首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Mesenchymal stromal cells (MSCs) are a promising candidate for treatment of inflammatory disorders, but their efficacy in human inflammatory bowel diseases (IBDs) has been inconsistent. Comparing the results from various pre-clinical and clinical IBD studies is also challenging due to a large variation in study designs.

Methods

In this comparative pre-clinical study, we compared two administration routes and investigated the safety and feasibility of both fresh and cryopreserved platelet-lysate–expanded human bone marrow–derived MSCs without additional licensing in a dextran sodium sulfate (DSS) colitis mouse model both in the acute and regenerative phases of colitis. Body weight, macroscopic score for inflammation and colonic interleukin (IL)-1β and tumor necrosis factor (TNF)α concentrations were determined in both phases of colitis. Additionally, histopathology was assessed and Il-1β and Agtr1a messenger RNA (mRNA) levels and angiotensin-converting enzyme (ACE) protein levels were measured in the colon in the regenerative phase of colitis.

Results

Intravenously administered MSCs exhibited modest anti-inflammatory capacity in the acute phase of colitis by reducing IL-1β protein levels in the inflamed colon. There were no clear improvements in mice treated with fresh or cryopreserved unlicensed MSCs according to weight monitoring results, histopathology and macroscopic score results. Pro-inflammatory ACE protein expression and shedding were reduced by cryopreserved MSCs in the colon.

Conclusions

In conclusion, we observed a good safety profile for bone marrow–derived platelet lysate–expanded MSCs in a mouse pre-clinical colitis model, but the therapeutic effect of MSCs prepared without additional licensing (i.e. such as MSCs are administered in graft-versus-host disease) was modest in the chosen in vivo model system and limited to biochemical improvements in cytokines without a clear benefit in histopathology or body weight development.  相似文献   

2.
《Cytotherapy》2014,16(9):1197-1206
Background aimsThe aim of the study was to evaluate the effect of mesenchymal stromal cells (MSCs) on tumor cell growth in vitro and in vivo and to elucidate the apoptotic and anti-proliferative mechanisms of MSCs on a hepatocellular carcinoma (HCC) murine model.MethodsThe growth-inhibitory effect of MSCs on the Hepa 1–6 cell line was tested by means of methyl thiazolyl diphenyl-tetrazolium assay. Eighty female mice were randomized into four groups: group 1 consisted of 20 mice that received MSCs only by intrahepatic injection; group 2 consisted of 20 HCC mice induced by inoculation of Hepa 1–6 cells into livers without MSC treatment; group 3 consisted of 20 mice that received MSCs after induction of liver cancer; group 4 consisted of 20 mice that received MSCs after induction of liver cancer on top of induced biliary cirrhosis.ResultsMSCs exhibited a growth-inhibitory effect on Hepa 1–6 murine cell line in vitro. Concerning in vivo study, decreases of serum alanine transaminase, aspartate transaminase and albumin levels after MSC transplantation in groups 2 and 3 were found. Gene expression of α-fetoprotein was significantly downregulated after MSC injection in the HCC groups. We found that gene expression of caspase 3, P21 and P53 was significantly upregulated, whereas gene expression of Bcl-2 and survivin was downregulated in the HCC groups after MSC injection. Liver specimens of the HCC groups confirmed the presence of dysplasia. The histopathological picture was improved after administration of MSCs to groups 2 and 3.ConclusionsMSCs upregulated genes that help apoptosis and downregulated genes that reduce apoptosis. Therefore, MSCs could inhibit cell division of HCC and potentiate their death.  相似文献   

3.
《Cytotherapy》2019,21(8):870-885
BackgroundSafety and feasibility of a regenerative strategy based on the use of culture-expanded mesenchymal stromal cells (MSCs) have been investigated in phase 2 trials for the treatment of nonunion and osteonecrosis of the femoral head (ONFH). As part of the clinical study, we aimed to evaluate if bone turnover markers (BTMs) could be useful for predicting the regenerative ability of the cell therapy product.Materials and MethodsThe bone defects of 39 patients (nonunion: n = 26; ONFH: n = 13) were treated with bone marrow–derived MSCs, expanded using a clinical-grade protocol and combined with biphasic calcium phosphate before implantation. Bone formation markers, bone-resorption markers and osteoclast regulatory proteins were measured before treatment (baseline) and after 12 and 24 weeks from surgery. At the same time-points, clinical and radiological controls were performed to evaluate the bone-healing progression.ResultsWe found that C-Propeptide of Type I Procollagen (CICP) and C-terminal telopeptide of type-I collagen (CTX) varied significantly, not only over time, but also according to clinical results. In patients with a good outcome, CICP increased and CTX decreased, and this trend was observed in both nonunion and ONFH. Moreover, collagen biomarkers were able to discriminate healed patients from non-responsive patients with a good diagnostic accuracy.DiscussionCICP and CTX could be valuable biomarkers for monitoring and predicting the regenerative ability of cell products used to stimulate the repair of refractory bone diseases. To be translated in a clinical setting, these results are under validation in a currently ongoing phase 3 clinical trial.  相似文献   

4.

Background

Mesenchymal stem/stromal cells (MSC) display a range of immunoregulatory properties which can be enhanced by the exposure to cytokines such interferon γ (IFN-γ). However the compositional changes associated with the ‘licensing’ of these cells have not been clearly defined. The present study was undertaken to provide a detailed comparative proteomic analysis of the compositional changes that occur in human bone marrow derived MSC following 20 h treatment with IFN-γ.

Methods

2D LC MSMS analysis of control and IFN-γ treated cells from 5 different healthy donors provided confident identification of more than 8400 proteins.

Results

In total 210 proteins were shown to be significantly altered in their expression levels (≥|2SD|) following IFN-γ treatment. The changes for several of these proteins were confirmed by flow cytometry. STRING analysis determined that approximately 30% of the altered proteins physically interacted in described interferon mediated processes. Comparison of the list of proteins that were identified as changed in the proteomic analysis with data for the same proteins in the Interferome DB indicated that ~35% of these proteins have not been reported to be IFN-γ responsive in a range of cell types.

Conclusions

This data provides an in depth analysis of the proteome of basal and IFN-γ treated human mesenchymal stem cells and it identifies a number of novel proteins that may contribute to the immunoregulatory capacity if IFN-γ licensed cells.
  相似文献   

5.
6.
《Cytotherapy》2014,16(10):1361-1370
Background aimsBone marrow–derived mesenchymal stromal cells (BMSCs) are being extensively investigated as cellular therapeutics for many diseases, including cardiovascular diseases. Although preclinical studies indicated that BMSC transplantation into infarcted hearts improved heart function, there are problems to be resolved, such as the low survival rate of BMSCs during the transplantation process and in the ischemic region with extreme oxidative stress. Autophagy plays pivotal roles in maintaining cellular homeostasis and defending against environmental stresses. However, the precise roles of autophagy in BMSCs under oxidative stress remain largely uncharacterized.MethodsBMSCs were treated with H2O2, and autophagic flux was examined by means of microtubule-associated protein 1A/1B-light chain 3 II/I ratio (LC3 II/I), autophagosome formation and p62 expression. Cytotoxicity and cell death assays were performed after co-treatment of BMSCs by autophagy inhibitor (3-methyladenine) or autophagy activator (rapamycin) together with H2O2.ResultsWe show that short exposure (1 h) of BMSCs to H2O2 dramatically elevates autophagic flux (2- to 4-fold), whereas 6-h prolonged oxidative treatment reduces autophagy but enhances caspase-3 and caspase-6–associated apoptosis. Furthermore, we show that pre- and co-treatment with rapamycin ameliorates H2O2-induced caspase-3 and caspase-6 activation and cell toxicity but that 3-methyladenine exacerbates H2O2-induced cell apoptotic cell death.ConclusionsOur results demonstrate that autophagy is critical for the survival of BMSCs under oxidative conditions. Importantly, we also suggest that the early induction of autophagic flux is possibly a self-defensive mechanism common in oxidant-tolerant cells.  相似文献   

7.

Background aims

Multipotent mesenchymal stromal cell (MSC)-based medicines are extensively investigated for use in regenerative medicine and immunotherapy applications. The International Society for Cell and Gene Therapy (ISCT) proposed a panel of cell surface molecules for MSC identification that includes human leukocyte antigen (HLA)-DR as a negative marker. However, its expression is largely unpredictable despite production under tightly controlled conditions and compliance with current Good Manufacturing Practices. Herein, we report the frequency of HLA-DR expression in 81 batches of clinical grade bone marrow (BM)-derived MSCs and investigated its impact on cell attributes and culture environment.

Methods

The levels of 15 cytokines (interleukin [IL]-1β, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, interferon-γ, soluble CD40 ligand and tumor necrosis factor-α) were determined in sera supplements and supernatants of BM-MSC cultures. Identity, multipotentiality and immunopotency assays were performed on high (>20% of cells) and low (≤20% of cells) HLA-DR+ cultures.

Results

A correlation was found between HLA-DR expression and levels of IL-17F and IL-33. Expression of HLA-DR did neither affect MSC identity, in vitro tri-lineage differentiation potential (into osteogenic, chondrogenic and adipogenic lineages), nor their ability to inhibit the proliferation of stimulated lymphocytes.

Discussion

Out of 81 batches of BM-MSCs for autologous use analyzed, only three batches would have passed the ISCT criteria (<2%), whereas 60.5% of batches were compliant with low HLA-DR values (≤20%). Although a cause–effect relationship cannot be drawn, we have provided a better understanding of signaling events and cellular responses in expansion culture conditions relating with HLA-DR expression.  相似文献   

8.
《Cytotherapy》2022,24(7):699-710
Pancreatic cancer is a highly lethal cancer characterized by local invasiveness, early metastasis, recurrence and high resistance to current therapies. Extensive stroma or desmoplasia is a key histological feature of the disease, and interactions between cancer and stromal cells are critical for pancreatic cancer development and progression. Mesenchymal stromal cells [MSCs] exhibit preferential tropism to primary and metastatic tumor sites and may either suppress or support tumor growth. Although MSCs represent a potential source of pancreatic cancer stroma, their contribution to pancreatic tumor growth remains poorly known. Here, we show that bone marrow MSCs significantly contribute to pancreatic cancer growth in vitro and in vivo. Furthermore, MSCs create a pro-carcinogenic microenvironment through the release of key factors mediating growth and angiogenesis, including interleukin (IL)-6, IL-8, vascular endothelial growth factor and activation of STAT3 signaling in tumor cells. IL-6 released by MSCs was largely responsible for the pro-tumorigenic effects of MSCs. Knockdown of IL-6 expression in MSCs by small interfering RNA (siRNA) abolished the MSC growth-promoting effect in vitro, reducing tumor cell proliferation and clonogenic potential. In addition, in a heterotopic nude mouse model of human pancreatic tumor xenografts, blockade of IL-6 with the anti-IL-6 receptor antibody, tocilizumab, or of its downstream effector STAT3 with the small molecule STAT3 inhibitor S3I-201, abrogated MSC-mediated tumor promotion and delayed tumor formation significantly. Our data demonstrate that MSCs promote pancreatic cancer growth, with IL-6 produced by MSCs playing a pivotal role.  相似文献   

9.
TGF-β1 plays a necessary and important role in the induction of chondrogenic differentiation of bone marrow stromal cells (BMSCs). In this study, porcine BMSCs were infected with a replication-deficient adenovirus expression vector carrying the hTGF-β1 gene. The transduced BMSCs were cultured as pelleted micromasses in vitro for 21 days, seeded onto disk-shaped PGA scaffolds for 3 days and subsequently implanted into the subcutaneous tissue of mice. BMSCs transduced with AdhTGF-β1 expressed and secreted more hTGF-β1 protein in vitro than those of the control group. Histological and immunohistological examination of the pellets revealed robust chondrogenic differentiation. Tissues made from cells transduced with AdhTGF-β1 exhibited neocartilage formation after 3 weeks in vivo. The neocartilage occupied 42 ± 5% of the total tissue volume which was significantly greater than that of the control group. Furthermore, there was extensive staining for sulfated proteoglycans and type II collagen in the AdhTGF-β1 group compared to controls, and quantification of GAG content showed significantly greater amounts of GAG in experimental groups. The results demonstrate that transfer of hTGF-β1 into BMSCs via adenoviral transduction can induce chondrogenic differentiation in vitro and enhance chondrogenesis in vivo.  相似文献   

10.
Angiogenesis is a tightly regulated process involved in growth, repair, and bone remodeling. Several studies have shown that there is a reciprocal regulation and functional relationship between endothelial cells and osteoblast-like cells during osteogenesis, where systemic hormones and paracrine growth factors play an active role. Angiogenesis is induced by a variety of growth factors; among them vascular endothelial growth factor (VEGF) may be an important mediator for the angiogenic process involved in bone physiology. We studied the VEGF effect on osteoblast progenitor cells (Human Bone Marrow Stromal Cells: HBMSE) cultured alone or associated with endothelial cells (Human Umbilical Vein Endothelial Cells: HUVEC) in different co-culture models (co-culture with or without direct contact, conditioned medium), to determine the influence of VEGF on these cells and on their relationship. In agreement with other studies, we show that HBMSC express and synthesize VEGF, HUVEC conditioned medium has a proliferative effect on them, and early osteoblastic marker (Alkaline phosphatase activity) levels increase when these cells are co-cultured with HUVEC only in direct contact. However, unlike previous studies, we did not find that VEGF increased these processes. These results suggest that the intercommunication between endothelial cells and osteoblastic-like cells requires not only diffusible factors, but also involving cell membrane proteins.  相似文献   

11.

Glycosaminoglycans (GAGs) are major components of cartilage extracellular matrix (ECM), which play an important role in tissue homeostasis not only by providing mechanical load resistance, but also as signaling mediators of key cellular processes such as adhesion, migration, proliferation and differentiation. Specific GAG types as well as their disaccharide sulfation patterns can be predictive of the tissue maturation level but also of disease states such as osteoarthritis. In this work, we used a highly sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to perform a comparative study in terms of temporal changes in GAG and disaccharide composition between tissues generated from human bone marrow- and synovial-derived mesenchymal stem/stromal cells (hBMSC/hSMSC) after chondrogenic differentiation under normoxic (21% O2) and hypoxic (5% O2) micromass cultures. The chondrogenic differentiation of hBMSC/hSMSC cultured under different oxygen tensions was assessed through aggregate size measurement, chondrogenic gene expression analysis and histological/immunofluorescence staining in comparison to human chondrocytes. For all the studied conditions, the compositional analysis demonstrated a notable increase in the average relative percentage of chondroitin sulfate (CS), the main GAG in cartilage composition, throughout MSC chondrogenic differentiation. Additionally, hypoxic culture conditions resulted in significantly different average GAG and CS disaccharide percentage compositions compared to the normoxic ones. However, such effect was considerably more evident for hBMSC-derived chondrogenic aggregates. In summary, the GAG profiles described here may provide new insights for the prediction of cartilage tissue differentiation/disease states and to characterize the quality of MSC-generated chondrocytes obtained under different oxygen tension culture conditions.

  相似文献   

12.
13.
Adeno-associated virus (AAV)-2 was developed as a useful vector for human gene therapy. In this report, we analyzed the integration and expression of AAV-mediated ex vivo transferred human beta-globin gene in bone marrow (BM) reconstituted mice. Recombinant AAV (rAAV) containing human beta-globin gene was packaged by infecting individual G418-resistant BHK-21 cell clones integrated with the plasmid AV53HS432Deltabeta2.0Neo with recombinant herpes simplex virus, which can express rep and cap genes of wild-type AAV. The titer of rAAV was determined using slot blot hybridization with a result of 10(13) virus particles/ml (genome copy number). Low-density mononuclear cells were isolated from fetal livers of embryos from pregnant C57BL/6 mice at 14-16 days of gestation and were infected with rAAV. The transduced hematopoietic cells were then reinfused into lethally irradiated C57BL/6 recipient mice via tail vein injection. To analyze the provirus in short-term and long-term BM reconstituted mice, PCR/Southern blot and RT-PCR were performed to identify the integrity of the provirus and to detect the expression of human beta-globin gene, respectively. Genomic DNA was extracted from spleen nodules of BM reconstituted mice 12 days after transplantation. Human beta-globin gene was detected in 1 out of 6 nodules using PCR combined with Southern blot. Human beta-globin gene was also detected in the BM and thymus of mouse Y6161, in the thymus and spleen of mouse Y6162 and in the BM of mice Y6211 and Y6212. RT-PCR revealed low levels of expression of human beta-globin gene in the BM of mouse Y6211. Our results suggested that the efficiency of AAV-mediated human beta-globin gene integration into hematopoietic stem/progenitor cells was very low. It is necessary to perform further research on AAV biology before applying gene therapy that requires integration of a foreign gene into host chromosomes.  相似文献   

14.
Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) may deliver therapeutic effects that are comparable to their parental cells. MSC-EVs are promising agents for the treatment of a variety of diseases. To reach the intermediate goal of clinically testing safety and efficacy of EVs, strategies should strive for efficient translation of current EV research. On the basis of our in vitro an in vivo findings regarding the biological actions of EVs and our experience in manufacturing biological stem cell therapeutics for routine use and clinical testing, we discuss strategies of manufacturing and quality control of umbilical cord–derived MSC-EVs. We introduce guidelines of good manufacturing practice and their practicability along the path from the laboratory to the patient. We present aspects of manufacturing and final product quality testing and highlight the principle of “The process is the product.” The approach presented in this perspective article may facilitate translational research during the development of complex biological EV-based therapeutics in a very early stage of manufacturing as well as during early clinical safety and proof-of-concept testing.  相似文献   

15.
16.
《Cytotherapy》2023,25(8):866-876
Background aimsCell therapy for adrenal insufficiency is a potential method for physiological glucocorticoid and mineralocorticoid replacement. We have previously shown that mouse mesenchymal stromal cells (MSCs) differentiated into steroidogenic cells by the viral vector–mediated overexpression of nuclear receptor subfamily 5 group A member 1 (NR5A1), an essential regulator of steroidogenesis, and their implantation extended the survival of bilateral adrenalectomized (bADX) mice.MethodsIn this study, we examined the capability of NR5A1-induced steroidogenic cells prepared from human adipose tissue-derived MSCs (MSC [AT]) and the therapeutic effect of the implantation of human NR5A1-induced steroidogenic cells into immunodeficient bADX mice.ResultsHuman NR5A1-induced steroidogenic cells secreted adrenal and gonadal steroids and exhibited responsiveness to adrenocorticotropic hormone and angiotensin II in vitro. In vivo, the survival time of bADX mice implanted with NR5A1-induced steroidogenic cells was significantly prolonged compared with that of bADX mice implanted with control MSC (AT). Serum cortisol levels, which indicate hormone secretion from the graft, were detected in bADX mice implanted with steroidogenic cells.ConclusionsThis is the first report to demonstrate steroid replacement by the implantation of steroid-producing cells derived from human MSC (AT). These results indicate the potential of human MSC (AT) to be a source of steroid hormone-producing cells.  相似文献   

17.
18.
Mesenchymal stem cells (MSCs) are capable of self-renewing and differentiating into multiple tissues; they are expected to become a source of cells for regenerative therapy. Compared to allogeneic MSCs, autologous MSCs from patients needing cell-based therapy may be an ideal alternative stem cell source. However, characterizations of MSCs from a disease state remains extremely limited. Therefore, we have isolated and characterized MSCs from Parkinson's disease (PD) patients and compared them with MSCs derived from normal adult bone marrow. Our results show that PD-derived MSCs are similar to normal MSCs in phenotype, morphology, and multidifferentiation capacity. Moreover, PD-derived MSCs are capable of differentiating into neurons in a specific medium with up to 30% having the characteristics of dopamine cells. At last, PD-derived MSCs could inhibit T-lymphocyte proliferation induced by mitogens. These findings indicate that MSCs derived from PD patients' bone marrow may be a promising cell type for cellular therapy and somatic gene therapy applications.  相似文献   

19.
20.

Background

Chronic venous leg ulcers (VLUs) are a common problem in clinical practice and available treatments are not satisfactory. The use of adjuvant therapies in combination with lower limb compression may lead to improved healing rates. Chronic wounds are candidates for new strategies in the emergent field of regenerative medicine. Bone marrow–derived cells (BMDCs) contain cells and secrete cytokines known to participate in wound healing. Thus, BMDC therapy seems a logical strategy for the treatment of chronic wounds. Our objective was to evaluate feasibility, safety and initial clinical outcome of autologous BMDC therapy associated with standard treatment in patients with VLUs.

Methods

We conducted an open-label, single-arm, prospective pilot clinical trial in four patients with six chronic VLUs. The study protocol was approved by the institutional and national review boards and ethics committees. Bone marrow was harvest, processed and then administered by multiple injections into the ulcers. All patients received standard treatment and non-healing characteristics of the VLUs were confirmed at study entry.

Results

Ulcer size and wound pain evaluated 12 months after BMDC treatment were significantly reduced (P < 0.05). BMDC treatment was safe and well tolerated in long-term follow-up.

Discussion

Despite the low number of patients studied, our results showed that autologous BMDC treatment could be a useful, feasible and safe procedure to enhance ulcer healing. However, randomized controlled trials with more patients are needed to address this question and translate this approach into clinical practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号