首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Proper function of endoplasmic reticulum (ER) and mitochondria is crucial for cellular homeostasis, and dysfunction at either site as well as perturbation of mitochondria-associated ER membranes (MAMs) have been linked to neurodegenerative and metabolic diseases. Previously, we have observed an increase in ROS and apoptosis levels in patient-derived fibroblasts with remethylation disorders causing homocystinuria. Here we show increased mRNA and protein levels of Herp, Grp78, IP3R1, pPERK, ATF4, CHOP, asparagine synthase and GADD45 in patient-derived fibroblasts suggesting ER stress and calcium perturbations in homocystinuria. In addition, overexpressed MAM-associated proteins (Grp75, σ-1R and Mfn2) were found in these cells that could result in mitochondrial calcium overload and oxidative stress increase. Our results also show an activation of autophagy process and a substantial degradation of altered mitochondria by mitophagy in patient-derived fibroblasts. Moreover, we have observed that autophagy was partially abolished by antioxidants suggesting that ROS participate in this process that may have a protective role. Our findings argue that alterations in Ca2+ homeostasis and autophagy may contribute to the development of this metabolic disorder and suggest a therapeutic potential in homocystinuria for agents that stabilize calcium homeostasis and/or restore the proper function of ER-mitochondria communications.  相似文献   

2.
In the liver, contact sites between the endoplasmic reticulum (ER) and mitochondria (named MAMs) may be crucial hubs for the regulation of lipid metabolism, thus contributing to the exacerbation or prevention of fatty liver. We hypothesized that tether proteins located at MAMs could play a key role in preventing triglyceride accumulation in hepatocytes and nonalcoholic fatty liver disease (NAFLD) occurrence. To test this, we explored the role of two key partners in building MAM integrity and functionality, the glucose-regulated protein 75 (Grp75) and mitofusin 2 (Mfn2), which liver contents are altered in obesity and NAFLD. Grp75 or Mfn2 expression was either silenced using siRNA or overexpressed with adenoviruses in Huh7 cells.Silencing of Grp75 and Mfn2 resulted in decreased ER-mitochondria interactions, mitochondrial network fusion state and mitochondrial oxidative capacity, while overexpression of the two proteins induced mirror impacts on these parameters. Furthermore, Grp75 or Mfn2 silencing decreased cellular cholesterol content and enhanced triglyceride secretion in ApoB100 lipoproteins, while their overexpression led to reverse effects. Cellular phosphatidylcholine/phosphatidylethanolamine ratio was decreased only upon overexpression of the proteins, potentially contributing to altered ApoB100 assembly and secretion. Despite the opposite differences, both silencing and overexpression of Grp75 or Mfn2 induced triglyceride storage, although a fatty acid challenge was required to express the alteration upon protein silencing. Among the mechanisms potentially involved in this phenotype, ER stress was closely associated with altered triglyceride metabolism after Grp75 or Mfn2 overexpression, while blunted mitochondrial FA oxidation capacity may be the main defect causing triglyceride accumulation upon Grp75 or Mfn2 silencing. Further studies are required to decipher the link between modulation of Grp75 or Mfn2 expression, change in MAM integrity and alteration of cholesterol content of the cell.In conclusion, Grp75 or Mfn2 silencing and overexpression in Huh7 cells contribute to altering MAM integrity and cholesterol storage in opposite directions, but all promote triglyceride accumulation through distinct cellular pathways. This study also highlights that besides Mfn2, Grp75 could play a central role in hepatic lipid and cholesterol metabolism in obesity and NAFLD.  相似文献   

3.
Gao  Cao  Xu  Yan-Jie  Qi  Lei  Bao  Ya-fei  Zhang  Lei  Zheng  Liang 《Cell biology and toxicology》2022,38(5):825-845
Background

Circular RNA of vimentin (circ-VIM) is a predictor for poor prognosis of acute myeloid leukemia, but we had little information on its function in esophageal cancer (EC). Here we examined the effects of circ-VIM together with sevoflurane on immune escape and multiple oncogenic activities of EC.

Methods

Bioinformatic tools, luciferase assay, and RNA immunoprecipitation were used to examine regulations between circ-VIM, miR-124-3p (miR-124), and PD-L1. CCK-8, wound healing, and Transwell assays were used to measure cell proliferation, migration, and invasion, respectively. The impacts of EC cells on cytotoxicity, proliferation, and apoptosis of CD8+ T cells were examined using LDH assay, CFSE staining, and Annexin V/PI staining, respectively. The in vivo tumorigenesis and lung metastases were assessed using xenograft model and tail vein injection of EC cells.

Results

Significant upregulation of circ-VIM and PD-L1 and downregulation of miR-124 were detected in EC tissues or cells. Circ-VIM sponged miR-124 and released its suppression on the downstream target PD-L1. Sevoflurane, independent of circ-VIM, also upregulated miR-124 to lower PD-L1 expression. By modulating miR-124/PD-L1 axis, silencing circ-VIM and applying sevoflurane both inhibited immune escape and multiple oncogenic activities of EC in vitro, and suppressed xenograft growth and lung metastases in vivo. The inactivation of Ras/ERK signaling pathway was involved in suppression of malignant phenotypes by silencing circ-VIM and sevoflurane treatment.

Conclusions

Silencing circ-VIM and applying sevoflurane, by separately regulating miR-124/PD-L1 axis, presented synergistic effects in inhibiting immune escape and multiple malignant phenotypes of EC cells.

Graphical abstract
  相似文献   

4.
The outer mitochondrial membrane protein VDAC interacts with the ER protein IP3R via chaperone Grp75 to form a molecular complex that couples mitochondria to the ER and contributes to functional mitochondria-ER contacts (MERCs), essential for efficient calcium (Ca2+) transfer. A new study by Liu et al. identifies the PD protein DJ-1 as a component of the IP3R-Grp75-VDAC complex. DJ-1 ablation impairs mitochondria-ER association and Ca2+ crosstalk, and impacts the stability of the trio.  相似文献   

5.
The endoplasmic reticulum (ER) and mitochondria are interconnected intracellular organelles with vital roles in the regulation of cell signaling and function. While the ER participates in a number of biological processes including lipid biosynthesis, Ca2+ storage and protein folding and processing, mitochondria are highly dynamic organelles governing ATP synthesis, free radical production, innate immunity and apoptosis. Interplay between the ER and mitochondria plays a crucial role in regulating energy metabolism and cell fate control under stress. The mitochondria-associated membranes (MAMs) denote physical contact sites between ER and mitochondria that mediate bidirectional communications between the two organelles. Although Ca2+ transport from ER to mitochondria is vital for mitochondrial homeostasis and energy metabolism, unrestrained Ca2+ transfer may result in mitochondrial Ca2+ overload, mitochondrial damage and cell death. Here we summarize the roles of MAMs in cell physiology and its impact in pathological conditions with a focus on cardiovascular disease. The possibility of manipulating ER-mitochondria contacts as potential therapeutic approaches is also discussed.Subject terms: Cardiovascular diseases, Cardiomyopathies  相似文献   

6.
Sarcoplasmic/endoplasmic reticulum (ER) Ca2+ is the most abundant store of intracellular Ca2+, and its release is an important trigger of physiological and cell death pathways. Previous work in our laboratory revealed the importance of ER Ca2+ in toxicant-induced renal proximal tubular cell (RPTC) death. The purpose of this study was to evaluate the use of confocal microscopy and Fluo5F, a low affinity Ca2+ indicator, to directly monitor changes in RPTC ER Ca2+. Fluo5F staining reflected ER Ca2+, resolved ER structure, and showed no colocalization with tetramethyl rhodamine methyl ester (TMRM), a marker of mitochondrial membrane potential. Thapsigargin, an ER Ca2+ pump inhibitor, decreased ER fluorescence by 30% and 55% at 5 and 15 min, respectively, whereas A23187, a Ca2+ ionophore caused more rapid ER Ca2+ release (55% and 75% decrease in fluorescence at 5 and 15 min).Carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP), a mitochondrial uncoupler, added at the end of the experiment, further decreased ER fluorescence after thapsigargin treatment, revealing that thapsigargin did not release all ER Ca2+. In contrast, FCCP did not decrease ER fluorescence after A23187 treatment, suggesting complete ER Ca2+ release. ER Ca2+ release in response to A23187 or thapsigargin resulted in a modest but significant decrease in mitochondrial membrane potential. These data provide evidence that confocal microscopy and Fluo5F are useful and effective tools for directly monitoring ER Ca2+ in live cells.  相似文献   

7.
Shin  Ji-Ae  Kim  Lee-Han  Ryu  Mi Heon  Choi  So-Young  Jin  Bohwan  Lee  WonWoo  Jung  Yun Chan  Ahn  Chi-Hyun  Ahn  Min-Hye  Hong  Kyoung-Ok  Swarup  Neeti  Chawla  Kunal  Kang  Se Chan  Hong  Seong Doo  Cho  Sung-Dae 《Cell biology and toxicology》2022,38(1):147-165

Abnormal expression of claudin-1 (CLDN1) has important roles in carcinogenesis and metastasis in various cancers. The role of CLDN1 in human oral squamous cell carcinoma (OSCC) remains unknown. Here, we report the functional role of CLDN1 in metastasis of human OSCC, as a potential target regulated by withaferin A. From gene expression profiling with microarray technology, we found that the majority of notable differentially expressed genes were classified into migration/invasion category. Withaferin A impaired the motility of human OSCC cells in vitro and suppressed metastatic nodule formation in an in vivo metastasis model, both associated with reduced CLDN1. CLDN1 overexpression enhanced metastatic nodule formation in vivo, resulting in severe metastatic lesions in lung tissue. Moreover, CLDN1 expression was positively correlated to lymphatic metastasis in OSCC patients. The impaired motility of human OSCC cells upon withaferin A treatment was restored by CLDN1 overexpression. Furthermore, upregulation of let-7a induced by withaferin A was inversely correlated to CLDN1 expression. Overall, these give us an insight into the function of CLDN1 for prognosis and treatment of human OSCC, substantiating further investigation into the use of withaferin A as good anti-metastatic drug candidate.

Graphical abstract
  相似文献   

8.
Incretin GLP-1 has important metabolic effects on several tissues, mainly through the regulation of glucose uptake and usage. One mechanism for increasing cell metabolism is modulating endoplasmic reticulum (ER)–mitochondria communication, as it allows for a more efficient transfer of Ca2+ into the mitochondria, thereby increasing activity. Control of glucose metabolism is essential for proper vascular smooth muscle cell (VSMC) function. GLP-1 has been shown to produce varied metabolic actions, but whether it regulates glucose metabolism in VSMC remains unknown. In this report, we show that GLP-1 increases mitochondrial activity in the aortic cell line A7r5 by increasing ER–mitochondria coupling. GLP-1 increases intracellular glucose and diminishes glucose uptake without altering glycogen content. ATP, mitochondrial potential and oxygen consumption increase at 3 h of GLP-1 treatment, paralleled by increased Ca2+ transfer from the ER to the mitochondria. Furthermore, GLP-1 increases levels of Mitofusin-2 (Mfn2), an ER-mitochondria tethering protein, via a PKA-dependent mechanism. Accordingly, PKA inhibition and Mfn2 down-regulation prevented mitochondrial Ca2+ increases in GLP-1 treated cells. Inhibiting both Ca2+ release from the ER and Ca2+ entry into mitochondria as well as diminishing Mfn2 levels blunted the increase in mitochondrial activity in response to GLP-1. Altogether, these results strongly suggest that GLP-1 increases ER–mitochondria communication in VSMC, resulting in higher mitochondrial activity.  相似文献   

9.
Mfn2 is a mitochondrial fusion protein with bioenergetic functions implicated in the pathophysiology of neuronal and metabolic disorders. Understanding the bioenergetic mechanism of Mfn2 may aid in designing therapeutic approaches for these disorders. Here we show using endoplasmic reticulum (ER) or mitochondria‐targeted Mfn2 that Mfn2 stimulation of the mitochondrial metabolism requires its localization in the ER, which is independent of its fusion function. ER‐located Mfn2 interacts with mitochondrial Mfn1/2 to tether the ER and mitochondria together, allowing Ca2+ transfer from the ER to mitochondria to enhance mitochondrial bioenergetics. The physiological relevance of these findings is shown during neurite outgrowth, when there is an increase in Mfn2‐dependent ER‐mitochondria contact that is necessary for correct neuronal arbor growth. Reduced neuritic growth in Mfn2 KO neurons is recovered by the expression of ER‐targeted Mfn2 or an artificial ER‐mitochondria tether, indicating that manipulation of ER‐mitochondria contacts could be used to treat pathologic conditions involving Mfn2.  相似文献   

10.
Sphingosine kinase 1 (SK1) converts sphingosine to the bioactive lipid sphingosine 1-phosphate (S1P). S1P binds to G-protein-coupled receptors (S1PR1–5) to regulate cellular events, including Ca2+ signaling. The SK1/S1P axis and Ca2+ signaling both play important roles in health and disease. In this respect, Ca2+ microdomains at the mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are of importance in oncogenesis. Mitofusin 2 (MFN2) modulates ER-mitochondria contacts, and dysregulation of MFN2 is associated with malignancies. We show that overexpression of SK1 augments agonist-induced Ca2+ release from the ER resulting in increased mitochondrial matrix Ca2+. Also, overexpression of SK1 induces MFN2 fragmentation, likely through increased calpain activity. Further, expressing putative calpain-cleaved MFN2 N- and C-terminal fragments increases mitochondrial matrix Ca2+ during agonist stimulation, mimicking the SK1 overexpression in cells. Moreover, SK1 overexpression enhances cellular respiration and cell migration. Thus, SK1 regulates MFN2 fragmentation resulting in increased mitochondrial Ca2+ and downstream cellular effects.  相似文献   

11.
12.

Due to their neurodevelopmental toxicity, flame retardants (FRs) like polybrominated diphenyl ethers are banned from the market and replaced by alternative FRs, like organophosphorus FRs, that have mostly unknown toxicological profiles. To study their neurodevelopmental toxicity, we evaluated the hazard of several FRs including phased-out polybrominated FRs and organophosphorus FRs: 2,2′,4,4′-tetrabromodiphenylether (BDE-47), 2,2′,4,4′,5-pentabromodiphenylether (BDE-99), tetrabromobisphenol A, triphenyl phosphate, tris(2-butoxyethyl) phosphate and its metabolite bis-(2-butoxyethyl) phosphate, isodecyl diphenyl phosphate, triphenyl isopropylated phosphate, tricresyl phosphate, tris(1,3-dichloro-2-propyl) phosphate, tert-butylphenyl diphenyl phosphate, 2-ethylhexyl diphenyl phosphate, tris(1-chloroisopropyl) phosphate, and tris(2-chloroethyl) phosphate. Therefore, we used a human cell–based developmental neurotoxicity (DNT) in vitro battery covering a large variety of neurodevelopmental endpoints. Potency according to the respective most sensitive benchmark concentration (BMC) across the battery ranked from <1 μM (5 FRs), 1<10 μM (7 FRs) to the >10 μM range (3 FRs). Evaluation of the data with the ToxPi tool revealed a distinct ranking (a) than with the BMC and (b) compared to the ToxCast data, suggesting that DNT hazard of these FRs is not well predicted by ToxCast assays. Extrapolating the DNT in vitro battery BMCs to human FR exposure via breast milk suggests low risk for individual compounds. However, it raises a potential concern for real-life mixture exposure, especially when different compounds converge through diverse modes-of-action on common endpoints, like oligodendrocyte differentiation in this study. This case study using FRs suggests that human cell–based DNT in vitro battery is a promising approach for neurodevelopmental hazard assessment and compound prioritization in risk assessment.

Graphical abstract
  相似文献   

13.

In utero hyperglycemia has consequences on future outcomes in the offsprings. We had earlier shown that in utero hyperglycemia impacts proteoglycans/glycosaminoglycans, one of the key molecules involved in brain development. Hypothalamic HSPGs such as syndecan-1 and syndecan-3 are well known for their involvement in feeding behavior. Therefore, studies were carried out to determine the effect of maternal hyperglycemia on the expression of HSPGs in the hypothalamus of offspring brain. Results revealed increased protein abundance of Syndecan-1 and -3 as well as glypican-1 in postnatal adults from hyperglycemic mothers. This was associated with increased hyperphagia and increased expression of Neuropeptide Y. These results indicate the likely consequences on offsprings exposed to in utero hyperglycemia on its growth.

Graphical abstract
  相似文献   

14.
The endoplasmic reticulum (ER) and mitochondria are structurally connected with each other at specific sites termed mitochondria-associated membranes (MAMs). These physical links are composed of several tethering proteins and are important during varied cellular processes, such as calcium homeostasis, lipid metabolism and transport, membrane biogenesis, and organelle remodeling. However, the attributes of specific tethering proteins in these cellular functions remain debatable. Here, we present data to show that one such tether protein, glucose regulated protein 75 (GRP75), is essential in increasing ER–mitochondria contact during palmitate-induced apoptosis in pancreatic insulinoma cells. We demonstrate that palmitate increased GRP75 levels in mouse and rat pancreatic insulinoma cells as well as in mouse primary islet cells. This was associated with increased mitochondrial Ca2+ transfer, impaired mitochondrial membrane potential, increased ROS production, and enhanced physical coupling between the ER and mitochondria. Interestingly, GRP75 inhibition prevented these palmitate-induced cellular aberrations. Additionally, GRP75 overexpression alone was sufficient to impair mitochondrial membrane potential, increase mitochondrial Ca2+ levels and ROS generation, augment ER–mitochondria contact, and induce apoptosis in these cells. In vivo injection of palmitate induced hyperglycemia and hypertriglyceridemia, as well as impaired glucose and insulin tolerance in mice. These animals also exhibited elevated GRP75 levels accompanied by enhanced apoptosis within the pancreatic islets. Our findings suggest that GRP75 is critical in mediating palmitate-induced ER–mitochondrial interaction leading to apoptosis in pancreatic islet cells.  相似文献   

15.
Persistent poly (ADP-ribose) polymerase 1 (PARP-1) activation has proven detrimental and can lead to PARP-1-dependent cell death. Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) serve as essential hubs for many biological pathways, such as autophagy and mitochondria fission and fusion. This study aimed to alleviate the effects of hydrogen peroxide (H2O2)-induced persistent PARP-1 activation and MAM dysregulation by the usage of a PARP-1 inhibitor. Results showed that receptor-interacting protein kinase (RIPK) 1 inhibitor (necrostatin-1) and PARP-1 inhibitor (olaparib) protected retinal precursor cells from H2O2-induced death, while a pan-caspase inhibitor (Z-VAD-FMK) failed to protect R28 cells. Olaparib also alleviated H2O2-induced MAM dysregulation, as evidenced by decreased VDAC1/ITPR3 interactions and reduced mitochondrial membrane potential collapse. Additionally, olaparib also inhibited H2O2-induced autophagy. Inhibiting autophagic flux increased MAM signaling under both normal and oxidative conditions. Furthermore, H2O2 treatment caused a reduction in the protein level of mitofusin-2 (MFN2) in a dose- and time-dependent manner. Mfn2 knockdown was found to further magnify MAM dysregulation and mitochondrial dysfunction under normal and oxidative conditions. Mfn2 overexpression surprisingly enhanced H2O2-induced MAM signaling and failed to rescue H2O2-induced mitochondrial dysfunction. These results indicate that MAMs probably serve as a membrane source for oxidative stress-associated autophagy. MAM dysregulation also contributed to H2O2-induced PARP-1-dependent cell death. However, more studies are required to decipher the link between the modulation of Mfn2 expression, changes in MAM integrity, and alterations in mitochondrial performances.  相似文献   

16.
Wang  Zhiyu  Liu  Liang  Du  Yuankun  Mi  Yuan  Wang  Lei 《Cell biology and toxicology》2021,37(5):715-729
Background

It has been widely reported that long non-coding RNAs (lncRNAs) could affect the varieties of tumor response to radiotherapy. LncRNA HNF1A-AS1 is transcribed from HNF1A gene cluster’s antisense strand. This work focused on the mechanism of how HNF1A-AS1 participated in the radiosensitivity of non-small cell lung cancer (NSCLC).

Methods

The mRNA or protein expression of HNF1A-AS1, miR-92a-3p MAP2K4, and JNK in NSCLC cells and tissues was detected by qRT-PCR or western blotting. RNA immunoprecipitation (RIP) detection and luciferase reporting system were used to evaluate the relationship between HNFA-AS1 and miR-92a-3p or between miR-92a-3p and MAP2K4. Flow cytometry assays, colony formation, and MTT were performed to analyze the function changes in A549 and Calu-1 cells. The rescue experiment was also conducted to explore the underlying mechanisms.

Results

HNF1A-AS1 was investigated in NSCLC cells and tissues and highly related to the advanced pathological stage. HNF1A-AS1 bound with miR-92a-3p, which was downregulated in NSCLC. It showed that miR-92a-3p was negatively related to HNF1A-AS1. Knockdown of HNF1A-AS1 impacted most cell biological behaviors in NSCLC cells, including restricting the proliferation and aggravating apoptosis. Furthermore, knockdown of HNF1A-AS1 dramatically enhanced radiotherapy sensitivity of NSCLC. Moreover, miR-92a-3p was found to target MAP2K4 and could reduce MAP2K4 expression. Inhibition of HNF1A-AS1 elevated radiotherapy sensitivity and retarded the progression of NSCLC cells, followed by decreasing expression levels of MAP2K4. Besides, MAP2K4 mimic rescued the si-HNF1A-AS1 effects on the biological behavior of NSCLC cells.

Conclusion

HNF1A-AS1 is highly expressed in NSCLC. MiR-92a-3p is the target gene of HNF1A-AS1 and involved in tumor progression by regulating the MAP2K4/JNK pathway. HNF1AS1/miR-92a-3p/MAP2K4 axis plays important roles in radiotherapy resistance of NSCLC.

Graphical abstract
  相似文献   

17.
Background: Control of ER-mitochondrial Ca2+ fluxes is a critical checkpoint to determine cell fate under stress. The 75-kDa glucose-regulated protein (GRP75) is a key tether protein facilitating mitochondria-associated ER membrane (MAM) formation through the IP3R-GRP75-VDAC1 complex. Although GRP75 contributes to cisplatin (CP)-resistance of ovarian cancer (OC), the underlying mechanisms are not clear.Methods: CP-resistant and -sensitive OC cell lines with GRP75 stable modulation were established. Confocal, PLA, co-IP, and TEM analysis were utilized to detect MAM integrity. Live cell Ca2+ imaging, intracellular ATP, ROS, and NAD+ assays were utilized to investigate ER-to-mitochondrial Ca2+ transfer and mitochondrial bioenergetics. Western blot, flow cytometry, CCK-8, Δψm, and mPTP assays were utilized to examine apoptotic cell death. Bioinformatics, patient''s specimens, and immunohistochemistry were conducted to obtain the clinical relevance for GRP75-facilitated MAM formation.Results: GRP75-faciliated MAM formation was enriched in CP-resistant OC cells. CP-exposure only increased MAM formation in CP-sensitive OC cells, and enrichment of GRP75 and VDAC1 at MAMs is indispensable to CP-resistance. Diminishing MAM integrity by GRP75-deficiency reduced ER-to-mitochondria Ca2+ transfer, accelerated CP-induced mitochondrial dysfunction, provoked catastrophic ROS, and enhanced CP-triggered apoptotic cell death in OC cells. Clinical investigations confirmed the enrichment of GRP75-faciliated MAM formation in relapsed OC patients, and such enrichment was associated with the CP-resistance phenotype.Conclusion: GRP75-overexpression confers CP-resistance by distinctively managing MAM-facilitated Ca2+ fluxes and the pro-survival ROS signal, whereas GRP75-deficiency induces cell death via bioenergetic crisis and apoptotic ROS accumulation in OC cells. Our results show that GRP75-faciliated MAM formation is a potential target to overcome CP-resistance of OC.  相似文献   

18.
19.

Silver (Ag) nanoparticles (NPs) and Ag nanorings (NRs) have been fabricated. Due to the inherent features of Ag NPs and Ag NRs, strong electromagnetic (EM) near-field distributions were expected, and hence surface-enhanced Raman scattering (SERS) activity was demonstrated. Size and interparticle gaps distribution of Ag NPs were estimated to be 48.14?±?10.14 nm and 14.11?±?5.24 nm respectively along with estimated coverage density of?~?4?×?1010 cm?2. On the other hand, Ag NRs were found to consist of Ag clusters and of various shapes and sizes, instead of a perfect ring structure. High-resolution FESEM revealed that the individual constituent clusters were different from each other, particularly in terms of size and shape in addition to the cases how such clusters were connected to form the edge of the NR. However, the coverage density of Ag NRs was estimated to be?~?5.6?×?106 cm?2. Based on the scenarios, it was speculated that the local EM near-field distribution would excel and thus led to enhanced SERS signals. SERS enhancement of R6G was estimated as high as 2.18?×?104 and 2.78?×?104 at 610 cm?1 (C???C ring bending mode in phenyl rings) for Ag NPs and Ag NRs respectively. FDTD analysis was carried out to elucidate the EM near-field distributions.

Graphical abstract

Ag NPs and Ag NRs from an ultrathin layer of Ag on ZnO/Glass (middle pane) confirming high EF of R6G adsorbed on Ag NRs (right pane) and Ag NPs (left pane) supported by corresponding EM near-field distributions.

  相似文献   

20.

Non-invasive microstructural characterisation has the potential to determine the stability, or lack thereof, of atherosclerotic plaques and ultimately aid in better assessing plaques’ risk to rupture. If linked with mechanical characterisation using a clinically relevant imaging technique, mechanically sensitive rupture risk indicators could be possible. This study aims to provide this link–between a clinically relevant imaging technique and mechanical characterisation within human atherosclerotic plaques. Ex vivo diffusion tensor imaging, mechanical testing, and histological analysis were carried out on human carotid atherosclerotic plaques. DTI-derived tractography was found to yield significant mechanical insight into the mechanical properties of more stable and more vulnerable microstructures. Coupled with insights from digital image correlation and histology, specific failure characteristics of different microstructural arrangements furthered this finding. More circumferentially uniform microstructures failed at higher stresses and strains when compared to samples which had multiple microstructures, like those seen in a plaque cap. The novel findings in this study motivate diagnostic measures which use non-invasive characterisation of the underlying microstructure of plaques to determine their vulnerability to rupture.

Graphic abstract
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号