to repair damaged tissues. This led to numerous clinical trials using stem cells in myocardial infarction, cardiomyopathy and spinal cord damage. Results have ranged from modest to significant clinical outcomes with continuing debate on the exact process of regeneration achieved. The intertwining between cell therapy and transfusion medicine now includes research on progenitor cells for the production of mature red cells. It is also clear that cell therapy has enabled an improved understanding of the pathogenesis and clinical course of many diseases, while perhaps its role in regenerative medicine is most enticing. However, the critical role of manufacturing in terms of cost, complexity, reproducibility, and regulatory matters remains a central issue in the consideration of whether cell therapy has met all of its promise.  相似文献   

18.
Human mesenchymal stem cells (hMSCs) have tremendous promise for use in a variety of clinical applications. The ability of these cells to self-renew and differentiate into multiple tissues makes them an attractive cell source for a new generation of cell-based regenerative therapies. Encouraging results from clinical trials have also generated growing enthusiasm regarding MSC therapy and related treatment, but gaps remain in understanding MSC tissue repair mechanisms and in clinical strategies for efficient cell delivery and consistent therapeutic outcomes. For these reasons, discoveries from basic research and their implementation in clinical trials are essential to advance MSC therapy from the laboratory bench to the patient's bedside.  相似文献   

19.
Stem cells have emerged as the starting material of choice for bioprocesses to produce cells and tissues to treat degenerative, genetic, and immunological disease. Translating the biological properties and potential of stem cells into therapies will require overcoming significant cell-manufacturing and regulatory challenges. Bioprocess engineering fundamentals, including bioreactor design and process control, need to be combined with cellular systems biology principles to guide the development of next-generation technologies capable of producing cell-based products in a safe, robust, and cost-effective manner. The step-wise implementation of these bioengineering strategies will enhance cell therapy product quality and safety, expediting clinical development.  相似文献   

20.
Over the past two decades, regenerative therapies using stem cell technologies have been developed for various neurological diseases. Although stem cell therapy is an attractive option to reverse neural tissue damage and to recover neurological deficits, it is still under development so as not to show significant treatment effects in clinical settings. In this review, we discuss the scientific and clinical basics of adult neural stem cells (aNSCs), and their current developmental status as cell therapeutics for neurological disease. Compared with other types of stem cells, aNSCs have clinical advantages, such as limited proliferation, inborn differentiation potential into functional neural cells, and no ethical issues. In spite of the merits of aNSCs, difficulties in the isolation from the normal brain, and in the in vitro expansion, have blocked preclinical and clinical study using aNSCs. However, several groups have recently developed novel techniques to isolate and expand aNSCs from normal adult brains, and showed successful applications of aNSCs to neurological diseases. With new technologies for aNSCs and their clinical strengths, previous hurdles in stem cell therapies for neurological diseases could be overcome, to realize clinically efficacious regenerative stem cell therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号