首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We highlight a case on a normal left testicle with a fibrovascular cord with three nodules consistent with splenic tissue. The torsed splenule demonstrated hemorrhage with neutrophilic infiltrate and thrombus consistent with chronic infarction and torsion. Splenogonadal fusion (SGF) is a rather rare entity, with approximately 184 cases reported in the literature. The most comprehensive review was that of 123 cases completed by Carragher in 1990. Since then, an additional 61 cases have been reported in the scientific literature. We have studied these 61 cases in detail and have included a summary of that information here.Key words: Splenogonadal fusion, Acute scrotumA 10-year-old boy presented with worsening left-sided scrotal pain of 12 hours’ duration. The patient reported similar previous episodes occurring intermittently over the past several months. His past medical history was significant for left hip dysplasia, requiring multiple hip surgeries. On examination, he was found to have an edematous left hemiscrotum with a left testicle that was rigid, tender, and noted to be in a transverse lie. The ultrasound revealed possible polyorchism, with two testicles on the left and one on the right (Figure 1), and left epididymitis. One of the left testicles demonstrated a loss of blood flow consistent with testicular torsion (Figure 2).Open in a separate windowFigure 1Ultrasound of the left hemiscrotum reveals two spherical structures; the one on the left is heterogeneous and hyperdense in comparison to the right.Open in a separate windowFigure 2Doppler ultrasound of left hemiscrotum. No evidence of blood flow to left spherical structure.The patient was taken to the operating room for immediate scrotal exploration. A normalappearing left testicle with a normal epididymis was noted. However, two accessory structures were noted, one of which was torsed 720°; (Figure 3). An inguinal incision was then made and a third accessory structure was noted. All three structures were connected with fibrous tissue, giving a “rosary bead” appearance. The left accessory structures were removed, a left testicular biopsy was taken, and bilateral scrotal orchipexies were performed.Open in a separate windowFigure 3Torsed accessory spleen with splenogonadal fusion.Pathology revealed a normal left testicle with a fibrovascular cord with three nodules consistent with splenic tissue. The torsed splenule demonstrated hemorrhage with neutrophillic infiltrate and thrombus consistent with chronic infarction and torsion (Figure 4).Open in a separate windowFigure 4Splenogonadal fusion, continuous type with three accessory structures.  相似文献   

3.
4.
The gene rapL lies within the region of the Streptomyces hygroscopicus chromosome which contains the biosynthetic gene cluster for the immunosuppressant rapamycin. Introduction of a frameshift mutation into rapL by ΦC31 phage-mediated gene replacement gave rise to a mutant which did not produce significant amounts of rapamycin. Growth of this rapL mutant on media containing added l-pipecolate restored wild-type levels of rapamycin production, consistent with a proposal that rapL encodes a specific l-lysine cyclodeaminase important for the production of the l-pipecolate precursor. In the presence of added proline derivatives, rapL mutants synthesized novel rapamycin analogs, indicating a relaxed substrate specificity for the enzyme catalyzing pipecolate incorporation into the macrocycle.Rapamycin is a 31-member macrocyclic polyketide produced by Streptomyces hygroscopicus NRRL 5491 which, like the structurally related compounds FK506 and immunomycin (Fig. (Fig.1),1), has potent immunosuppressive properties (24). Such compounds are potentially valuable in the treatment of autoimmune diseases and in preventing the rejection of transplanted tissues (16). The biosynthesis of rapamycin requires a modular polyketide synthase, which uses a shikimate-derived starter unit (11, 20) and which carries out a total of fourteen successive cycles of polyketide chain elongation that resemble the steps in fatty acid biosynthesis (2, 27). l-Pipecolic acid is then incorporated (21) into the chain, followed by closure of the macrocyclic ring, and both these steps are believed to be catalyzed by a pipecolate-incorporating enzyme (PIE) (18), the product of the rapP gene (8, 15). Further site-specific oxidations and O-methylation steps (15) are then required to produce rapamycin. Open in a separate windowFIG. 1Structures of rapamycin, FK506, and immunomycin.The origin of the pipecolic acid inserted into rapamycin has been previously established (21) to be free l-pipecolic acid derived from l-lysine (although the possible role of d-lysine as a precursor must also be borne in mind) (9). Previous work with other systems has suggested several alternative pathways for pipecolate formation from lysine (22), but the results of the incorporation of labelled lysine into the pipecolate moiety of immunomycin (Fig. (Fig.1)1) clearly indicate loss of the α-nitrogen atom (3). More recently, the sequencing of the rap gene cluster revealed the presence of the rapL gene (Fig. (Fig.2),2), whose deduced gene product bears striking sequence similarity to two isoenzymes of ornithine deaminase from Agrobacterium tumefaciens (25, 26). Ornithine deaminase catalyzes the deaminative cyclization of ornithine to proline, and we have proposed (15) that the rapL gene product catalyzes the analogous conversion of l-lysine to l-pipecolate (Fig. (Fig.3).3). Open in a separate windowFIG. 2A portion of the rapamycin biosynthetic gene cluster which contains ancillary (non-polyketide synthase) genes (15, 27). PKS, polyketide synthase.Open in a separate windowFIG. 3(A) The conversion of l-ornithine to l-proline by ornithine cyclodeaminase (17). (B) Proposed conversion of l-lysine to l-pipecolic acid by the rapL gene product.Here, we report the use of ΦC31 phage-mediated gene replacement (10) to introduce a frameshift mutation into rapL and the ability of the mutant to synthesize rapamycins in the absence or presence of added pipecolate or pipecolate analogs.  相似文献   

5.
A primary function of the spindle apparatus is to segregate chromosomes into two equal sets in a dividing cell. It is unclear whether spindles in different cell types play additional roles in cellular regulation. As a first step in revealing new functions of spindles, we investigated spindle morphology in different cell types in Arabidopsis roots in the wild-type and the cytokinesis defective1 (cyd1) mutant backgrounds. cyd1 provides cells larger than those of the wild type for testing the cell size effect on spindle morphology. Our observations indicate that cell type (shape), not cell size, is likely a factor affecting spindle morphology. At least three spindle types were observed, including small spindles with pointed poles in narrow cells, large barrel-shaped spindles (without pointed poles) in wide cells, and spindles intermediate in pole focus and size in other cells. We hypothesize that the cell-type-associated spindle diversity may be an integral part of the cell differentiation processes.Key words: spindle pole, microtubule, morphogenesis, cell type, metaphaseThe cellular apparatus for chromosome segregation during mitosis is typically described as a spindle composed of microtubules and microtubule-associated proteins. Research on the structure and function of the spindle is usually conducted under the assumption that spindles are structurally the same or alike in different cell types in an organism. If the assumption is true, it would indicate that either the intracellular conditions in different dividing cells are very similar or the assembly and maintenance of the spindle are insensitive to otherwise variable intracellular conditions. But experimental evidence related to this assumption is relatively sparse.The root tip in Arabidopsis, as in other higher plants, contains dividing cells of different shapes and sizes. These cells include both meristem initial and derivative cells, with the former and latter being proximal and distal to the quiescent center, respectively.1 The diversity in dividing cells in the root tip provides an opportunity for testing whether the spindles also exhibit diversity in morphology. To visualize the spindles at the metaphase stage in the root tip cells, we conducted indirect immunofluorescence labeling of the β-tubulin in single cells prepared from wild-type Arabidopsis (in Col-0 background) root tips as previously described in references 2 and 3. The spindles in cells of different morphologies were then observed under a confocal laser scanning microscope.3 Three types of spindle were detected. The first type (Fig. 1A) was the smallest in width and length and had the most-pointed poles among the three types. The second type (Fig. 1B) was wider and longer than the first type but with less-pointed poles than the first type. The third type (Fig. 1C) was similar in height to the second type but lacked the pointed poles. In fact, the third type is shaped more like a barrel than a spindle. The first type was found in cells narrow in the direction parallel to the equatorial plane of the spindle, a situation opposite to that of the third type whose cells were wide in the equatorial direction. The wide cells containing the barrel-shaped spindles likely belonged to the epidermal layer in the root tip.1 The second type was found in cells intermediate in width. Examples of metaphase spindles morphologically resembling the three types of spindles in Arabidopsis root can also be found in a previous report by Xu et al. even although spindle diversity was not the subject of the report.4 In Xu et al.''s report, type 1- or 2-like metaphase spindles can be identified in Figures 2B and 3A, and type 3-like metaphase spindles can be identified in Figures 1A and 3B. These observations indicate that at least three types of spindles exist in the root cells.Open in a separate windowFigure 1Spindles in wild-type root cells. (A) Type-1 spindle. (B) Type-2 spindle. (C) Type-3 spindle. The spots without fluorescence signals in the middle of the spindles are where the chromosomes were located. Scale bar for all the figures = 20 µm.Open in a separate windowFigure 2Spindles in cyd1 root cells. (A) Type-1 spindle. Arrows indicate the upper and lower boundaries of the cell. (B and C) Two type-2 spindles. (D and E) Two type-3 spindles. (F) DAPI-staining image corresponding to (E), showing chromosomes at the equatorial plane. Scale bar for the images = 20 µm.The above observations suggest that either the cell size or the cell type (shape) might be a factor in the type of spindle found in a specific cell. To further investigate the relationship between cell morphology and spindle morphology, we studied metaphase spindles in root cells of the cytokinesis defective1 (cyd1) mutant.5 Because the root cells in cyd1 were larger than corresponding cells in the wild type, presumably due to abnormal polyploidization prior to the collection of the root cells,5,6 this investigation might reveal a relationship between increasing cell size and altered spindle morphology. A pattern of different spindle types in different cell types similar to that in the wild type was observed in cyd1 (Fig. 2). Figures 2A–C show narrow cells that contained spindles with pointed poles even though the spindles differed in size and focus. Figure 2D shows a barrel-shaped spindle in a wide cell, resembling Figure 1C in overall appearance. The large number of chromosomes at metaphase (more than the diploid number of 10) in Figure 2F indicates that the cells in Figure 2 were polyploid. These figures thus demonstrate that the enlargement in cell size did not alter the pattern of types 1 and 2 spindles in narrow cells, as well as type 3 spindles in wide cells. Moreover, the edges of the spindles in Figure 2B and E were similarly distanced to the cell walls in the equatorial plane, and yet they differ greatly in shape with the former being type 2 and the latter being type 3. This finding argues against that the cell width in the equatorial direction dictates the spindle shape. On the other hand, the cells in Figure 2B and E are obviously of different types. Taken together, these observations suggest that the spindle diversity in both wild type and cyd1 is associated with cell-type diversity.It is unclear whether the different spindle types have different functions in their respective cell types, in addition to the usual role for chromosome segregation. One possibility is that, at the ensuing telophase, the pointed spindles result in compact chromosomal congregation at the poles whereas the barrel-shaped spindles result in loose chromosomal congregation at the poles, which in turn may differentially affect the shape of the subsequently formed daughter nuclei and their organization. Different nuclear shape and organization are likely to be integrated into the processes that confer cell differentiation.  相似文献   

6.
7.
8.
Sertoli cell tumors are very rare testicular tumors, representing 0.4% to 1.5% of all testicular malignancies. They are subclassified as classic, large-cell calcifying, and sclerosing Sertoli cell tumors (SSCT) based on distinct clinical features. Only 42 cases of SSCTs have been reported in the literature. We present a case of a 23-year-old man diagnosed with SSCT.Key words: Testicular neoplasm, Sertoli cell tumor, Sclerosing Sertoli cell tumorA 23-year-old man was referred to the Cleveland Clinic Department of Urology (Cleveland, OH) for an incidentally detected right testicular mass. The mass was identified during a work-up for transient left testicular discomfort. His only notable medical history was nephrolithiasis. There was no personal or family history of testicular cancer or cryptorchidism. On physical examination, he was a well-nourished, well-masculinized young man without gynecomastia. Testicular examination revealed normal volume and consistency bilaterally without other relevant findings. Testicular ultrasonography demonstrated an 8 mm × 6 mm × 6 mm hypoechoic, solid mass in the posterior right testicle with peripheral flow on color Doppler (Figure 1).Open in a separate windowFigure 1Testicular ultrasound demonstrating an 8 mm × 6 mm × 6 mm hypoechoic, solid mass in the posterior right testicle (blue arrows).The remainder of the ultrasound examination yielded normal results. Lactic dehydrogenase, B-human chorionic gonadotropin, and α-fetoprotein levels were all within the normal range. After a thorough review of the options, the patient was then taken to the operating room for inguinal exploration. Intraoperative ultrasound confirmed a superficial 8-mm hypoechoic testis lesion. A whiteyellow, well-demarcated nodule was widely excised and a frozen section was sent to pathology for examination. The frozen section examination revealed the lesion to be a neoplasm with differential diagnosis including sclerosing Sertoli cell tumor (SSCT), adenomatoid tumor, and a variant of Leydig cell tumor. Because the final diagnosis could not be determined from frozen section, the decision was made to perform a right radical orchiectomy. Pathologic examination revealed a grossly unifocal, well-circumscribed, white, firm mass of 0.8 cm. Microscopically the lesion was composed of solid and hollow tubules and occasional anastomosing cords distributed within the hypocellular, densely collagenous stroma. Although the lesion was somewhat well circumscribed, entrapped seminiferous tubules with Sertoli-only cells were present within the tumor (Figure 2). Tumor cells had pale or eosinophilic cytoplasm with small and dark nuclei with inconspicuous nucleoli. The tumor was confined to the testis and margins were negative. A diagnosis of SSCT was reached, supported by positive immunostain results for steroidogenic factor 1, focal inhibin, and calretinin expression, and negative stain results for cytokeratin AE1/AE3 and epithelial membrane antigen in the tumor (Figure 3). The postoperative course was unremarkable. Computed tomography scan of the abdomen and pelvis and chest radiograph were negative for metastatic disease.Open in a separate windowFigure 2Low-power examination revealing a well-circumscribed tumor composed of solid and hollow tubules and occasional anastomosing cords distributed within the hypocellular, densely collagenous stroma. Hematoxylin and eosin stain, original magnification ×40. (B) High-power examination. Note entrapped seminiferous tubules lacking spermatogenesis. Hematoxylin and eosin stain, original magnification ×100.Open in a separate windowFigure 3Nuclear expression of steroidogenic factor 1 in the tumor as well as benign Sertoli cells in entrapped seminiferous tubules (original magnification ×200). (B) Focal calretinin expression in the tumor (inhibin had a similar staining pattern; original magnification ×100).  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号