首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Genomic tools and analyses are now being widely used to understand genome-wide patterns and processes associated with speciation and adaptation. In this article, we apply a genomics approach to the model organism Drosophila melanogaster. This species originated in Africa and subsequently spread and adapted to temperate environments of Eurasia and the New World, leading some populations to evolve reproductive isolation, especially between cosmopolitan and Zimbabwean populations. We used tiling arrays to identify highly differentiated regions within and between North America (the United States and Caribbean) and Africa (Cameroon and Zimbabwe) across 63% of the D. melanogaster genome and then sequenced representative fragments to study their genetic divergence. Consistent with previous findings, our results showed that most differentiation was between populations living in Africa vs. outside of Africa (i.e., “out-of-Africa” divergence), with all other geographic differences being less substantial (e.g., between cosmopolitan and Zimbabwean races). The X chromosome was much more strongly differentiated than the autosomes between North American and African populations (i.e., greater X divergence). Overall differentiation was positively associated with recombination rates across chromosomes, with a sharp reduction in regions near centromeres. Fragments surrounding these high FST sites showed reduced haplotype diversity and increased frequency of rare and derived alleles in North American populations compared to African populations. Nevertheless, despite sharp deviation from neutrality in North American strains, a small set of bottleneck/expansion demographic models was consistent with patterns of variation at the majority of our high FST fragments. Although North American populations were more genetically variable compared to Europe, our simulation results were generally consistent with those previously based on European samples. These findings support the hypothesis that most differentiation between North America and Africa was likely driven by the sorting of African standing genetic variation into the New World via Europe. Finally, a few exceptional loci were identified, highlighting the need to use an appropriate demographic null model to identify possible cases of selective sweeps in species with complex demographic histories.THE study of genetic differentiation between populations and species has recently been empowered by the use of genomic techniques and analysis (e.g., Noor and Feder 2006; Stinchcombe and Hoekstra 2008). In the past decade, genetic studies of adaptation and speciation have taken advantage of emerging molecular techniques to scan the genomes of diverging populations for highly differentiated genetic regions (e.g., Wilding et al. 2001; Emelianov et al. 2003; Beaumont and Balding 2004; Campbell and Bernatchez 2004; Scotti-Saintagne et al. 2004; Achere et al. 2005; Turner et al. 2005; Vasemagi et al. 2005; Bonin et al. 2006, 2007; Murray and Hare 2006; Savolainen et al. 2006; Yatabe et al. 2007; Nosil et al. 2008, 2009; Turner et al. 2008a,b; Kulathinal et al. 2009). As a result, genome scans can identify candidate regions that may be associated with adaptive evolution between diverging populations and, more broadly, are able to describe genome-wide patterns and processes of population differentiation (Begun et al. 2007; Stinchcombe and Hoekstra 2008).Genome scans in well-studied genetic model species such as Drosophila melanogaster gain particular power because differentiated loci are mapped to a well-annotated genome. Moreover, the evolutionary history of D. melanogaster is rich with adaptive and demographic events with many parallels to human evolution. Most notable is the historical out-of-Africa migration and subsequent adaptation to temperate ecological environments of Europe, Asia, North America, and Australia. This has resulted in widespread genetic and phenotypic divergence between African and non-African populations (e.g., David and Capy 1988; Begun and Aquadro 1993; Capy et al. 1994; Colegrave et al. 2000; Rouault et al. 2001; Takahashi et al. 2001; Caracristi and Schlötterer 2003; Baudry et al. 2004; Pool and Aquadro 2006; Schmidt et al. 2008; Yukilevich and True 2008a,b). Further, certain populations in Africa and in the Caribbean vary in their degree of reproductive isolation from populations in more temperate regions (Wu et al. 1995; Hollocher et al. 1997; Yukilevich and True 2008a,b). In particular, the Zimbabwe and nearby populations of southern Africa are strongly sexually isolated from all other populations, designating them as a distinct behavioral race (Wu et al. 1995).D. melanogaster has received a great deal of attention from the population geneticists in studying patterns of sequence variation across African and non-African populations. Many snapshots have been taken of random microsatellite and SNP variants spread across X and autosomes, and these have generated several important conclusions. Polymorphism patterns in European populations are characterized by reduced levels of nucleotide and haplotype diversity, an excess of high frequency-derived polymorphisms, and elevated levels of linkage disequilibrium relative to African populations (e.g., Begun and Aquadro 1993; Andolfatto 2001; Glinka et al. 2003; Haddrill et al. 2005; Ometto et al. 2005; Thornton and Andolfatto 2006; Hutter et al. 2007; Singh et al. 2007). These results have been generally interpreted as compatible with population size reduction/bottlenecks followed by recent population expansions. On the other hand, African populations are generally assumed either to have been relatively constant in size over time or to have experienced population size expansions. They generally show higher levels of nucleotide and haplotype diversity, an excess of rare variants, and a deficit of high frequency-derived alleles (Glinka et al. 2003; Ometto et al. 2005; Pool and Aquadro 2006; Hutter et al. 2007; but see Haddrill et al. 2005 for evidence of bottlenecks in Africa).Previous work also shows that the ratio of X-linked to autosomal polymorphism deviates from neutral expectations in opposite directions in African and European populations with more variation on the X than expected in Africa and less variation on the X than expected in Europe (Andolfatto 2001; Kauer et al. 2002; Hutter et al. 2007; Singh et al. 2007). The deviation from neutrality in the ratio of X-autosome polymorphism may be explained by positive selection being more prevalent on the X in Europe and/or by a combination of bottlenecks and male-biased sex ratios in Europe and female-biased sex ratios in Africa (Charlesworth 2001; Hutter et al. 2007; Singh et al. 2007). The selective explanation stems from the argument that, under the hitchhiking selection model, X-linked loci are likely to be more affected by selective sweeps than autosomal loci (Maynard Smith and Haigh 1974; Charlesworth et al. 1987; Vicoso and Charlesworth 2006, 2009).The relative contribution of selective and demographic processes in shaping patterns of genomic variation and differentiation is highly debated (Wall et al. 2002; Glinka et al. 2003; Haddrill et al. 2005; Ometto et al. 2005; Schöfl and Schlötterer 2004; Thornton and Andolfatto 2006; Hutter et al. 2007; Singh et al. 2007; Shapiro et al. 2007; Stephan and Li 2007; Hahn 2008; Macpherson et al. 2008; Noor and Bennett 2009; Sella et al. 2009). This is especially the case in D. melanogaster because derived non-African populations have likely experienced a complex set of demographic events during their migration out of Africa (e.g., Thornton and Andolfatto 2006; Singh et al. 2007; Stephan and Li 2007), making population genetics signatures of demography and selection difficult to tease apart (e.g., Macpherson et al. 2008). Thus it is still unclear what role selection has played in shaping overall patterns of genomic variation and differentiation relative to demographic processes in this species.While there is a long tradition in studying arbitrarily or opportunistically chosen sequences in D. melanogaster, genomic scans that focus particularly on highly differentiated sites across the genome have received much less attention. Such sites are arguably the best candidates to resolve the debate on which processes have shaped genomic differentiation within species (e.g., Przeworski 2002). Recently, a genome-wide scan of cosmopolitan populations in the United States and in Australia was performed to investigate clinal genomic differentiation on the two continents (Turner et al. 2008a). Many single feature polymorphisms differentiating Northern and Southern Hemisphere populations were identified. Among the most differentiated loci in common between continents, 80% were differentiated in the same orientation relative to the Equator, implicating selection as the likely explanation (Turner et al. 2008a). Larger regions of genomic differentiation within and between African and non-African populations have also been discovered, some of them possibly being driven by divergent selection (e.g., Dopman and Hartl 2007; Emerson et al. 2008; Turner et al. 2008a, Aguade 2009). Despite this recent progress, we still know relatively little about large-scale patterns of genomic differentiation in this species, especially between African and non-African populations, and whether most of this differentiation is consistent with demographic processes alone or if it requires selective explanations.In this work, we explicitly focus on identifying differentiated sites across the genome between U.S., Caribbean, West African, and Zimbabwean populations. This allows us to address several fundamental questions related to genomic evolution in D. melanogaster, such as the following: (1) Do genome-wide patterns of differentiation reflect patterns of reproductive isolation? (2) Is genomic differentiation random across and within chromosomes or are some regions overrepresented? (3) What are the population genetics properties of differentiated sites and their surrounding sequences? (4) Can demographic historical processes alone explain most of the observed differentiation on a genome-wide level or is it necessary to involve selection in their explanation?In general, our findings revealed that most genomic differentiation within D. melanogaster shows an out-of-Africa genetic signature. These results are inconsistent with the notion that most genomic differentiation occurs between cosmopolitan and Zimbabwean reproductively isolated races. Further, we found that the X is more differentiated between North American and African populations and more strongly deviates from pure neutrality in North American populations relative to autosomes. Nevertheless, our article shows that much of this deviation from neutrality is broadly consistent with several demographic null models, with a few notable exceptions. Athough this does not exclude selection as a possible alternative mechanism for the observed patterns, it supports the idea that most differentiation in D. melanogaster was likely driven by the sorting of African standing genetic variation into the New World.  相似文献   

2.
3.
4.
Bacterial gene content variation during the course of evolution has been widely acknowledged and its pattern has been actively modeled in recent years. Gene truncation or gene pseudogenization also plays an important role in shaping bacterial genome content. Truncated genes could also arise from small-scale lateral gene transfer events. Unfortunately, the information of truncated genes has not been considered in any existing mathematical models on gene content variation. In this study, we developed a model to incorporate truncated genes. Maximum-likelihood estimates (MLEs) of the new model reveal fast rates of gene insertions/deletions on recent branches, suggesting a fast turnover of many recently transferred genes. The estimates also suggest that many truncated genes are in the process of being eliminated from the genome. Furthermore, we demonstrate that the ignorance of truncated genes in the estimation does not lead to a systematic bias but rather has a more complicated effect. Analysis using the new model not only provides more accurate estimates on gene gains/losses (or insertions/deletions), but also reduces any concern of a systematic bias from applying simplified models to bacterial genome evolution. Although not a primary purpose, the model incorporating truncated genes could be potentially used for phylogeny reconstruction using gene family content.GENE content variation as a key feature of bacterial genome evolution has been well recognized (Garcia-Vallvé et al. 2000; Ochman and Jones 2000; Snel et al. 2002; Welch et al. 2002; Kunin and Ouzounis 2003; Fraser-Liggett 2005; Tettelin et al. 2005) and gained increasing attention in recent years. Various methods have been employed to study the variation of gene content in the form of gene insertions/deletions (or gene gains/losses); there are studies of population dynamics (Nielsen and Townsend 2004), birth-and-death evolutionary models (Berg and Kurland 2002; Novozhilov et al. 2005), phylogeny-dependent studies including parsimony methods (Mirkin et al. 2003; Daubin et al. 2003a,b; Hao and Golding 2004), and maximum-likelihood methods (Hao and Golding 2006, 2008b; Cohen et al. 2008; Cohen and Pupko 2010; Spencer and Sangaralingam 2009). The pattern of gene presence/absence also contains phylogenetic signals (Fitz-Gibbon and House 1999; Snel et al. 1999; Tekaia et al. 1999) and has been used for phylogenetic reconstruction (Dutilh et al. 2004; Gu and Zhang 2004; Huson and Steel 2004; Zhang and Gu 2004; Spencer et al. 2007a,b). All these studies make use of the binary information of gene presence or absence and neglect the existence of gene segments or truncated genes.Bacterial genomes are known to harbor pseudogenes. An intracellular species Mycobacterium leprae is an extreme case for both the proportion and the number of pseudogenes: estimated as 40% of the 3.2-Mb genome and 1116 genes (Cole et al. 2001). In free-living bacteria, pseudogenes can make up to 8% of the annotated genes in the genome (Lerat and Ochman 2004). Many pseudogenes result from the degradation of native functional genes (Cole et al. 2001; Mira et al. 2001). Pseudogenes could also result from the degradation of transferred genes and might even be acquired directly via lateral gene transfer. For instance, in plant mitochondrial genomes, which have an α-proteobacterial ancestry, most, if not all, of the laterally transferred genes are pseudogenes (Richardson and Palmer 2007). Furthermore, evidence has been documented that gene transfer could take place at the subgenic level in a wide range of organisms, e.g., among bacteria (Miller et al. 2005; Choi and Kim 2007; Chan et al. 2009), between ancient duplicates in archaea (Archibald and Roger 2002), between different organelles (Hao and Palmer 2009; Hao 2010), and between eukaryotes (Keeling and Palmer 2001). A large fraction of pseudogenes have been shown to arise from failed lateral transfer events (Liu et al. 2004) and most of them are transient in bacterial genomes (Lerat and Ochman 2005). Zhaxybayeva et al. (2007) reported that genomes with truncated homologs might erroneously lead to false inferences of “gene gain” rather than multiple instances of “gene loss.” This raises the question of how a false diagnosis of gene absence affects the estimation of insertion/deletion rates. Recently, we showed that the effect of a false diagnosis of gene absence on estimation of insertion/deletion rates is not systematic, but rather more complicated (Hao and Golding 2008a). To further address the problem, a study incorporating the information of truncated genes is highly desirable. This will not only yield more accurate estimates of the rates of gene insertions/deletions, but also provide a quantitative view of the effect of truncated genes on rate estimation, which has been understudied in bacterial genome evolution.In this study, we developed a model that considers the information of truncated genes and makes use of a parameter-rich time-reversible rate matrix. Rate variation among genes is allowed in the model by incorporating a discrete Γ-distribution. We also allow rates to vary on different parts of the phylogeny (external branches vs. internal branches). Consistent with previous studies, the rates of gene insertions/deletions are comparable to or larger than the rates of nucleotide substitution and the rates of gene insertions/deletions are further inflated in closely related groups and on external branches, suggesting high rates of gene turnover of recently transferred genes. The results from the new model also suggest that many recently truncated genes are in the process of being rapidly deleted from the genome. Some other interesting estimates in the model are also presented and discussed. One implication of the study, though not primary, is that the state of truncated genes could serve as an additional phylogenetic character for phylogenetic reconstruction using gene family content.  相似文献   

5.
A major question about cytokinesis concerns the role of the septin proteins, which localize to the division site in all animal and fungal cells but are essential for cytokinesis only in some cell types. For example, in Schizosaccharomyces pombe, four septins localize to the division site, but deletion of the four genes produces only a modest delay in cell separation. To ask if the S. pombe septins function redundantly in cytokinesis, we conducted a synthetic-lethal screen in a septin-deficient strain and identified seven mutations. One mutation affects Cdc4, a myosin light chain that is an essential component of the cytokinetic actomyosin ring. Five others cause frequent cell lysis during cell separation and map to two loci. These mutations and their dosage suppressors define a signaling pathway (including Rho1 and a novel arrestin) for repairing cell-wall damage. The seventh mutation affects the poorly understood RNA-binding protein Scw1 and severely delays cell separation when combined either with a septin mutation or with a mutation affecting the septin-interacting, anillin-like protein Mid2, suggesting that Scw1 functions in a pathway parallel to that of the septins. Taken together, our results suggest that the S. pombe septins participate redundantly in one or more pathways that cooperate with the actomyosin ring during cytokinesis and that a septin defect causes septum defects that can be repaired effectively only when the cell-integrity pathway is intact.THE fission yeast Schizosaccharomyces pombe provides an outstanding model system for studies of cytokinesis (McCollum and Gould 2001; Balasubramanian et al. 2004; Pollard and Wu 2010). As in most animal cells, successful cytokinesis in S. pombe requires an actomyosin ring (AMR). The AMR begins to assemble at the G2/M transition and involves the type II myosin heavy chains Myo2 and Myp2 and the light chains Cdc4 and Rlc1 (Wu et al. 2003). Myo2 and Cdc4 are essential for cytokinesis under all known conditions, Rlc1 is important at all temperatures but essential only at low temperatures, and Myp2 is essential only under stress conditions. As the AMR constricts, a septum of cell wall is formed between the daughter cells. The primary septum is sandwiched by secondary septa and subsequently digested to allow cell separation (Humbel et al. 2001; Sipiczki 2007). Because of the internal turgor pressure of the cells, the proper assembly and structural integrity of the septal layers are essential for cell survival.Septum formation involves the β-glucan synthases Bgs1/Cps1/Drc1, Bgs3, and Bgs4 (Ishiguro et al. 1997; Le Goff et al. 1999; Liu et al. 1999, 2002; Martín et al. 2003; Cortés et al. 2005) and the α-glucan synthase Ags1/Mok1 (Hochstenbach et al. 1998; Katayama et al. 1999). These synthases are regulated by the Rho GTPases Rho1 and Rho2 and the protein kinase C isoforms Pck1 and Pck2 (Arellano et al. 1996, 1997, 1999; Nakano et al. 1997; Hirata et al. 1998; Calonge et al. 2000; Sayers et al. 2000; Ma et al. 2006; Barba et al. 2008; García et al. 2009b). The Rho GTPases themselves appear to be regulated by both GTPase-activating proteins (GAPs) and guanine-nucleotide-exchange factors (GEFs) (Nakano et al. 2001; Calonge et al. 2003; Iwaki et al. 2003; Tajadura et al. 2004; Morrell-Falvey et al. 2005; Mutoh et al. 2005; García et al. 2006, 2009a,b). In addition, septum formation and AMR function appear to be interdependent. In the absence of a normal AMR, cells form aberrant septa and/or deposit septal materials at random locations, whereas a mutant defective in septum formation (bgs1) is also defective in AMR constriction (Gould and Simanis 1997; Le Goff et al. 1999; Liu et al. 1999, 2000). Both AMR constriction and septum formation also depend on the septation initiation network involving the small GTPase Spg1 (McCollum and Gould 2001; Krapp and Simanis 2008). Despite this considerable progress, many questions remain about the mechanisms and regulation of septum formation and its relationships to the function of the AMR.One major question concerns the role(s) of the septins. Proteins of this family are ubiquitous in fungal and animal cells and typically localize to the cell cortex, where they appear to serve as scaffolds and diffusion barriers for other proteins that participate in a wide variety of cellular processes (Longtine et al. 1996; Gladfelter et al. 2001; Hall et al. 2008; Caudron and Barral 2009). Despite the recent progress in elucidating the mechanisms of septin assembly (John et al. 2007; Sirajuddin et al. 2007; Bertin et al. 2008; McMurray and Thorner 2008), the details of septin function remain obscure. However, one prominent role of the septins and associated proteins is in cytokinesis. Septins concentrate at the division site in every cell type that has been examined, and in Saccharomyces cerevisiae (Hartwell 1971; Longtine et al. 1996; Lippincott et al. 2001; Dobbelaere and Barral 2004) and at least some Drosophila (Neufeld and Rubin 1994; Adam et al. 2000) and mammalian (Kinoshita et al. 1997; Surka et al. 2002) cell types, the septins are essential for cytokinesis. In S. cerevisiae, the septins are required for formation of the AMR (Bi et al. 1998; Lippincott and Li 1998). However, this cannot be their only role, because the AMR itself is not essential for cytokinesis in this organism (Bi et al. 1998; Korinek et al. 2000; Schmidt et al. 2002). Moreover, there is no evidence that the septins are necessary for AMR formation or function in any other organism. A further complication is that in some cell types, including most Caenorhabditis elegans cells (Nguyen et al. 2000; Maddox et al. 2007) and some Drosophila cells (Adam et al. 2000; Field et al. 2008), the septins do not appear to be essential for cytokinesis even though they localize to the division site.S. pombe has seven septins, four of which (Spn1, Spn2, Spn3, and Spn4) are expressed in vegetative cells and localize to the division site shortly before AMR constriction and septum formation (Longtine et al. 1996; Berlin et al. 2003; Tasto et al. 2003; Wu et al. 2003; An et al. 2004; Petit et al. 2005; Pan et al. 2007; Onishi et al. 2010). Spn1 and Spn4 appear to be the core members of the septin complex (An et al. 2004; McMurray and Thorner 2008), and mutants lacking either of these proteins do not assemble the others at the division site. Assembly of a normal septin ring also depends on the anillin-like protein Mid2, which colocalizes with the septins (Berlin et al. 2003; Tasto et al. 2003). Surprisingly, mutants lacking the septins are viable and form seemingly complete septa with approximately normal timing. These mutants do, however, display a variable delay in separation of the daughter cells, suggesting that the septins play some role(s) in the proper completion of the septum or in subsequent processes necessary for cell separation (Longtine et al. 1996; An et al. 2004; Martín-Cuadrado et al. 2005).It is possible that the septins localize to the division site and yet are nonessential for division in some cell types because their role is redundant with that of some other protein(s) or pathway(s). To explore this possibility in S. pombe, we screened for mutations that were lethal in combination with a lack of septins. The results suggest that the septins cooperate with the AMR during cytokinesis and that, in the absence of septin function, the septum is not formed properly, so that an intact system for recognizing and repairing cell-wall damage becomes critical for cell survival.  相似文献   

6.
7.
8.
9.
Sex determination in fish is a labile character in evolutionary terms. The sex-determining (SD) master gene can differ even between closely related fish species. This group is an interesting model for studying the evolution of the SD region and the gonadal differentiation pathway. The turbot (Scophthalmus maximus) is a flatfish of great commercial value, where a strong sexual dimorphism exists for growth rate. Following a QTL and marker association approach in five families and a natural population, we identified the main SD region of turbot at the proximal end of linkage group (LG) 5, close to the SmaUSC-E30 marker. The refined map of this region suggested that this marker would be 2.6 cM and 1.4 Mb from the putative SD gene. This region appeared mostly undifferentiated between males and females, and no relevant recombination frequency differences were detected between sexes. Comparative genomics of LG5 marker sequences against five model species showed no similarity of this chromosome to the sex chromosomes of medaka, stickleback, and fugu, but suggested a similarity to a sex-associated QTL from Oreochromis spp. The segregation analysis of the closest markers to the SD region demonstrated a ZW/ZZ model of sex determination in turbot. A small proportion of families did not fit perfectly with this model, which suggests that other minor genetic and/or environmental factors are involved in sex determination in this species.SEX ratio is a central demographic parameter directly related to the reproductive potential of individuals and populations (Penman and Piferrer 2008). The phenotypic sex depends on the processes of both sex determination and sex differentiation. Exogenous factors, such as temperature, hormones, or social behavior, can modify the gonad development pathway in fish (Baroiller and D''Cotta 2001; Piferrer and Guiguen 2008). Both genetic (GSD) and environmental sex determination has been reported in this group (Devlin and Nagahama 2002; Penman and Piferrer 2008), although primary sex determination is genetic in most species (Valenzuela et al. 2003). Among GSD, single, multiple, or polygenic sex-determining (SD) gene systems have been documented (Kallman 1984; Matsuda et al. 2002; Lee et al. 2004; Vandeputte et al. 2007).Sex determination in fish can evolve very rapidly (Woram et al. 2003; Peichel et al. 2004; Ross et al. 2009). Different sex determination mechanisms have been reported between congeneric species and even between populations of the same species (Almeida-Toledo and Foresti 2001; Lee et al. 2004; Mank et al. 2006). The evolution of sex chromosomes involves the suppression of recombination between homologous chromosomes probably to maintain sex-related coadapted gene blocks (Charlesworth et al. 2005; Tripathi et al. 2009). The sex determination pathway appears to be less conserved than other developmental processes (Penman and Piferrer 2008). However, differences are more related to the top of the hierarchy in the developmental pathway, while downstream genes are more conserved (Wilkins 1995; Marín and Baker 1998). As a consequence, the SD master gene in fish can vary among related species (Kondo et al. 2003; Tanaka et al. 2007; Alfaqih et al. 2009). In this sense, fish represent an attractive model for studying the evolution of SD mechanisms and sex chromosomes (Peichel et al. 2004; Kikuchi et al. 2007).A low proportion of fish species have demonstrated sex-associated chromosome heteromorphisms (Almeida-Toledo and Foresti 2001; Devlin and Nagahama 2002; Penman and Piferrer 2008). This is congruent with the rapid evolution of the SD region in fish, and thus in most species the male and female version of this chromosome region appears largely undifferentiated. In spite of this, indirect clues related to progenies of sex/chromosome-manipulated individuals or to segregation of morphologic/molecular sex-associated markers indicate that mechanisms of sex determination in fish are similar to other vertebrates (Penman and Piferrer 2008). With the arrival of genomics, large amounts of different genetic markers and genomic information are available for scanning genomes to look for their association with sex determination. Quantitative trait loci (QTL) (Cnaani et al. 2004; Peichel et al. 2004) or marker association (Felip et al. 2005; Chen et al. 2007) approaches have been used to identify the SD regions in some fish species. Also, microarrays constructed from gonadal ESTs have been applied to detect differentially expressed genes in the process of gonadal differentiation (Baron et al. 2005). Further, the increased genomic resources in model and aquaculture species have allowed the development of both comparative genomics (Woram et al. 2003; Kikuchi et al. 2007; Tripathi et al. 2009) and candidate gene (Shirak et al. 2006; Alfaqih et al. 2009) strategies to identify and characterize the SD region in fish. This has permitted the identification of the SD region in eight fish, including both model and aquaculture species (reviewed in Penman and Piferrer 2008).The turbot is a highly appreciated European aquaculture species, whose harvest is expected to increase from the current 9000 tons to >15,000 tons in 2012 (S. Cabaleiro, personal communication). Females of this species reach commercial size 4–6 months before males do, explaining the interest of the industry in obtaining all-female populations. Although some differences between families can be observed in the production process at farms, sex ratio is usually balanced at ∼1:1. Neither mitotic nor meiotic chromosomes have shown sex-associated heteromorphisms in turbot (Bouza et al. 1994; Cuñado et al. 2001). The proportion of sexes observed in triploid and especially gynogenetic progenies moved Cal et al. (2006a,b) to suggest an XX/XY mechanism in turbot with some additional, either environmental or genetic, factor involved. However, Haffray et al. (2009) have recently claimed a ZZ/ZW mechanism on the basis of the analysis of a large number of progenies from steroid-treated parents. These authors also suggested some (albeit low) influence of temperature in distorting sex proportions after the larval period. Finally, hybridizations between brill (Scophthalmus rhombus) and turbot render monosex progenies, depending on the direction of the cross performed, which suggests different SD mechanisms in these congeneric species (Purdom and ThaCker 1980).In this study, we used the turbot genetic map (Bouza et al. 2007, 2008; Martínez et al. 2008) to look for sex-associated QTL in this species. The identification of a major QTL in a specific linkage group (LG) in the five families analyzed prompted us to refine the genetic map at this LG and to perform a comparative genomics approach against model fish species for a precise location and characterization of the putative SD region. Also, sex-associated QTL markers were screened in a large natural population to provide additional support to our findings and to obtain population parameters at sex-related markers that could aid in interpreting the evolution of this genomic region.  相似文献   

10.
11.
12.
Empirical knowledge of the fitness effects of mutations is important for understanding many evolutionary processes, yet this knowledge is often hampered by several sources of measurement error and bias. Most of these problems can be solved using site-directed mutagenesis to engineer single mutations, an approach particularly suited for viruses due to their small genomes. Here, we used this technique to measure the fitness effect of 100 single-nucleotide substitutions in the bacteriophage f1, a filamentous single-strand DNA virus. We found that approximately one-fifth of all mutations are lethal. Viable ones reduced fitness by 11% on average and were accurately described by a log-normal distribution. More than 90% of synonymous substitutions were selectively neutral, while those affecting intergenic regions reduced fitness by 14% on average. Mutations leading to amino acid substitutions had an overall mean deleterious effect of 37%, which increased to 45% for those changing the amino acid polarity. Interestingly, mutations affecting early steps of the infection cycle tended to be more deleterious than those affecting late steps. Finally, we observed at least two beneficial mutations. Our results confirm that high mutational sensitivity is a general property of viruses with small genomes, including RNA and single-strand DNA viruses infecting animals, plants, and bacteria.MUTATIONAL fitness effects are relevant to many evolutionary processes. For instance, they determine the fraction of mutations that evolves neutrally (Ohta 1992), the amount of genetic variation at the mutation–selection balance (Haldane 1937), processes of fitness decay, such as Muller''s ratchet (Butcher 1995), mutational meltdown (Lynch et al. 1993), or lethal mutagenesis (Bull et al. 2007), the ability of organisms to fix beneficial mutations and evolve novel functions (Wagner 2005), or the origin of sex and recombination (Peck et al. 1997; de Visser et al. 2003). Considerable progress has been made in characterizing mutational fitness effects using model organisms or studying genetic variation in natural populations (Eyre-Walker and Keightley 2007). For instance, mutation–accumulation experiments suggest that the average effect of spontaneous deleterious mutations is 1% or lower (Kibota and Lynch 1996) in Escherichia coli, while roughly 90% of engineered gene knockouts are viable (Baba et al. 2006) and transposon insertions reduce fitness by 3% or less on average (Elena et al. 1998). In yeast, mutation–accumulation and chemical mutagenesis experiments have shown that mutations reduce fitness by 1–4% on average in diploid strains (Zeyl and de Visser 2001; Szafraniec et al. 2003; Joseph and Hall 2004). In nematodes most mutations have fitness effects lower than 1% (Keightley and Caballero 1997; Davies et al. 1999), in Drosophila the average effect of mutations ranges from 0.5 to 3.5% (Mukai et al. 1972; Ohnishi 1977; Fernández and López-Fanjul 1996; Fry et al. 1999), and, in humans, most segregating amino acid substitutions have fitness effects lower than 10% (Eyre-Walker and Keightley 2007).Although mutation–accumulation studies provide valuable information about the average effects of deleterious mutations, their power to infer the entire distribution of mutational effects, including neutral and lethal mutations, is more limited. Also, excluding bias due to selection can be problematic, and the precise location and nature of each mutation is often unknown. On the other hand, studies based on engineering mutations have been generally restricted to large deletions or insertions, which are probably infrequent in nature compared to point mutations. A direct and powerful approach that helps us to solve these difficulties consists of introducing single-nucleotide substitutions by site-directed mutagenesis. Due to their small genome sizes, viruses are excellent systems for achieving this goal. In previous work, this technique has been used for studying mutational fitness effects in several RNA viruses (Sanjuán et al. 2004; Carrasco et al. 2007; Domingo-Calap et al. 2009). However, less is known for DNA viruses—but see Domingo-Calap et al. (2009). Here, we use this approach to characterize the distribution of mutational fitness effects in the bacteriophage f1, an inovirus of the bacteriophage m13 clade, making two important improvements over previous work: first, the number of mutations tested is higher (100) and second, the contribution of experimental error to the observed distribution is explicitly accounted for. We show that one-fifth of single-nucleotide substitutions are lethal, while viable ones reduce fitness by 11% on average and can be described by a heavy-tail two-parameter distribution such as the log-normal. Interestingly, the fraction of beneficial mutations is unexpectedly high. We also compare the average effects of different mutation types and of mutations affecting different genes.  相似文献   

13.
14.
15.
Admixture between genetically divergent populations facilitates genomic studies of the mechanisms involved in adaptation, reproductive isolation, and speciation, including mapping of the loci involved in these phenomena. Little is known about how pre- and postzygotic barriers will affect the prospects of “admixture mapping” in wild species. We have studied 93 mapped genetic markers (microsatellites, indels, and sequence polymorphisms, ∼60,000 data points) to address this topic in hybrid zones of Populus alba and P. tremula, two widespread, ecologically important forest trees. Using genotype and linkage information and recently developed analytical tools we show that (1) reproductive isolation between these species is much stronger than previously assumed but this cannot prevent the introgression of neutral or advantageous alleles, (2) unexpected genotypic gaps exist between recombinant hybrids and their parental taxa, (3) these conspicuous genotypic patterns are due to assortative mating and strong postzygotic barriers, rather than recent population history. We discuss possible evolutionary trajectories of hybrid lineages between these species and outline strategies for admixture mapping in hybrid zones between highly divergent populations. Datasets such as this one are still rare in studies of natural hybrid zones but should soon become more common as high throughput genotyping and resequencing become feasible in nonmodel species.ADMIXTURE or hybrid zones between genetically divergent populations are increasingly being explored for their use in studies of adaptation, reproductive isolation, and speciation (Rieseberg et al. 1999; Martinsen et al. 2001; Wu 2001; Vines et al. 2003; Payseur et al. 2004; reviewed by Coyne and Orr 2004), especially for their potential in identifying recombinants for gene mapping (otherwise known as “admixture mapping”; Chakraborty and Weiss 1988; Briscoe et al. 1994; Rieseberg et al. 1999; Reich et al. 2005; Slate 2005; Zhu et al. 2005; Lexer et al. 2007; Nolte et al. 2009). In many taxa of animals and plants, recombinants are created by admixture between divergent populations or species in hybrid zones or ecotones (Buerkle and Lexer 2008; Gompert and Buerkle 2009). The growing interest of evolutionary geneticists in admixture has its roots in both basic evolutionary genetics and breeding.With respect to evolutionary genetics, admixed populations have been viewed as important resources for studying the genetics of adaptation and speciation, since the discovery that by fitting geographical clines of allele frequencies across hybrid zones, the strength of intrinsic and extrinsic (ecological) barriers to gene flow can be estimated (Barton and Hewitt 1985; Barton and Gale 1993). More recently, the genomics era has taken these concepts to a new level by providing genetic or physical genome maps for many species so that clines or introgression patterns of individual loci can be compared to their genomic background (see below; Falush et al. 2003; Gompert and Buerkle 2009). Thus, hybrid zones permit the identification and study of quantitative trait loci (QTL), genes, or other genetic elements involved in reproductive isolation and speciation in situ, directly in natural populations, if sufficient genetic recombination has occurred (Rieseberg and Buerkle 2002). In applied genetics, studies of hybrid zones yield information on the genomic architecture of barriers to introgression, which is of great interest to breeders concerned with the establishment of pedigrees for tree selection and domestication (Stettler et al. 1996).Most animal or plant hybrid zones studied to date involve hybridization between parental populations that are much more divergent than the admixed human populations that have been used successfully for gene mapping in human medical genetics (e.g., Reich et al. 2005; Zhu et al. 2005). Little experience exists with interpreting genomic patterns of ancestry and admixture in such highly divergent, nonhuman populations. Early genomic work on hybrid zones, based on dominant genetic markers, suggested the feasibility of mapping genome regions involved in reproductive isolation and speciation (Rieseberg et al. 1999; Rogers et al. 2001), but these studies did not allow tests for selection on genotypes at single loci in different genomic backgrounds. This became possible only recently due to the development of novel analytical tools suited to large numbers of codominant markers, especially linkage models of Bayesian admixture analysis (Falush et al. 2003, 2007) and methods to fit “genomic clines” of codominant marker genotypes across complete genomic admixture gradients (Lexer et al. 2007; Gompert and Buerkle 2009; Nolte et al. 2009; Teeter et al. 2010). Great advances also have been made in interpreting single-locus estimates of genetic divergence between populations and species (Beaumont 2005; Foll and Gaggiotti 2008; Excoffier et al. 2009a). Here, we bring these approaches together to yield novel insights into genomic patterns of reproductive isolation and mating in hybrid zones of two widespread and important members of the “model tree” genus Populus. Our goal was to infer patterns of reproductive isolation and the likely evolutionary trajectories of hybrid populations and to develop strategies for genetic mapping in admixed populations.Populus alba (white poplar) and P. tremula (European aspen) are ecologically divergent (floodplain vs. upland habitat) hybridizing tree species related to P. trichocarpa, the first completely sequenced forest tree (Tuskan et al. 2006). The two species are highly differentiated for neutral DNA-based markers (Lexer et al. 2007) and numerous phenotypic and ecological traits (Lexer et al. 2009). Mosaic hybrid zones between these species often form in riparian habitats (Lexer et al. 2005; hybrids sometimes referred to as P. × canescens) and have been proposed as potential “mapping populations” for identifying QTL and genes of interest in evolutionary biology (Lexer et al. 2007; Buerkle and Lexer 2008) and breeding (Fossati et al. 2004; Lexer et al. 2004). Previous studies of these hybrid zones were conducted with a relatively small number of genetic markers and without making use of linkage information; the genomic composition of hybrid zones between these species has never been studied with a genomewide panel of codominant markers with known linkage relationships. Specifically, we address the following questions in this contribution:(1) What does an analysis of admixture and differentiation based on a genome-wide panel of mapped markers tell us about patterns of reproductive isolation and mating in hybrid zones of European Populus species? (2) What are the likely roles of pre- and postzygotic barriers vs. recent, localized historical factors in generating the observed genomic patterns? (3) What are the practical implications for admixture mapping in hybrid zones between highly divergent populations? We showcase where the genetic peculiarities of hybrid zones will limit their use for gene mapping and where they suggest new approaches that were perhaps not foreseen by geneticists with a focus on human medical applications.  相似文献   

16.
Yield is the most important and complex trait for the genetic improvement of crops. Although much research into the genetic basis of yield and yield-associated traits has been reported, in each such experiment the genetic architecture and determinants of yield have remained ambiguous. One of the most intractable problems is the interaction between genes and the environment. We identified 85 quantitative trait loci (QTL) for seed yield along with 785 QTL for eight yield-associated traits, from 10 natural environments and two related populations of rapeseed. A trait-by-trait meta-analysis revealed 401 consensus QTL, of which 82.5% were clustered and integrated into 111 pleiotropic unique QTL by meta-analysis, 47 of which were relevant for seed yield. The complexity of the genetic architecture of yield was demonstrated, illustrating the pleiotropy, synthesis, variability, and plasticity of yield QTL. The idea of estimating indicator QTL for yield QTL and identifying potential candidate genes for yield provides an advance in methodology for complex traits.YIELD is the most important and complex trait in crops. It reflects the interaction of the environment with all growth and development processes that occur throughout the life cycle (Quarrie et al. 2006). Crop yield is directly and multiply determined by yield-component traits (such as seed weight and seed number). Yield-related traits (such as biomass, harvest index, plant architecture, adaptation, resistance to biotic and abiotic constraints) may also indirectly affect yield by affecting the yield-component traits or by other, unknown mechanisms. Increasing evidence suggests that “fine-mapped” quantitative trait loci (QTL) or genes identified as affecting crop yield involve diverse pathways, such as seed number (Ashikari et al. 2005; Tian et al. 2006b; Burstin et al. 2007; Xie et al. 2008; Xing et al. 2008; Xue et al. 2008), seed weight (Ishimaru 2003; Song et al. 2005; Shomura et al. 2008; Wang et al. 2008; Xie et al. 2006, 2008; Xing et al. 2008; Xue et al. 2008), flowering time (Cockram et al. 2007; Song et al. 2007; Xie et al. 2008; Xue et al. 2008), plant height (Salamini 2003; Ashikari et al. 2005; Xie et al. 2008; Xue et al. 2008), branching (Clark et al. 2006; Burstin et al. 2007; Xing et al. 2008), biomass yield (Quarrie et al. 2006; Burstin et al. 2007), resistance and tolerance to biotic and abiotic stresses (Khush 2001; Brown 2002; Yuan et al. 2002; Waller et al. 2005; Zhang 2007; Warrington et al. 2008), and root architecture (Hochholdinger et al. 2008).Many experiments have explored the genetic basis of yield and yield-associated traits (yield components and yield-related traits) in crops. Summaries of identified QTL have been published for wheat (MacCaferri et al. 2008), barley (Von Korff et al. 2008), rice, and maize (http://www.gramene.org/). The results show several common patterns. First, QTL for yield and yield-associated traits tend to be clustered in the genome, which suggests that the QTL of the yield-associated traits have pleiotropic effects on yield. Second, this kind of pleiotropy has not been well analyzed genetically. The QTL for yield (complicated factor), therefore, have not been associated with any yield-associated traits (relatively simple factors, such as plant height). Therefore, they are unlikely to predict accurately potential candidate genes for yield. Third, only a few loci (rarely >10) have been found for each of these traits. Thus, the genetic architecture of yield has remained ambiguous. Fourth, trials were carried out in a few environments and how the mode of expression of QTL for these complex traits might respond in different environments is unclear.In this study, the genetic architecture of crop yield was analyzed through the QTL mapping of seed yield and eight yield-associated traits in two related populations of rapeseed (Brassica napus) that were grown in 10 natural environments. The complexity of the genetic architecture of seed yield was demonstrated by QTL meta-analysis. The idea of estimating indicator QTL (QTL of yield-associated traits, which are defined as the potential genetic determinants of the colocalized QTL for yield) for yield QTL in conjunction with the identification of candidate genes is described.  相似文献   

17.
Mechanisms of neuronal mRNA localization and translation are of considerable biological interest. Spatially regulated mRNA translation contributes to cell-fate decisions and axon guidance during development, as well as to long-term synaptic plasticity in adulthood. The Fragile-X Mental Retardation protein (FMRP/dFMR1) is one of the best-studied neuronal translational control molecules and here we describe the identification and early characterization of proteins likely to function in the dFMR1 pathway. Induction of the dFMR1 in sevenless-expressing cells of the Drosophila eye causes a disorganized (rough) eye through a mechanism that requires residues necessary for dFMR1/FMRP''s translational repressor function. Several mutations in dco, orb2, pAbp, rm62, and smD3 genes dominantly suppress the sev-dfmr1 rough-eye phenotype, suggesting that they are required for dFMR1-mediated processes. The encoded proteins localize to dFMR1-containing neuronal mRNPs in neurites of cultured neurons, and/or have an effect on dendritic branching predicted for bona fide neuronal translational repressors. Genetic mosaic analyses indicate that dco, orb2, rm62, smD3, and dfmr1 are dispensable for translational repression of hid, a microRNA target gene, known to be repressed in wing discs by the bantam miRNA. Thus, the encoded proteins may function as miRNA- and/or mRNA-specific translational regulators in vivo.THE subcellular localization and regulated translation of stored mRNAs contributes to cellular asymmetry and subcellular specialization (Lecuyer et al. 2007; Martin and Ephrussi 2009). In mature neurons, local protein synthesis at active synapses may contribute to synapse-specific plasticity that underlies persistent forms of memory (Casadio et al. 1999; Ashraf et al. 2006; Sutton and Schuman 2006; Richter and Klann 2009). During this process, synaptic activity causes local translation of mRNAs normally stored in translationally repressed synaptic mRNPs (Sutton and Schuman 2006; Richter and Klann 2009). While specific neuronal translational repressors and microRNAs have been implicated in this process, their involvement in local translation that underlies memory, as well as the underlying mechanisms, are generally not well understood (Schratt et al. 2006; Keleman et al. 2007; Kwak et al. 2008; Li et al. 2008; Richter and Klann 2009). Furthermore, it remains possible that there are neuron-specific, mRNA-specific, and stimulus-pattern specific pathways for neuronal translational control (Raab-Graham et al. 2006; Giorgi et al. 2007).The Fragile-X Mental Retardation protein (FMRP) is among the best studied of neuronal translational repressors, in part due to its association with human neurodevelopmental disease (Pieretti et al. 1991; Mazroui et al. 2002; Gao 2008). Consistent with function in synaptic translation required for memory formation, mutations in FMRP are associated with increased synaptic translation, enhanced LTD, increased synapse growth, and also with enhanced long-term memory (Zhang et al. 2001; Huber et al. 2002; Bolduc et al. 2008; Dictenberg et al. 2008).FMRP co-immunoprecipitates with components of the RNAi and miRNA machinery and appears to be required for aspects of miRNA function in neurons (Caudy et al. 2002; Ishizuka et al. 2002; Jin et al. 2004b; Gao 2008). In addition, FMRP associates with neuronal polyribosomes as well as with Staufen-containing ribonucleoprotein (mRNP) granules easily observed in neurites of cultured neurons (Feng et al. 1997; Krichevsky and Kosik 2001; Mazroui et al. 2002; Kanai et al. 2004; Barbee et al. 2006; Bramham and Wells 2007; Bassell and Warren 2008; Dictenberg et al. 2008). FMRP-containing neuronal mRNPs contain not only several ubiquitous translational control molecules, but also CaMKII and Arc mRNAs, whose translation is locally controlled at synapses (Rook et al. 2000; Krichevsky and Kosik 2001; Kanai et al. 2004; Barbee et al. 2006). Thus, FMRP-containing RNA particles are probably translationally repressed and transported along microtubules from the neuronal cell body to synaptic sites in dendrites where local synaptic activity can induce their translation (Kiebler and Bassell 2006; Dictenberg et al. 2008).The functions of FMRP/dFMR1 in mRNA localization as well as miRNA-dependent and independent forms of translational control is likely to require several other regulatory proteins. To identify such proteins, we used a previously designed and validated genetic screen (Wan et al. 2000; Jin et al. 2004a; Zarnescu et al. 2005). The overexpression of dFMR1 in the fly eye causes a “rough-eye” phenotype through a mechanism that requires (a) key residues in dFMR1 that mediate translational repression in vitro; (b) Ago1, a known components of the miRNA pathway; and (c) a DEAD-box helicase called Me31B, which is a highly conserved protein from yeast (Dhh1p) to humans (Rck54/DDX6) functioning in translational repression and present on neuritic mRNPs (Wan et al. 2000; Laggerbauer et al. 2001; Jin et al. 2004a; Coller and Parker 2005; Barbee et al. 2006; Chu and Rana 2006). To identify other Me31B-like translational repressors and neuronal granule components, we screened mutations in 43 candidate proteins for their ability to modify dFMR1 induced rough-eye phenotype. We describe the results of this genetic screen and follow up experiments to address the potential cellular functions of five genes identified as suppressors of sev-dfmr1.  相似文献   

18.
19.
20.
Autophagy is an evolutionarily conserved degradative pathway that has been implicated in a number of physiological events important for human health. This process was originally identified as a response to nutrient deprivation and is thought to serve in a recycling capacity during periods of nutritional stress. Autophagy activity appears to be highly regulated and multiple signaling pathways are known to target a complex of proteins that contains the Atg1 protein kinase. The data here extend these observations and identify a particular phosphorylation event on Atg1 as a potential control point within the autophagy pathway in Saccharomyces cerevisiae. This phosphorylation occurs at a threonine residue, T226, within the Atg1 activation loop that is conserved in all Atg1 orthologs. Replacing this threonine with a nonphosphorylatable residue resulted in a loss of Atg1 protein kinase activity and a failure to induce autophagy. This phosphorylation required the presence of a functional Atg1 kinase domain and two known regulators of Atg1 activity, Atg13 and Atg17. Interestingly, the levels of this modification were found to increase dramatically upon exposure to conditions that induce autophagy. In addition, T226 phosphorylation was associated with an autophosphorylated form of Atg1 that was found specifically in cells undergoing the autophagy process. In all, these data suggest that autophosphorylation within the Atg1 activation loop may represent a point of regulatory control for this degradative process.MACROAUTOPHAGY (hereafter referred to as autophagy) is a highly conserved process of self-degradation that is essential for cell survival during periods of nutrient limitation (Tsukada and Ohsumi 1993). During autophagy, a double membrane grows out from a specific nucleation site, known as the pre-autophagosomal structure, or PAS, in Saccharomyces cerevisiae and the phagophore assembly site in mammals (Suzuki and Ohsumi 2007). This membrane encapsulates bulk protein and other constituents of the cytoplasm and ultimately targets this material to the vacuole/lysosome for degradation (Xie and Klionsky 2007). Recent studies have linked this pathway to a number of processes important for human health, including tumor suppression, innate immunity, and neurological disorders, like Huntington''s disease (Rubinsztein et al. 2007; Levine and Kroemer 2008). Determining how this pathway is regulated is therefore important for our understanding of these processes and our attempts to manipulate autophagy in clinically beneficial ways.Most of the molecular components of the autophagy pathway were initially characterized in the budding yeast, S. cerevisiae, but orthologs of many of these Atg proteins have since been found in other eukaryotes (Tsukada and Ohsumi 1993; Meijer et al. 2007). A complex of proteins that contains the Atg1 protein kinase is of special interest and appears to be a key point of regulatory control within this pathway (Kamada et al. 2000; Budovskaya et al. 2005; He and Klionsky 2009; Stephan et al. 2009). In S. cerevisiae, genetic and biochemical data indicate that this complex is targeted by at least three different signaling pathways. Two of these pathways, involving the Tor and cAMP-dependent protein kinases, inhibit this process, whereas the AMP-activated protein kinase is needed for the full induction of autophagy (Noda and Ohsumi 1998; Wang et al. 2001; Budovskaya et al. 2004; Stephan and Herman 2006; Kamada et al. 2010). The manner in which these signaling pathways regulate Atg1 activity and the precise role of this kinase in the autophagy process are presently matters of intense scrutiny.Although Atg1 kinase activity is required for the induction of autophagy, relatively little is known about how this enzyme is regulated in vivo. Two proteins associated with Atg1, Atg13 and Atg17, have been shown to be required for full Atg1 kinase activity both in vitro and in vivo (Kamada et al. 2000; Stephan et al. 2009). The roles of these proteins appear to be conserved through evolution as functional homologs of both have been identified in fruit flies and/or mammals (Hara et al. 2008; Chan et al. 2009; Chang and Neufeld 2009; Ganley et al. 2009; Hosokawa et al. 2009; Jung et al. 2009; Mercer et al. 2009). However, it is not yet clear precisely how these proteins stimulate Atg1 activity. In this study, we show that Atg1 is autophosphorylated within the activation loop and that this phosphorylation is required for both Atg1 kinase activity and the induction of autophagy. The activation loop is a structurally conserved element within the kinase domain and phosphorylation within this loop is often a necessary prerequisite for efficient substrate binding and/or phosphotransfer in the catalytic site (Johnson et al. 1996; Nolen et al. 2004). This loop generally corresponds to the sequence between two signature elements within the core kinase domain, the DFG and APE motifs (Hanks and Hunter 1995). Phosphorylation within this loop tends to result in a more ordered structure for this region and the proper positioning of key elements within the catalytic core of the kinase domain (Knighton et al. 1991; Johnson and O''reilly 1996; Huse and Kuriyan 2002). We found that Atg1 activation loop phosphorylation was correlated with the onset of autophagy and that replacing the site of phosphorylation with a phosphomimetic residue led to constitutive Atg1 autophosphorylation in vivo. In all, the data here suggest that Atg1 phosphorylation within its activation loop may be an important point of regulation within the autophagy pathway and models that discuss these data are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号