首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Honey bee foragers use a "waggle dance" to inform nestmates about direction and distance to locations of attractive food. The sound and air flows generated by dancer's wing and abdominal vibrations have been implicated as important cues, but the decoding mechanisms for these dance messages are poorly understood. To understand the neural mechanisms of honey bee dance communication, we analyzed the anatomy of antenna and Johnston's organ (JO) in the pedicel of the antenna, as well as the mechanical and neural response characteristics of antenna and JO to acoustic stimuli, respectively. The honey bee JO consists of about 300-320 scolopidia connected with about 48 cuticular "knobs" around the circumference of the pedicel. Each scolopidium contains bipolar sensory neurons with both type I and II cilia. The mechanical sensitivities of the antennal flagellum are specifically high in response to low but not high intensity stimuli of 265-350 Hz frequencies. The structural characteristics of antenna but not JO neurons seem to be responsible for the non-linear responses of the flagellum in contrast to mosquito and fruit fly. The honey bee flagellum is a sensitive movement detector responding to 20 nm tip displacement, which is comparable to female mosquito. Furthermore, the JO neurons have the ability to preserve both frequency and temporal information of acoustic stimuli including the "waggle dance" sound. Intriguingly, the response of JO neurons was found to be age-dependent, demonstrating that the dance communication is only possible between aged foragers. These results suggest that the matured honey bee antennae and JO neurons are best tuned to detect 250-300 Hz sound generated during "waggle dance" from the distance in a dark hive, and that sufficient responses of the JO neurons are obtained by reducing the mechanical sensitivity of the flagellum in a near-field of dancer. This nonlinear effect brings about dynamic range compression in the honey bee auditory system.  相似文献   

2.
The Johnston's organ of the female mosquito, Aedes aegypti, has only three types of scolopidia: types A, B, and C. It lacks the type D scolopidium of the male's organ. The basic structure and the location of each type in the female are similar to the counterparts in the male's organ. A single scolopidium is composed of a scolopale cell, an envelope cell, a long cap, and a third sheath, in addition to the two electron-dense scolopales produced inside the cytoplasm of two satellite cells. Each scolopidium has either two (type A) or three (type B) sensory cells. A type C scolopidium, mononematic in contrast to the amphinematic types A and B scolopidia, has two sensory cells, a microtubular cap cell, two microtubular accessory cells, and a scolopale cell with an intracellular scolopale. Even though the female Johnston's organ has all the components of the male's organ except for the single type D scolopidium, the female's organ shows relatively poorer organization and development. The female has a smaller and thinner basal plate, shorter and thicker prongs, fewer type A sensory cells, and a shorter flagellar flange, in addition to the overall smaller size of the pedicel.The probable function of each scolopidial type is discussed, especially in connexion with the probable identification of a single auditory sensillum in the male.  相似文献   

3.

Background

Myosin VIIA (MyoVIIA) is an unconventional myosin necessary for vertebrate audition [1][5]. Human auditory transduction occurs in sensory hair cells with a staircase-like arrangement of apical protrusions called stereocilia. In these hair cells, MyoVIIA maintains stereocilia organization [6]. Severe mutations in the Drosophila MyoVIIA orthologue, crinkled (ck), are semi-lethal [7] and lead to deafness by disrupting antennal auditory organ (Johnston''s Organ, JO) organization [8]. ck/MyoVIIA mutations result in apical detachment of auditory transduction units (scolopidia) from the cuticle that transmits antennal vibrations as mechanical stimuli to JO.

Principal Findings

Using flies expressing GFP-tagged NompA, a protein required for auditory organ organization in Drosophila, we examined the role of ck/MyoVIIA in JO development and maintenance through confocal microscopy and extracellular electrophysiology. Here we show that ck/MyoVIIA is necessary early in the developing antenna for initial apical attachment of the scolopidia to the articulating joint. ck/MyoVIIA is also necessary to maintain scolopidial attachment throughout adulthood. Moreover, in the adult JO, ck/MyoVIIA genetically interacts with the non-muscle myosin II (through its regulatory light chain protein and the myosin binding subunit of myosin II phosphatase). Such genetic interactions have not previously been observed in scolopidia. These factors are therefore candidates for modulating MyoVIIA activity in vertebrates.

Conclusions

Our findings indicate that MyoVIIA plays evolutionarily conserved roles in auditory organ development and maintenance in invertebrates and vertebrates, enhancing our understanding of auditory organ development and function, as well as providing significant clues for future research.  相似文献   

4.
Summary An electron microscopical study of aphid antennal sensilla has revealed two types of trichoid sensilla. Type I, innervated by a single neuron is mechanoreceptive; type II, innervated by three to five neurons is both mechanoreceptive and chemoreceptive with possibly a third function. Johnston's organ in the pedicel comprises a peripheral ring of scolopidia inserted into the joint with the flagellum; two non-peripheral groups of scolopidia lie in the lumen with attachment points in the wall of the third segment. The fine structure of a campaniform sensillum on the pedicel is described together with two homologous and previously unknown sense organs at the joint between the fifth and sixth antennal segments. An unusually placed scolopidium in the lumen of the sixth segment has also been found. The function of this scolopidium is unknown but Johnston's organ, the campaniform sensillum and joint receptors are suggested to act as antennal proprioceptors.The authors thank the Long Ashton Research Station, Bristol for use of the SEM facilities. A.K. Bromley gratefully acknowledges the tenure of a S.R.C. CASE Studentship and thanks Professor L.H. Finlayson for research facilities  相似文献   

5.
The fine structure of Johnston's organ in the pine sawfly, Neodiprion sertifer, was studied by electron microscopy to determine if there exists a dimorphism in this organ corresponding to the sexual dimorphism in antennal shape and surface area. The organ is made up of scolopidia that are ultrastructurally similar to those of other insects. The scolopidia, identical in both sexes, comprise three sensory cells bearing two types of sensory processes: Two are shorter and smaller in diameter than the third, which extends into the cuticle of the membrane connecting pedicel and flagellum and terminates at an epicuticular invagination. The dendrites and sensory processes are surrounded by two types of enveloping (glial) cells-a scolopale cell and an attachment cell. Other enveloping cells occur at different levels of the scolopidium. Sexual dimorphism is evident only in the numbers of scolopidial groups: Males have more groups with fewer scolopidia, but both sexes possess about the same total number of scolopidia.  相似文献   

6.
The cuticular fine structure of the antenna in Mantophasmatodea (Austrophasmatidae: Hemilobophasma montaguense, Austrophasma gansbaaiense) is described based on SEM images. The armature of sensilla (=s.) on the basiflagellum (14 basal flagellomeres, the distal ones of which are subdivided) and distiflagellum (7 distal flagellomeres) differs strongly. A basiflagellomere has a sporadic vestiture of prominent s. chaetica B as well as distal s. scolopidia and scattered s. coeloconica. The distiflagellum also bears scattered s. chaetica B and s. coeloconica but is also densely covered with sensilla of various other types: numerous s. trichodea and s. basiconica, sporadic s. coelocapitula, and a probably new type of branched sensilla; the distiflagellum is probably the main sensory region, including gustatory and olfactory chemoreception, mechanoreception, and hygroreception. The scape and pedicel also bear s. chaetica B, and s. chaetica A arranged in 4 (scape) or 2 (pedicel) hair-plates. Terminal s. campaniformia are only found on the pedicel. A ‘dark spot’ is present apically on distiflagellomeres 6 (as reported previously) and 1. The two spots are of similar structure and are possibly associated with glands; each comprises a complicated external aperture and a larger internal pouch enclosing a cavity; projections protrude from the pouch walls into the cavity. The surface structure of the basiflagellomeres shows differences that are possibly species specific. An overview is given on antennal apomorphies in Mantophasmatodea.  相似文献   

7.
The pyrophilous Australian “fire-beetle” Merimna atrata approaches forest fires and possesses abdominal infrared (IR) organs. Each round IR organ is centrally innervated by a sensory complex showing two different units: one thermoreceptive multipolar neuron and one mechanosensitive chordotonal organ (CO) consisting of two scolopidia. We investigated the CO and found that the scolopidia are mononematic (the scolopale cap remains below the cuticle) and monodynal (one sensory cell per scolopidium). The dendrites of the scolopidia extend anteriorly and are attached by their caps to the cuticle about in the middle of the absorbing area. Structural features at the site of innervation suggest that the CO measures minute thermal deformations caused by IR absorption. Therefore, an additional photomechanic component which has been described for the IR receptors of pyrophilous jewel beetles of the genus Melanophila can be proposed for the IR organ of Merimna. Because scolopidia can measure displacements in the subnanometer range, the CO may enhance the sensitivity of the IR organ. The sensory complex of the Merimna IR organ shows the same units and similar cuticular modifications as the tympanal organs of some noctuid moths. Therefore, a parallel evolution of insect ears and the Merimna IR organ is discussed.  相似文献   

8.
Although in Moraceae the presence of laticifers is considered to be a synapomorphy, little is known about the distribution and morphology of this type of secretory structure in the reproductive organs of its species. Ficus, the largest genus of Moraceae, is characterized by an inflorescence known as syconium and by an obligate mutualistic interaction with pollinating wasps. The objectives of the present study were to evaluate the distribution and morphology of laticifers in syconia of 36 species belonging to different Ficus sections and to survey traits of taxonomic and adaptive value for the group. Syconia containing flowers in a receptive state were collected, fixed and processed for anatomical analysis. All species studied have branched laticifers distributed in the syconium receptacle, in the ostiolar bracts and in the pedicel of staminate flowers. Almost all species show laticifers in the pedicel of shorter-styled flowers. Laticifers also occur in the pedicel of longer-styled flowers in most Ficus sections, except F. curtipes (Conosycea section) and more than 75% of the studied species of the Americanae section. Laticifers are observed in the sepals of 25 of the 36 species studied and occasionally in the pistil. The presence of laticifers in the pedicel of shorter-style flowers and its absence in the pistil suggest that the distribution of this secretory structure in the fig flower was selected by pressures imposed by the fig-fig wasp mutualism. The laticifers in the pedicel of shorter-styled flowers may confer protection to the developing wasp larvae against natural enemies. However, the absence of laticifers in the pistil of most Ficus species studied was probably selected by the mutualistic relationship with the agaonid pollinating wasps since the latex could interfere with oviposition through the style, with the larval development of the pollinating fig wasps, and the emergence of pollinator offspring from their galls.  相似文献   

9.
Summary The development of neurons possibly related to the outgrowth of axons from the labial palp-pit organ was studied in Pieris rapae. Serial sections of six successive stages between pupation and emergence of the imago were examined with the electron microscope. At pupation the palp contains an apical scolopidial organ (ASO) and cellular strands connected to it. The ASO consists of three type-1 scolopidia, which are characterized by the presence of a ciliary 9 × 2 + 0 pattern throughout the dendritic outer segment and a ciliary dilation beneath the cap. The scolopidia show two special features: (i) the dendritic outer segments reach beyond the cap, and (ii) an intricate junctional complex develops between the dendritic inner segments and the scolopale cells. The cellular strands comprise two types of cells: (1) bipolar cells regarded as neurons due to their cytological features, and (2) enveloping cells, which are wrapped around the bipolar cells. The strands degenerate about 10 h after pupation. The sensory cells of the ASO degenerate consecutively between 28 h and 130 h after pupation. However, their enveloping cells survive and endure in the imago, which emerges about 160 h after pupation. An ASO similarly lacking sensory cells was observed in imagines of Pieris brassicae. It is hypothesized that the ASO and the bipolar neurons of the strands play a role in pathfinding of the axons of the labial palp-pit organ.Supported by the Deutsche Forschungsgemeinschaft (SFB 4/G1)  相似文献   

10.
The structure of the complex tibial organs in the fore-, mid-, and hindlegs of the East Asian bushcricket Gampsocleis gratiosa (Tettigoniidae, Decticinae) is described comparatively. In each leg the tibial organs consist of three scolopale organs: the subgenual organ, the intermediate organ, and the crista acoustica. Only in the forelegs are the tibial organs differentiated as tympanal organs, and sound transmitting structures (acoustic trachea, tympana, and tympanal covers) are present. The morphology of the tracheae in the mid- and hindlegs is significantly different from that found in the forelegs. The number of scolopidia in the subgenual organ is highest in the midleg and lowest in the foreleg; in the intermediate organ the number is also highest in the midleg, and the fore- and hindleg contain 40% fewer scolopidia. In the crista acoustica, the number of scolopidia decreases from, the fore- to the mid- and hindlegs. The morphology and the dimensions of the scolopidia and the attachment structures within the crista acoustica of the mid- and hindlegs differ strongly from those in the foreleg. The results indicate that, in addition to the presence of a sound transmitting system, the specific differentiations within the crista acoustica are important for the high auditory sensitivity of the tibial organs in the forelegs. © 1994 Wiley-Liss, Inc.  相似文献   

11.
The tympanal organ of the bushcricket Mecopoda elongata emits pronounced distortion-product otoacoustic emissions (DPOAEs). Their characteristics are comparable to those measured in other insects, such as locusts and moths, with the 2f1–f2 emission being the most prominent one. Yet the site of their generation is still unclear. The spatial separation between the sound receiving spiracle and the hearing organ in this species allows manipulations of the sensory cells without interfering with the acoustical measurements. We tried to interfere with the DPOAE generation by pharmacologically influencing the tympanal organ using the insecticide pymetrozine. The compound appears to act selectively on scolopidia, i.e., the mechanosensor type characteristically constituting tympanal organs. Pymetrozine solutions were applied as closely as possible to the scolopidia via a cuticle opening in the tibia, distally to the organ. Applications of pymetrozine at concentrations between 10−3 and 10−7 M to the tympanal organ led to a pronounced and irreversible decrease of the DPOAE amplitudes.  相似文献   

12.
Summary The morphology of the complex tibial organs in the forelegs of two bushcricket species belonging to the Phaneropterinae and Decticinae (Tettigoniidae) is described comparatively. In both species the tibial organs are made up of the subgenual organ, the intermediate organ and the crista acustica; the latter are parts of the tympanal organs and serve as auditory receptors. The very thin tympana in the forelegs ofPholidoptera griseoaptera (Decticinae) are protected by tympanal covers whereas inLeptophyes punctatissima (Phaneropterinae) the tympana are thicker and fully exposed. The overall auditory sensitivity ofL. punctatissima is lower and the sensitivity maximum of the hearing threshold lies at higher frequencies compared toP. griseoaptera. The number of scolopidia in the three scolopale organs and the dimensions of parts of the sound conducting system differs in the two species. In the crista acustica ofL. punctatissima a higher number of scolopidia is distributed in a smaller range than inP. griseoaptera; the scolopidia are especially concentrated in the distal part. Morphometrical analyses indicate that the dimensions of the spiracles, the acoustic trachea and the tympana determine the overall auditory sensitivity and that the arrangement of the scolopidia and the dimensions of structures in the crista acustica affect the frequency tuning of the hearing threshold.  相似文献   

13.
Troglophilus neglectus (Gryllacridoidea, Raphidophoridae) is a nocturnal Ensifera which can be found in caves of Slovenia. The anatomy of the tibial organs in the fore-, mid-, and hindlegs, as well as the external morphology of the proximal fore-tibia and the prothoracic tracheal system, is described comparatively. In the prothorax and in the forelegs, no sound-conducting structures such as an acoustic trachea, enlarged spiracles, or tympana are developed. A group of 8–10 campaniform sensillae is located in the dorsal cuticle of the proximal tibia. In each leg, the tibial organ complex is built up by two scolopale organs, the subgenual organ and the intermediate organ; the structure and the number of scolopidia is similar in each leg. No structure resembling the crista acoustica is found. The subgenual organ contains around 30 scolopidia; the intermediate organ is subdivided into a proximal part containing 8-9 scolopidia and a distal part with 5–6 scolopidia. The two groups of scolopidia are not directly connected to the tracheal system. The tibial organs in the forelegs are insensitive to airborne sound, and they appear to be more primitive compared to those found in members of the Tettigoniidae and the Gwllidae. The results indicate that the complex tibial organs in all legs of T. neglectus are primarily vibrosensitive. © 1995 Wiley-Liss, Inc.  相似文献   

14.
Flavescence dorée (FD) is a grapevine disease that afflicts several wine production areas in Europe, from Portugal to Serbia. FD is caused by a bacterium, “Candidatus Phytoplasma vitis,” which is spread throughout the vineyards by a leafhopper, Scaphoideus titanus (Cicadellidae). After collection of S. titanus specimens from FD-contaminated vineyards in three different areas in the Piedmont region of Italy, we performed a survey to characterize the bacterial microflora associated with this insect. Using length heterogeneity PCR with universal primers for bacteria we identified a major peak associated with almost all of the individuals examined (both males and females). Characterization by denaturing gradient gel electrophoresis confirmed the presence of a major band that, after sequencing, showed a 97 to 99% identity with Bacteroidetes symbionts of the “Candidatus Cardinium hertigii” group. In addition, electron microscopy of tissues of S. titanus fed for 3 months on phytoplasma-infected grapevine plants showed bacterial cells with the typical morphology of “Ca. Cardinium hertigii.” This endosymbiont, tentatively designated ST1-C, was found in the cytoplasm of previtellogenic and vitellogenic ovarian cells, in the follicle cells, and in the fat body and salivary glands. In addition, cell morphologies resembling those of “Ca. Phytoplasma vitis” were detected in the midgut, and specific PCR assays indicated the presence of the phytoplasma in the gut, fat body and salivary glands. These results indicate that ST1-C and “Ca. Phytoplasma vitis” have a complex life cycle in the body of S. titanus and are colocalized in different organs and tissues.  相似文献   

15.
Summary The anatomy of the complex tibial organs in the pro-, meso- and metathoracic legs of adults and larvae of the bushcricketEphippiger ephippiger is described comparatively. The subgenual organ and the intermediate organ are differentiated in the same way in legs I, II and III; the anatomy of the crista acustica and the tracheal morphology are significantly different. The final number of scolopidia in the tibial organ of each leg is present at the time of hatching. In the subgenual organ, the number of scolopidia is the same in all legs; in the intermediate organ, and especially in the crista acustica, the number of scolopidia decreases from leg I to legs II and III. In the first larval instar, the morphology of the tibia, the course of the trachea and the anatomy of accessory structures are developed in the same way in each leg. The specific differentiations forming the auditory receptor organ in leg I, such as the acoustic trachea, the tympana and tympanal cavities, develop step by step in subsequent instars. The auditory threshold recorded from the tympanal nerve in the prothoracic leg of adults is remarkably lower than in the meso- and metathoracic legs. Morphometrical analyses of structures that are suggested to play a role in stimulus transduction on scolopidia of the crista acustica reveal significant differences in the three legs.  相似文献   

16.
The leafhopper Scaphoideus titanus is a vector of flavescence dorée phytoplasma, the causal agent of the most important grapevine yellow disease in European vineyards. Ten polymorphic microsatellite loci were developed from a genomic library enriched for AC and AG repeats. Levels of polymorphism were evaluated in 106 individuals from S. titanus European and American populations. An average of 16 alleles per locus was detected and the observed heterozygosity ranged from 0.141 to 0.813. Cross‐species amplification was successful in four other Cicadellidae species. These 10 microsatellites are valuable markers for population genetic and phylogeographical studies of S. titanus.  相似文献   

17.
Substrate vibratory information receptors are extensively studied in insects and spiders, however for water surface dwelling species little data is available. We studied the vibration receptive organs in tarsi of the water strider Aquarius paludum, using light, transmission and scanning electron microscopes, and recorded the neural activity of the organs in response to vibrational stimuli, which were afterwards analysed with a custom made spike sorting program.We found that the tarsal chordotonal organ has one set of three scoloparia: one in the tarsomere I and two in the tarsomere II, all of which consisted of a few scolopidia. The chordotonal organ clearly responded to vibratory stimulation. Furthermore, we found that a pair of large subapical emergent dorsal setae, which had been deemed mechanosensory by previous authors, are not so. In turn, four ventral subapical trichobothria that are in direct contact with the water surface during locomotion, proved to be mechanosensory. The anatomical and ultrastructural observations support these electro-physiological results.  相似文献   

18.
Adult and nymphal antennae of the cockroach, Leucophaea maderae, contain nine or more different morphological types of sense organs. There is no outwardly apparent sexual dimorphism in adult antennae. Nymphs are dificient in gross numbers of sensilla. Sense organs are classified morphologically by their similarity to known types of sensila and are assigned functions on this basis and preliminary electrophysiological data: Sensilla chaetica (A), thick-walled mechanoreceptive hairs in groups on the antennal base; S. chaetica (B), thick-walled setae which are tactile and probably chemoreceptive, occurring in the antennal base and flagellum; S. trichodea (A), thin-walled chemoreceptive hairs of the flagellum; S. trichodea (B), minute hairs on the scape and pedicel; S. basiconica, thin-walled chemoreceptive pegs, and S. coeloconica (?pit-pegs”?) of the flagellum; S. campaniformia and scolopidia, mechanoreceptors in the base and flagellum; plus Johnston's organ and/or connective chrodotonal organs in the pedicel. Calculations based on absolute counts of sensilla and their known innervation yield an estimate of about 3.3 × 104 sensilla and 105 cells per antenna.  相似文献   

19.
The morphology of pilidia ex gr. recurvatum from Peter the Great Bay (Sea of Japan) was studied by confocal laser scanning and transmission-electron microscopy. The studied pilidium larvae differ from pilidium recurvatum in lacking a posterior ciliary ring and by the presence of a caudal tuft. On this basis, pilidium prorecurvatum is proposed as a new name for the lavae. The apical organ of pilidium prorecurvatum is represented by a thickened epithelium, which consists of uniform columnar monociliary collar cells and is innervated by a pair of serotonergic intraepithelial neurons. The bodies of the serotonergic neurons are located outside of the apical organ, but occasional axons were found at the organ base. The rest of the pilidial epithelium is represented by flattened polygonal multiciliated cells with sparse microvilli; the bodies of two neurons lie in the helmet epithelium immediately adjacent to the apical organ. Morphologically, the apical organ of the pilidium corresponds well to that of other lophotrochozoan larvae, but their homology remains unclear.  相似文献   

20.
The dipteran parasitoids Therobia leonidei and Homotrixa alleni (Tachinidae) use acoustic cues to locate their calling tettigoniid (Ensifera, Orthoptera) hosts. The sexually dimorphic tympanal organs of both fly species are located at the prosternum. For comparison a homologous chordotonal organ in the non-hearing fly Phormia regina, Meigen (Phoridae) is also described. The scolopidial sense organs of the ears have approximately 180 sensory cells in Th. leonidei and 250 cells in H. alleni. Interspecific analysis indicates that the cell number and arrangement might be genus specific in Tachinidae. The mononematic scolopidia, each with one sensory cell, are of different sizes and insert at the tympanal membrane. Large scolopidial units (diameter of sensory cells up to 50 μm) extend longitudinally from the centre of the sensory organ towards the ligament, whereas small units (sensory cell diameter up to 10 μm) are arranged sequentially within the sensory organ. This arrangement is discussed to be a possible basis for frequency discrimination. The ultrastructure of the scolopidia is similar in the hearing and non-hearing flies. In both groups, the majority of scolopales has a diameter from 2 to 2.9 μm, although hearing species have additionally wider scolopales. The homologous chordotonal organ of Ph. regina consists of approximately 55 sensory cells of uniform direction. The data are discussed in comparison to the ears of other Diptera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号