共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
3.
Christopher I. Cazzonelli Marleen Vanstraelen Sibu Simon Kuide Yin Ashley Carron-Arthur Nazia Nisar Gauri Tarle Abby J. Cuttriss Iain R. Searle Eva Benkova Ulrike Mathesius Josette Masle Ji?í Friml Barry J. Pogson 《PloS one》2013,8(7)
Plant-specific PIN-formed (PIN) efflux transporters for the plant hormone auxin are required for tissue-specific directional auxin transport and cellular auxin homeostasis. The Arabidopsis PIN protein family has been shown to play important roles in developmental processes such as embryogenesis, organogenesis, vascular tissue differentiation, root meristem patterning and tropic growth. Here we analyzed roles of the less characterised Arabidopsis PIN6 auxin transporter. PIN6 is auxin-inducible and is expressed during multiple auxin–regulated developmental processes. Loss of pin6 function interfered with primary root growth and lateral root development. Misexpression of PIN6 affected auxin transport and interfered with auxin homeostasis in other growth processes such as shoot apical dominance, lateral root primordia development, adventitious root formation, root hair outgrowth and root waving. These changes in auxin-regulated growth correlated with a reduction in total auxin transport as well as with an altered activity of DR5-GUS auxin response reporter. Overall, the data indicate that PIN6 regulates auxin homeostasis during plant development. 相似文献
4.
Many aspects of plant development are associated with changing concentrations of the phytohormone auxin. Several stages of root formation exhibit extreme sensitivities to exogenous auxin and are correlated with shifts in endogenous auxin concentration. In an effort to elucidate mechanisms regulating development of adventitious roots, an ethyl methanesulfonate-mutagenized M2 population of Arabidopsis was screened for mutants altered in this process. A recessive nuclear mutant, rooty (rty), displayed extreme proliferation of roots, inhibition of shoot growth, and other alterations suggesting elevated responses to auxin or ethylene. Wild-type Arabidopsis seedlings grown on auxin-containing media phenocopied rty, whereas rty seedlings were partially rescued on cytokinin-containing media. Analysis by gas chromatography-selected ion monitoring-mass spectrometry showed endogenous indole-3-acetic acid concentrations to be two to 17 times higher in rty than in the wild type. Dose-response assays with exogenous indole-3-acetic acid indicated equal sensitivities to auxin in tissues of the wild type and rty. Combining rty with mutations conferring resistance to auxin (axr1-3) or ethylene (etr1-1) suggested that root proliferation and restricted shoot growth are auxin effects, whereas other phenotypic alterations are due to ethylene. Four mutant alleles from independently mutagenized populations were identified, and the locus was mapped using morphological and restriction fragment length polymorphism markers to 3.9 centimorgans distal to marker m605 on chromosome 2. The wild-type RTY gene product may serve a critical role in regulating auxin concentrations and thereby facilitating normal plant growth and development. 相似文献
5.
6.
7.
8.
9.
10.
11.
12.
Shengchun Zhang Juelin Wu Dongke Yuan Daowei Zhang Zhigang Huang Langtao Xiao Chengwei Yang 《植物生理与分子生物学学报》2014,(5):856-873
Reactive oxygen species and auxin play important roles in the networks that regulate plant development and morphogenetic changes, However, the molecular mechanisms underlying the interactions between them are poorly understood. This study isolated a mas (More Axillary Shoots) mutant, which was identified as an allele of the mitochondrial AAA-protease AtFtSH4, and characterized the function of the FtSH4 gene in regulating plant development by medi- ating the peroxidase-dependent interplay between hydrogen peroxide (H2Oz) and auxin homeostasis. The phenotypes of dwarfism and increased axillary branches observed in the mas (renamed as ftsh4-4) mutant result from a decrease in the IAA concentration. The expression levels of several auxin signaling genes, including IAA1, IAA2, and IAA3, as well as several auxin binding and transport genes, decreased significantly in ftsh4-4 plants. However, the H202 and peroxidases levels, which also have IAA oxidase activity, were significantly elevated in ftsh4-4 plants. The ftsh4-4 phenotypes could be reversed by expressing the iaaM gene or by knocking down the peroxidase genes PRX34 and PRX33. Both approaches can increase auxin levels in the ftsh4-4 mutant. Taken together, these results provided direct molecular and genetic evidence for the interaction between mitochondrial ATP-dependent protease, H2O2, and auxin homeostasis to regulate plant growth and development. 相似文献
13.
Guangheng Wu Simu Liu Yaofei Zhao Wei Wang Zhaosheng Kong Dingzhong Tang 《The Plant cell》2015,27(3):857-873
Obligate biotrophs, such as the powdery mildew pathogens, deliver effectors to the host cell and obtain nutrients from the infection site. The interface between the plant host and the biotrophic pathogen thus represents a major battleground for plant-pathogen interactions. Increasing evidence shows that cellular trafficking plays an important role in plant immunity. Here, we report that Arabidopsis thaliana ENHANCED DISEASE RESISTANCE4 (EDR4) plays a negative role in resistance to powdery mildew and that the enhanced disease resistance in edr4 mutants requires salicylic acid signaling. EDR4 mainly localizes to the plasma membrane and endosomal compartments. Genetic analyses show that EDR4 and EDR1 function in the same genetic pathway. EDR1 and EDR4 accumulate at the penetration site of powdery mildew infection, and EDR4 physically interacts with EDR1, recruiting EDR1 to the fungal penetration site. In addition, EDR4 interacts with CLATHRIN HEAVY CHAIN2 (CHC2), and edr4 mutants show reduced endocytosis rates. Taken together, our data indicate that EDR4 associates with CHC2 and modulates plant immunity by regulating the relocation of EDR1 in Arabidopsis. 相似文献
14.
To understand the mechanistic basis of cold temperature stress and the role of the auxin response, we characterized root growth and gravity response of Arabidopsis thaliana after cold stress, finding that 8 to 12 h at 4°C inhibited root growth and gravity response by ∼50%. The auxin-signaling mutants axr1 and tir1, which show a reduced gravity response, responded to cold treatment like the wild type, suggesting that cold stress affects auxin transport rather than auxin signaling. Consistently, expression analyses of an auxin-responsive marker, IAA2-GUS, and a direct transport assay confirmed that cold inhibits root basipetal (shootward) auxin transport. Microscopy of living cells revealed that trafficking of the auxin efflux carrier PIN2, which acts in basipetal auxin transport, was dramatically reduced by cold. The lateral relocalization of PIN3, which has been suggested to mediate the early phase of root gravity response, was also inhibited by cold stress. Additionally, cold differentially affected various protein trafficking pathways. Furthermore, the inhibition of protein trafficking by cold is independent of cellular actin organization and membrane fluidity. Taken together, these results suggest that the effect of cold stress on auxin is linked to the inhibition of intracellular trafficking of auxin efflux carriers. 相似文献
15.
16.
Nancy A. Eckardt 《The Plant cell》2005,17(5):1335-1338
17.
Amide-linked conjugates of indole-3-acetic acid (IAA) are putative storage or inactivation forms of the growth hormone auxin. Here, we describe the Arabidopsis iar3 mutant that displays reduced sensitivity to IAA-Ala. IAR3 is a member of a family of Arabidopsis genes related to the previously isolated ILR1 gene, which encodes an IAA-amino acid hydrolase selective for IAA-Leu and IAA-Phe. IAR3 and the very similar ILL5 gene are closely linked on chromosome 1 and comprise a subfamily of the six Arabidopsis IAA-conjugate hydrolases. The purified IAR3 enzyme hydrolyzes IAA-Ala in vitro. iar 3 ilr1 double mutants are more resistant than either single mutant to IAA-amino acid conjugates, and plants overexpressing IAR3 or ILR1 are more sensitive than is the wild type to certain IAA-amino acid conjugates, reflecting the overlapping substrate specificities of the corresponding enzymes. The IAR3 gene is expressed most strongly in roots, stems, and flowers, suggesting roles for IAA-conjugate hydrolysis in those tissues. 相似文献
18.
19.
20.
叶片(包括子叶)是茎端分生组织产生的第一类侧生器官, 在植物发育中具有重要地位。早期叶片发育包括三个主要过程: 叶原基的起始, 叶片腹背性的建立和叶片的延展。大量证据表明叶片发育受到体内遗传机制和体外环境因子的双重调节。植物激素, 尤其是生长素在协调体内外调节机制中起着不可或缺的作用。生长素的稳态调控、极性运输和信号转导影响叶片发育的全过程。本文着重介绍生长素在叶片生长发育和形态建成中的调控作用, 试图了解复杂叶片发育调控网络。 相似文献