首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chorioamnionitis is associated with preterm delivery and bronchopulmonary dysplasia (BPD), characterized by impaired alveolar and pulmonary vascular development and vascular dysfunction. To study the vascular effects in a model of chorioamnionitis, preterm lambs were exposed to 20 mg of intra-amniotic endotoxin or saline for 1, 2, 4, or 7 days and delivered at 122 days gestational age (term = 150 days). This intra-amniotic endotoxin dose was previously shown to induce lung maturation. The effect of intra-amniotic endotoxin on expression of endothelial proteins was evaluated. Muscularization of the media and collagen deposition in adventitia of small pulmonary arteries was used to assess vascular remodeling. Compared with controls, bronchoalveolar lavage fluid protein content was increased 2 days after intra-amniotic endotoxin exposure. Vascular endothelial growth factor (VEGF) 165 isoform mRNA decreased 2-4 days after intra-amniotic endotoxin. VEGF, VEGF receptor-2, endothelial nitric oxide synthase (eNOS), platelet endothelial cell adhesion molecule-1, and Tie-2 protein expression in the lung coordinately decreased 1-7 days after intra-amniotic endotoxin. Intra-amniotic endotoxin appeared to selectively decrease eNOS expression in small pulmonary vessels compared with large vessels. Medial smooth muscle hypertrophy and increased adventitial fibrosis were observed 4 and 7 days after intra-amniotic endotoxin. These results demonstrate that, in the preterm lamb lung, antenatal inflammation inhibits endothelial cell protein expression followed by vascular remodeling changes in small pulmonary arteries. Exposure to antenatal inflammation may cause vascular remodeling and contribute to the development of BPD.  相似文献   

2.

Rationale

Chorioamnionitis and antenatal glucocorticoids are common exposures for preterm infants and can affect the fetal brain, contributing to cognitive and motor deficits in preterm infants. The effects of antenatal glucocorticoids on the brain in the setting of chorioamnionitis are unknown. We hypothesized that antenatal glucocorticoids would modulate inflammation in the brain and prevent hippocampal and white matter injury after intra-amniotic lipopolysaccharide (LPS) exposure.

Methods

Time-mated ewes received saline (control), an intra-amniotic injection of 10 mg LPS at 106d GA or 113d GA, maternal intra-muscular betamethasone (0.5 mg/kg maternal weight) alone at 113d GA, betamethasone at 106d GA before LPS or betamethasone at 113d GA after LPS. Animals were delivered at 120d GA (term=150d). Brain structure volumes were measured on T2-weighted MRI images. The subcortical white matter (SCWM), periventricular white matter (PVWM) and hippocampus were analyzed for microglia, astrocytes, apoptosis, proliferation, myelin and pre-synaptic vesicles.

Results

LPS and/or betamethasone exposure at different time-points during gestation did not alter brain structure volumes on MRI. Betamethasone alone did not alter any of the measurements. Intra-amniotic LPS at 106d or 113d GA induced inflammation as indicated by increased microglial and astrocyte recruitment which was paralleled by increased apoptosis and hypomyelination in the SCWM and decreased synaptophysin density in the hippocampus. Betamethasone before the LPS exposure at 113d GA prevented microglial activation and the decrease in synaptophysin. Betamethasone after LPS exposure increased microglial infiltration and apoptosis.

Conclusion

Intra-uterine LPS exposure for 7d or 14d before delivery induced inflammation and injury in the fetal white matter and hippocampus. Antenatal glucocorticoids aggravated the inflammatory changes in the brain caused by pre-existing intra-amniotic inflammation. Antenatal glucocorticoids prior to LPS reduced the effects of intra-uterine inflammation on the brain. The timing of glucocorticoid administration in the setting of chorioamnionitis can alter outcomes for the fetal brain.  相似文献   

3.
目的:观察骶神经电刺激对脊髓损伤大鼠肠黏膜机械屏障的保护作用。方法:56只Wistar大鼠分7组(n=8):正常组、急性完全性脊髓损伤(SCI)组和骶神经电刺激组(按24、48、72h各8只)。进行内毒素测定;肠系膜淋巴结、肝脏、脾脏菌培养;肠道形态学观察;紧密连接蛋白zo-1的蛋白表达测定。结果:对照组肠黏膜不同程度损伤;肠道上皮细胞及细胞间连接破坏;内毒素血症和细菌移位明显。实验组肠黏膜得到改善,内毒素水平下降且细菌移位减少。ZO-1蛋白表达无统计学差异。对照组ZO-1的分布出现不同程度的散乱、排列不规则,实验组分布得到改善。结论:骶神经电刺激可促肠蠕动、排肠内容物、减少肠道菌群数量,保护肠黏膜上皮细胞及紧密连接的机械屏障,减少细菌移位和内毒素血症。  相似文献   

4.
Chorioamnionitis is frequently associated with preterm birth and increases the risk of adverse outcomes such as bronchopulmonary dysplasia (BPD). Transforming growth factor (TGF)-beta1 is a key regulator of lung development, airway remodeling, lung fibrosis, and regulation of inflammation, and all these processes contribute to the development of BPD. Connective tissue growth factor (CTGF) is a downstream mediator of some of the profibrotic effects of TGF-beta1, vascular remodeling, and angiogenesis. TGF-beta1-induced CTGF expression can be blocked by TNF-alpha. We asked whether chorioamnionitis-associated antenatal inflammation would regulate TGF-beta1, the TGF-beta1 signaling pathway, and CTGF in preterm lamb lungs. Fetal sheep were exposed to 4 mg of intra-amniotic endotoxin or saline for 5 h, 24 h, 72 h, or 7 days before preterm delivery at 125 days gestation (full term = 150 days). Intra-amniotic endotoxin increased lung TGF-beta1 mRNA and protein expression. Elevated TGF-beta1 levels were associated with TGF-beta1-induced phosphorylation of Smad2. CTGF was selectively expressed in lung endothelial cells in control lungs, and intra-amniotic endotoxin caused CTGF expression to decrease to 30% of control values and TNF-alpha protein to increase. The antenatal inflammation-induced TGF-beta1 expression and Smad signaling in the fetal lamb lung may contribute to impaired lung alveolarization and reduced lung inflammation. Decreased CTGF expression may inhibit vascular development or remodeling and limit lung fibrosis during remodeling. These effects may contribute to the impaired alveolar and pulmonary vascular development that is the hallmark of the new form of BPD.  相似文献   

5.
Chorioamnionitis is frequently associated with preterm deliveries before 30 weeks gestation. Chorioamnionitis correlates both with an increased risk of bronchopulmonary dysplasia and with a decreased risk of respiratory distress syndrome. Both interleukin-1α and endotoxin can induce inflammation in the fetal lungs and lung maturation after preterm birth when given by intra-amniotic injection. Inflammation can also result in an arrest of alveolarization, and this lung developmental abnormality is prominent in the lungs of preterm infants that die of bronchopulmonary dysplasia. The mechanisms by which infection/inflammation can have both beneficial and injurious effects on the preterm lung remain to be characterized.  相似文献   

6.
Chorioamnionitis is frequently associated with preterm deliveries before 30 weeks gestation. Chorioamnionitis correlates both with an increased risk of bronchopulmonary dysplasia and with a decreased risk of respiratory distress syndrome. Both interleukin-1α and endotoxin can induce inflammation in the fetal lungs and lung maturation after preterm birth when given by intra-amniotic injection. Inflammation can also result in an arrest of alveolarization, and this lung developmental abnormality is prominent in the lungs of preterm infants that die of bronchopulmonary dysplasia. The mechanisms by which infection/inflammation can have both beneficial and injurious effects on the preterm lung remain to be characterized.  相似文献   

7.
The proinflammatory stimulus of chorioamnionitis is commonly associated with preterm delivery. Women at risk of preterm delivery receive antenatal glucocorticoids to functionally mature the fetal lung. However, the effects of the combined exposures of chorioamnionitis and antenatal glucocorticoids on the fetus are poorly understood. Time-mated ewes with singleton fetuses received an intra-amniotic injection of lipopolysaccharide (LPS) either preceding or following maternal intramuscular betamethasone 7 or 14 days before delivery, and the fetuses were delivered at 120 days gestational age (GA) (term = 150 days GA). Gestation matched controls received intra-amniotic and maternal intramuscular saline. Compared with saline controls, intra-amniotic LPS increased inflammatory cells in the bronchoalveolar lavage and myeloperoxidase, Toll-like receptor 2 and 4 mRNA, PU.1, CD3, and Foxp3-positive cells in the fetal lung. LPS-induced lung maturation measured as increased airway surfactant and improved lung gas volumes. Intra-amniotic LPS-induced inflammation persisted until 14 days after exposure. Betamethasone treatment alone induced modest lung maturation but, when administered before intra-amniotic LPS, suppressed lung inflammation. Interestingly, betamethasone treatment after LPS did not counteract inflammation but enhanced lung maturation. We conclude that the order of exposures of intra-amniotic LPS or maternal betamethasone had large effects on fetal lung inflammation and maturation.  相似文献   

8.
Antenatal betamethasone (Beta) is widely used in women with asymptomatic chorioamnionitis at risk for preterm delivery, but its effects on fetal inflammation are unstudied. Groups of ewes at 109 +/- 1 days of gestation received the following treatments: intra-amniotic (IA) saline (control), 0.5 mg/kg intramuscular Beta, 10 mg IA endotoxin (Endo), and Beta + 2 h later Endo (Beta + Endo). Beta suppressed Endo-induced lung inflammation at 1 day. However, compared with Endo 5 days after treatment, Beta + Endo lambs had increased alveolar neutrophils, proinflammatory cytokine mRNA expression, and serum amyloid A3 (SAA3) mRNA expression. IL-1beta mRNA expression was localized to the inflammatory cells, whereas SAA3 mRNA expression was induced in the bronchial epithelium and the inflammatory cells. Compared with Endo, Beta + Endo lambs had increased lung inflammation but equivalent lung volumes 15 days after treatment. The late increase in inflammation in the Beta + Endo animals suggests that glucocorticoids impair the ability of the preterm lung to downregulate Endo-induced inflammation after fetal clearance of the glucocorticoids. These results have implications for lung inflammation and bronchopulmonary dysplasia in preterm infants exposed to chorioamnionitis and maternal glucocorticoids.  相似文献   

9.
Regulatory T cells are a population of CD4+ T cells that play a critical role in peripheral tolerance and control of immune responses to pathogens. The purpose of this study was to measure the percentages of two different regulatory T cells subpopulations, identified by the presence or absence of CD31 (Recent thymic emigrants and peripherally induced naïve regulatory T cells), in term and preterm infant cord blood. We report the association of prenatal factors, intrauterine exposure to lipopolysaccharide and inflammation and the percentages of these regulatory T cell subpopulations in term and preterm infants. Cord blood samples were collected from both term and preterm infants and mononuclear cells isolated over a Ficoll-Hypaque cushion. Cells were then stained with fluorochrome-labeled antibodies to characterize regulatory T cell populations and analyzed with multi-color flow cytometry. Cord blood plasma C-reactive protein, and lipopolysaccharide were also measured. Placental pathology was also examined. We report a gestational age-dependent difference in the percentage of total regulatory T cells, in which preterm infants of lower gestational ages have an increased percentage of regulatory T cells. We report the presence of two populations of regulatory T cells (CD31+ and CD31-) in cord blood of term and preterm infants and their association with different maternal and fetal characteristics. Factors associated with differences in the percentage of CD31- Tregs included the use of prenatal antibiotics, steroids and magnesium sulfate. In addition, the percentage of CD31- Tregs was significantly higher in cord blood of preterm pregnancies associated with inflammation and prenatal lipopolysaccharide exposure. The peripheral Treg pool of preterm infants could be altered by prenatal exposure to inflammation and chorioamnionitis; however, the clinical implications of this finding are not yet understood.  相似文献   

10.
Chorioamnionitis (inflammation of the fetal membranes) is strongly associated with preterm birth and in utero exposure to inflammation significantly impairs contractile function in the preterm lamb diaphragm. The fetal inflammatory response to intra-amniotic (IA) lipopolysaccharide (LPS) is orchestrated via interleukin 1 (IL-1). We aimed to determine if LPS induced contractile dysfunction in the preterm diaphragm is mediated via the IL-1 pathway. Pregnant ewes received IA injections of recombinant human IL-1 receptor antagonist (rhIL-1ra) (Anakinra; 100 mg) or saline (Sal) 3 h prior to second IA injections of LPS (4 mg) or Sal at 119d gestational age (GA). Preterm lambs were killed after delivery at 121d GA (term = 150 d). Muscle fibres dissected from the right hemi-diaphragm were mounted in an in vitro muscle test system for assessment of contractile function. The left hemi-diaphragm was snap frozen for molecular and biochemical analyses. Maximum specific force in lambs exposed to IA LPS (Sal/LPS group) was 25% lower than in control lambs (Sal/Sal group; p=0.025). LPS-induced diaphragm weakness was associated with higher plasma IL-6 protein, diaphragm IL-1β mRNA and oxidised glutathione levels. Pre-treatment with rhIL-1ra (rhIL-1ra/LPS) ameliorated the LPS-induced diaphragm weakness and blocked systemic and local inflammatory responses, but did not prevent the rise in oxidised glutathione. These findings indicate that LPS induced diaphragm dysfunction is mediated via IL-1 and occurs independently of oxidative stress. Therefore, the IL-1 pathway represents a potential therapeutic target in the management of impaired diaphragm function in preterm infants.  相似文献   

11.

Background & Aims

While it is widely accepted that obesity is associated with low-grade systemic inflammation, the molecular origin of the inflammation remains unknown. Here, we investigated the effect of endotoxin-induced inflammation via TLR4 signaling pathway at both systemic and intestinal levels in response to a high-fat diet.

Methods

C57BL/6J and TLR4-deficient C57BL/10ScNJ mice were maintained on a low-fat (10 kcal % fat) diet (LFD) or a high–fat (60 kcal % fat) diet (HFD) for 8 weeks.

Results

HFD induced macrophage infiltration and inflammation in the adipose tissue, as well as an increase in the circulating proinflammatory cytokines. HFD increased both plasma and fecal endotoxin levels and resulted in dysregulation of the gut microbiota by increasing the Firmicutes to Bacteriodetes ratio. HFD induced the growth of Enterobecteriaceae and the production of endotoxin in vitro. Furthermore, HFD induced colonic inflammation, including the increased expression of proinflammatory cytokines, the induction of Toll-like receptor 4 (TLR4), iNOS, COX-2, and the activation of NF-κB in the colon. HFD reduced the expression of tight junction-associated proteins claudin-1 and occludin in the colon. HFD mice demonstrated higher levels of Akt and FOXO3 phosphorylation in the colon compared to the LFD mice. While the body weight of HFD-fed mice was significantly increased in both TLR4-deficient and wild type mice, the epididymal fat weight and plasma endotoxin level of HFD-fed TLR4-deficient mice were 69% and 18% of HFD-fed wild type mice, respectively. Furthermore, HFD did not increase the proinflammatory cytokine levels in TLR4-deficient mice.

Conclusions

HFD induces inflammation by increasing endotoxin levels in the intestinal lumen as well as in the plasma by altering the gut microbiota composition and increasing its intestinal permeability through the induction of TLR4, thereby accelerating obesity.  相似文献   

12.
TNF-alpha has been associated with chorioamnionitis and the subsequent development of bronchopulmonary dysplasia in preterm infants. We asked whether bioactive recombinant ovine TNF-alpha could induce chorioamnionitis, lung inflammation, lung maturation, and systemic effects in fetal sheep. We compared the responses to IL-1alpha, a cytokine known to induce these responses in preterm sheep. Intra-amniotic TNF-alpha caused no chorioamnionitis, no lung maturation, and a very small increase in inflammatory cells in the fetal lung after 5 h, 2 days (d), and 7 d. In contrast, IL-1alpha induced inflammation and lung maturation. TNF-alpha given into the airways at birth increased granulocytes in the bronchoalveolar lavage fluid of ventilated preterm lungs and decreased the mRNA for surfactant protein C but did not adversely effect postnatal lung function. An intravascular injection of IL-1alpha caused a systemic inflammatory response in fetal sheep, whereas there was no fetal response to intravascular TNF-alpha. Fetal and newborn preterm sheep are minimally responsive to TNF-alpha. Therefore, the presence of a mediator such as TNF-alpha in a developing animal does not necessarily mean that it is causing the responses anticipated from previous results in adult animals.  相似文献   

13.
Chorioamnionitis is an antecedent of preterm birth. We aimed to determine the effect of experimental chorioamnionitis in fetal sheep during late gestation on 1) nephron number, 2) renal corpuscle volume, and 3) renal inflammation. We hypothesized that exposure to chorioamnionitis would lead to inflammation in fetal kidneys and adversely impact on the development of nephrons, leading to a reduction in nephron number. At ~121 days of gestation (term ~147 days), pregnant ewes bearing twin or singleton fetuses received a single intra-amniotic injection of lipopolysaccharide (n = 6; 3 singletons, 3 twins); controls were either untreated or received an intra-amniotic injection of saline (n = 8; 4 singletons, 4 twins). One twin was used from each twin-bearing ewe. At ~128 days of gestation, fetuses were delivered via Caesarean section. Kidneys were collected and stereologically analyzed to determine nephron number and renal corpuscle volume. Renal inflammation was assessed using immunohistochemistry. Experimental chorioamnionitis did not affect body weight or relative kidney weight. There was a significant reduction in nephron number but no change in renal corpuscle volume in LPS-exposed fetuses relative to controls. On average, nephron number was significantly reduced by 23 and 18% in singleton and twin LPS-exposed fetuses, respectively. The degree of renal inflammation did not differ between groups. Importantly, this study demonstrates that exposure to experimental chorioamnionitis adversely impacts on nephron number in the developing fetus.  相似文献   

14.
Chronic early gestational chorioamnionitis is associated with development of bronchopulmonary dysplasia in preterm infants. A single intra-amniotic exposure to endotoxin decreased alveolarization and reduced expression of endothelial proteins in 125-day gestational age preterm lambs. We hypothesized that prolonged exposure to intra-amniotic endotoxin would cause progressive lung inflammation and inhibit alveolar and pulmonary vascular development. Endotoxin (1 mg/day) or saline was administered via an intra-amniotic osmotic pump from 80 to 108 days of gestational age (continuous pump) or by four weekly 10-mg intra-amniotic endotoxin injections starting at 100 days of gestational age (multiple dose). Lung morphometry, lung inflammation, vascular effects, and lung maturation were measured at delivery. The continuous pump lambs delivered at 100 days (approximately 70% of total endotoxin exposure) had lung inflammation, fewer saccules, and decreased endothelial proteins endothelial nitric oxide synthase and VEGF receptor 2 expression compared with controls. The continuous pump (delivered at 138 days) and multiple dose lambs (delivered at 130 and 145 days) had mild persistent lung inflammation and no significant differences in lung morphometry or expression of endothelial proteins compared with controls. Surfactant saturated phosphatidylcholine pool sizes were increased in all endotoxin-exposed groups, but lung function was not changed relative to controls. Contrary to our hypothesis, a prolonged fetal exposure to intra-amniotic endotoxin caused mild persistent inflammation but did not lead to progressive structural abnormalities in lungs of near-term gestation lambs.  相似文献   

15.
Endotoxin-endothelium interactions in "low-perfusion state" research.   总被引:1,自引:0,他引:1  
LPS/endotoxin provokes a plethora of pathological events some of which may be considered as examples of "low perfusion state". These are discussed here. It is well known that hypotension and refractoriness to vasocostrictors are the hallmark of endotoxic shock. Nevertheless, there are some vascular beds, such as mesenteric circulation, that respond with vasoconstriction - not vasodilation to endotoxin. Aminoguanidine, an inhibitor of NOS-2, blocks endotoxin- induced increase of resistance in mesenteric bed and endotoxin-induced translocation of bacteria through the gut wall. It is postulatede that endotoxin has antiarrythmogenic action due to the release of nitric oxide and increase in intracellular cGMP levels. Although we demonstrate that endotoxin increases nitric oxide formation in spleen and liver, its contribution to the injury of these organs by endotoxin is not fully established. In addition, we present our immunochemistry data on nitrotyrosine formation in the liver and spleen of endotoxin-treated animals.  相似文献   

16.
The impermeant nature of the intestinal barrier is maintained by tight junctions (TJs) formed between adjacent intestinal epithelial cells. Disruption of TJs and loss of barrier function are associated with a number of gastrointestinal diseases, including neonatal necrotizing enterocolitis (NEC), the leading cause of death from gastrointestinal diseases in preterm infants. Human milk is protective against NEC, and the human milk factor erythropoietin (Epo) has been shown to protect endothelial cell-cell and blood-brain barriers. We hypothesized that Epo may also protect intestinal epithelial barriers, thereby lowering the incidence of NEC. Our data demonstrate that Epo protects enterocyte barrier function by supporting expression of the TJ protein ZO-1. As immaturity is a key factor in NEC, Epo regulation of ZO-1 in the human fetal immature H4 intestinal epithelial cell line was examined and demonstrated Epo-stimulated ZO-1 expression in a dose-dependent manner through the PI3K/Akt pathway. In a rat NEC model, oral administration of Epo lowered the incidence of NEC from 45 to 23% with statistical significance. In addition, Epo treatment protected intestinal barrier function and prevented loss of ZO-1 at the TJs in vivo. These effects were associated with elevated Akt phosphorylation in the intestine. This study reveals a novel role of Epo in the regulation of intestinal epithelial TJs and barrier function and suggests the possible use of enteral Epo as a therapeutic agent for gut diseases.  相似文献   

17.
Recent research suggested that taking a high‐fat diet (HFD) may lead to a gut microbiota imbalance and colon tissue damage. This would lead to increased intestinal permeability and consequent constant circulation of low‐grade inflammatory cytokines. Spirulina platensis can protect against HFD‐induced metabolic inflammation and can stimulate the growth of beneficial bacteria in in vitro stool cultures. However, it is unknown whether this beneficial effect acts on intestinal tissues. In this study, rats were fed a high‐fat diet fed with 3% S platensis for 14 weeks. We analysed endotoxin, the composition of the microbiota, inflammation and gut permeability. We found that S platensis decreased the bodyweight and visceral fat pads weight of the HFD‐fed rats. In addition, it lowered the levels of lipopolysaccharide and pro‐inflammatory cytokines in serum. Our results showed that S platensis could largely reduce the relative amount of Proteobacteria and the Firmicutes/Bacteroidetes ratio in faecal samples from HFD‐fed rats. S platensis significantly reduced intestinal inflammation, as shown by decreased expression of myeloid differentiation factor 88 (MyD88), toll‐like receptor 4 (TLR4), NF‐κB (p65) and inflammatory cytokines. S platensis also ameliorated the increased permeability and decreased expression of tight junction proteins in the intestinal mucosa, such as ZO‐1, Occludin and Claudin‐1. Therefore, in HFD‐induced gut dysbiosis rats, S platensis benefits health by inhibiting chronic inflammation and gut dysbiosis, and modulating gut permeability.  相似文献   

18.
Chorioamnionitis is frequent in preterm labor and increases the risk of bronchopulmonary dysplasia. We hypothesized that intra-amniotic endotoxin injures the lung in utero, causing a sequence of inflammation and tissue injury similar to that which occurs in the injured adult lung. Preterm lamb lungs at 125 days gestational age were evaluated for indicators of inflammation, injury, and repair 5 h, 24 h, 72 h, and 7 days after 4 mg of intra-amniotic endotoxin injection. At 5 h, the epithelial cells in large airways expressed heat shock protein 70, and alveolar interleukin-8 was increased. Surfactant protein B (SP-B) decreased in alveolar type II cells at 5 h, and SP-B in lung tissue and alveolar lavage fluid increased by 72 h. By 24 h, neutrophils were recruited into the large airways, and cell death was the highest. Alveolar type II cells decreased by 25% at 24 h, and proliferation was highest at 72 h, consistent with tissue remodeling. Intra-amniotic endotoxin caused surfactant secretion, inflammation, cell death, and remodeling as indications of lung injury. The recovery phase was accompanied by maturational changes in the fetal lung.  相似文献   

19.
Interleukin (IL)-15 is able to regulate tight junction formation in intestinal epithelial cells. However, the mechanisms that regulate the intestinal barrier function in response to IL-15 and the involved subunits of the IL-15 ligand-receptor system are unknown. We determined the IL-2Rbeta subunit and IL-15-dependent regulation of tight junction-associated proteins in the human intestinal epithelial cell line T-84. The IL-2Rbeta subunit was expressed and induced signal transduction in caveolin enriched rafts in intestinal epithelial cells. IL-15-mediated tightening of intestinal epithelial monolayers correlated with the enhanced recruitment of tight junction proteins into Triton X-100-insoluble protein fractions. IL-15-mediated up-regulation of ZO-1 and ZO-2 expression was independent of the IL-2Rbeta subunit, whereas the phosphorylation of occludin and enhanced membrane association of claudin-1 and claudin-2 by IL-15 required the presence of the IL-2Rbeta subunit. Recruitment of claudins and hyperphosphorylated occludin into tight junctions resulted in a more marked induction of tight junction formation in intestinal epithelial cells than the up-regulation of ZO-1 and ZO-2 by itself. The regulation of the intestinal epithelial barrier function by IL-15 involves IL-2Rbeta-dependent and -independent signaling pathways leading to the recruitment of claudins, hyperphosphorylated occludin, ZO-1, and ZO-2 into the tight junctional protein complex.  相似文献   

20.
AimsUnder normal conditions, the intestinal mucosa acts as a local barrier to prevent the influx of luminal contents. The intestinal epithelial tight junction is comprised of several membrane associated proteins, including zonula occludens-1 (ZO-1) and occludin. Disruption of this barrier can lead to the production of pro-inflammatory mediators and ultimately multiple organ failure. We have previously shown that Pentoxifylline (PTX) decreases histologic gut injury and pro-inflammatory mediator synthesis. We hypothesize that PTX prevents the breakdown of ZO-1 and occludin in an in vitro model of immunostimulated intestinal cell monolayers.Main methodsCaco-2 human enterocytes were grown as confluent monolayers and incubated under control conditions, or with PTX (2 mM), Cytomix (TNF-α, IFN-γ, IL-1), or Cytomix + PTX for 24 h. Occludin and ZO-1 protein levels were analyzed by Western blot. Confocal microscopy was used to assess the cytoplasmic localization of ZO-1 and occludin.Key findingsCytomix stimulation of Caco-2 cells resulted in a 50% decrease in both occludin and ZO-1 protein. Treatment with Cytomix + PTX restored both occludin and ZO-1 protein to control levels. Confocal microscopy images show that Cytomix caused an irregular, undulating appearance of ZO-1 and occludin at the cell junctions. Treatment with PTX prevented the Cytomix-induced changes in ZO-1 and occludin localization.SignificanceTreatment with PTX decreases the pro-inflammatory cytokine induced changes in the intestinal tight junction proteins occludin and ZO-1. Pentoxifylline may be a useful adjunct in the treatment of sepsis and shock by attenuating intestinal barrier breakdown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号