首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Integrons are mobile genetic elements that can integrate and disseminate genes as cassettes by a site-specific recombination mechanism. Integrons contain an integrase gene (intI) that carries out recombination by interacting with two different target sites; the attI site in cis with the integrase and the palindromic attC site of a cassette. The plasmid-specified IntI1 excises a greater variety of cassettes (principally antibiotic resistance genes), and has greater activity, than chromosomal integrases. The aim of this study was to analyze the capacity of the chromosomal integron integrase SamIntIA of the environmental bacterium Shewanella amazonensis SB2BT to excise various cassettes and to compare the properties of the wild type with those of mutants that substitute consensus residues of active integron integrases. We show that the SamIntIA integrase is very weakly active in the excision of various cassettes but that the V206R, V206K, and V206H substitutions increase its efficiency for the excision of cassettes. Our results also suggest that the cysteine residue in the β-5 strand is essential to the activity of Shewanella-type integrases, while the cysteine in the β-4 strand is less important for the excision activity.Integrons are genetic elements that capture and rearrange genes that are contained within mobile gene cassettes by a mechanism of site-specific recombination mediated by an integrase (3). Several types of integron integrases have been described for clinical and environmental bacteria; classes 1, 2, and 3 integron integrases (1, 10, 11) and VchIntIA (17) and IntI9 (12) integrases are the only ones that are associated with antibiotic resistance genes. Some of these integrases were found exclusively on plasmids (IntI2*) (11) or on chromosomes (VchIntIA) (17), while others were found in both genetic contexts (IntI1) (7, 8, 20, 21). The efficiency of integron integrases to carry out cassette excision varies from one integrase to another and also depends on the structure and sequence of the attC sites located at both ends of the gene. IntI1 is generally the most active integrase, followed by IntI3. IntI2*179E and SonIntIA are less active but appear to tolerate more variation in attC sites. These enzymes could serve as models for determining important residues responsible for high levels of activity, using mutagenesis to substitute consensus residues and assaying for gain of function.Class 1 integrons, carrying the intI1 integrase gene, are generally associated with mobile elements, such as plasmids and Tn21-like transposons, and are most frequently found in clinical isolates (18). They are found mainly among gram-negative bacteria and especially among enterobacteria and pseudomonads (14). Class 1 integrons have also been found in some gram-positive bacteria, such as Enterococcus, Staphylococcus, and Corynebacterium (6). The clinical-type class 1 integrons (7) consist of two conserved regions and a variable region in which resistance genes are inserted in the form of cassettes (Fig. (Fig.1A).1A). These integrons were clearly derived from a structure related to Tn402, as they share many characteristics associated with this type of transposon (21). The common ancestor of clinical-type class 1 integrons was possibly a member of an integron pool that was acquired by diverse Betaproteobacteria (7). This hypothesis is based on the recent isolation of several new class 1 integron integrases from environmental DNA samples which are not associated with antibiotic resistance genes or with Tn402-like transposons (7, 8, 21).Open in a separate windowFIG. 1.(A) General structure of clinical-type class 1 integrons. Cassettes are inserted in the variable region of integrons by a site-specific recombinational mechanism. The attI1 and attC sites are shown by tiling and diagonal black lines, respectively, and promoters are denoted by P1, P2, P3, and P. Genes are as follows: intI1, integrase gene; qacEΔ1, antiseptic resistance gene; sul1, sulfonamide resistance gene; orf5, gene of unknown function. (B) Representation of the chromosomal integron of S. amazonensis SB2BT. The attISam and attC sites are shown by a black box and horizontal black lines, respectively. Genes are as follows: SamintIA, integrase gene; orf, open reading frame gene.Class 2 integrons, carrying the intI2* integrase pseudogene, are present on Tn7 transposons and their derivatives (11). The intI2* gene encodes an integrase identical to 46% with IntI1, but its reading frame was interrupted by an early termination codon. The activity of this protein is restored when the stop codon at position 179 is replaced by a glutamate codon (11). Recently, two new intI2 genes were identified within integrons found in Providencia stuartii (2) and Escherichia coli (16). The sequences of these genes are not interrupted; position 179 is occupied by a glutamine codon, and the genes apparently code for functional enzymes. These intI2 genes each differ from intI2* of Tn7 at five positions (2, 16).Class 3 integrons, characterized by the presence of the intI3 gene, have been found in Serratia marcescens AK9373, in Klebsiella pneumoniae FFUL 22K isolated in Portugal, in four strains of Pseudomonas putida isolated in Japan, and more recently, in Delftia acidovorans C17 and Delftia tsuruhatensis A90 (1, 4, 19, 23). The IntI3 integrase has 61% identity with IntI1.The class 4 integron, with VchintIA, is an integron carried by the small chromosome of Vibrio cholerae O:1 569B (17). This integron contains more than 216 open reading frames (ORFs) coding for proteins of unknown functions associated with V. cholerae repetitive DNA sequence (VCR) elements to form 179 cassettes, and occupies about 3% of the bacterial genome.In recent years, the draft genomes of various environmental strains led to the identification of more than 100 new integron integrases. Among these, the SonintIA and NeuintIA integrase genes have been found, respectively, in genomes of Shewanella oneidensis MR-1 and Nitrosomonas europaea and shown to be active in cassette excision and integration (5, 13). Shewanella amazonensis SB2BT is an environmental gram-negative gammaproteobacterium that plays an important role in the bioremediation of contaminated metals and radioactive wastes (22). The U.S. Department of Energy Joint Genome Institute sequenced its 4.3-Mbp genome (GenBank accession no. CP000507). The genome encodes an integron integrase, SamIntIA, which is 64.8% identical to SonIntIA and 60.2% identical to IntI2* but only 46.9% identical to VchIntIA and 44.6% to IntI1. A sequence alignment of SamIntIA, SonIntIA, and IntI2* indicates that they are closely related, especially in the N-terminal and the C-terminal regions.Several residues of SamIntIA differed from a consensus alignment of active integron integrases. We wished to determine whether SamIntIA is active, compare its activity to that of SonIntIA and of IntI2*179E, and determine whether the alteration of certain residues affects its excision activity.  相似文献   

3.
4.
An intI-targeted PCR assay was optimized to evaluate the frequency of partial class 2-like integrases relative to putative, environmental IntI elements in clone libraries generated from 17 samples that included various terrestrial, marine, and deep-sea habitats with different exposures to human influence. We identified 169 unique IntI phylotypes (≤98% amino acid identity) relative to themselves and with respect to those previously described. Among these, six variants showed an undescribed, extended, IntI-specific additional domain. A connection between human influence and the dominance of IntI-2-like variants was also observed. IntI phylotypes 80 to 99% identical to class 2 integrases comprised ∼70 to 100% (n = 65 to 87) of the IntI elements detected in samples with a high input of fecal waste, whereas IntI2-like sequences were undetected in undisturbed settings and poorly represented (1 to 10%; n = 40 to 79) in environments with moderate or no recent fecal or anthropogenic impact. Eleven partial IntI2-like sequences lacking the signature ochre 179 codon were found among samples of biosolids and agricultural soil supplemented with swine manure, indicating a wider distribution of potentially functional IntI2 variants than previously reported. To evaluate IntI2 distribution patterns beyond the usual hosts, namely, the Enterobacteriaceae, we coupled PCR assays targeted at intI and 16S rRNA loci to G+C fractionation of total DNA extracted from manured cropland. IntI2-like sequences and 16S rRNA phylotypes related to Firmicutes (Clostridium and Bacillus) and Bacteroidetes (Chitinophaga and Sphingobacterium) dominated a low-G+C fraction (∼40 to 45%), suggesting that these groups could be important IntI2 hosts in manured soil. Moreover, G+G fractionation uncovered an additional set of 36 novel IntI phylotypes (≤98% amino acid identity) undetected in bulk DNA and revealed the prevalence of potentially functional IntI2 variants in the low-G+C fraction.Integrons are genetic modules described in pathogenic and commensal bacteria that confer the ability to capture and express promoterless DNA units, called gene cassettes, which encode a variety of adaptive functions including antibiotic resistance (9, 42, 64). The acquisition of gene cassettes occurs through a site-specific recombination mechanism catalyzed by an integron-encoded integrase (IntI). The integrative recombination reaction occurs primarily between an integron receptor site (attI) and a cassette-associated sequence known as the attC site or 59-base element (11). However, integron integrases are able to recognize and process nonspecific secondary targets as well as attI and attC sites with a high degree of sequence variation (20, 25). This versatility facilitates the exchange of exogenous genes between different integrons through various recombination reactions (attI × attC, attI × attI, and attC × attC) that propel the adaptability and evolution of bacterial genomes (8, 11, 31, 38, 55, 58). Although integrons can be chromosomally encoded, they also may be horizontally transferred via transduction or by transposons associated with conjugative plasmids (42, 61). Three major groups (classes 1 to 3) are known to be associated with laterally transferred elements and highly prevalent in the clinical scene. In most of the cases, these have also been reported to harbor almost exclusively gene cassettes encoding antibiotic resistance functions (42). All together, these traits have led to their designation as “mobile” (9) or “clinical” (22) integrons. Although integrons have been traditionally classified according to the percent identity of the nucleotide or predicted amino acid sequence of their respective intI genes (9, 43, 71), several structural features and differences in abundance patterns have been identified which distinguish classes 1 to 3 (9, 42).Class 1 integrons are the most widely studied variant and are typically linked to replicative Tn21 transposons, which appears to contribute to their extensive distribution (48). A key feature commonly reported within the class 1 module is the presence of a highly conserved 3′ region comprised of a qacEΔ gene and a sul1 gene, which provide protection against quaternary ammonium compounds and sulfa drugs, respectively. In contrast, class 2 integrons are routinely associated with nonreplicative Tn7 transposons, are less frequently detected and, hence, remain an understudied group relative to their class 1 counterparts (42, 48, 65). Even less is known about the class 3 variants, which so far have been described in only three instances (71).Except for the identical IntI2 elements recently reported in Providencia stuartii and Escherichia coli strains isolated from beef cattle sources and the human urinary tract, respectively, all known integrases encoded by class 2 integrons are considered nonfunctional due to the presence of the ochre 179 codon (6, 40, 42). Nevertheless, it has been argued that integrons with truncated class 2 integrases might be implicated in the transfer and high prevalence of antibiotic resistance genes among clinical isolates, possibly via the in trans activities of other functional integrases or the suppression of the stop codon (27). So far, class 2 integrons have been described in association with isolates affiliated to the gamma, beta, and epsilon subdivisions of the Proteobacteria but have been more frequently reported among members of the Gammaproteobacteria group, particularly the Enterobacteriaceae (1, 14, 19, 56, 57). However, most of these studies have focused on easily culturable, aerobic bacteria or those of clinical importance, leading to the exclusion of unculturable or difficult-to-grow commensals that could be inconspicuous but important reservoirs of class 2 elements in the environment. Although the occurrence and quantification of integrons and integron-associated genes by means of molecular, culture-independent methods are being increasingly documented outside the clinical scene (18, 22, 28, 48, 49, 51, 65, 70), the estimates of the extant diversity of the integron platform in nature are still rudimentary. Likewise, further work is needed for the identification of environmental hosts of integrons commonly found in clinical strains without the bias associated with culture techniques (48).In order to provide a comprehensive view of integron integrase variation and prevalence patterns of IntI2 elements in the environment, we PCR amplified partial intI sequences from metagenomic DNA isolated from various terrestrial, marine, and deep-sea habitats exposed to various degrees of anthropogenic or fecal impact. Amplification conditions were optimized to facilitate the assessment of the frequency of IntI2-like sequences relative to that of environmental integron integrases. Additionally, since the guanine-plus-cytosine content of DNA corresponds to taxonomy (68), we coupled G+C fractionation of total DNA (4, 5, 29, 30) with PCR assays targeted at intI and 16S rRNA genes to identify potential, unconventional hosts of class 2 integrons in soil that had received swine manure.  相似文献   

5.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

6.
7.
8.
9.
Halogenases have been shown to play a significant role in biosynthesis and introducing the bioactivity of many halogenated secondary metabolites. In this study, 54 reduced flavin adenine dinucleotide (FADH2)-dependent halogenase gene-positive strains were identified after the PCR screening of a large collection of 228 reference strains encompassing all major families and genera of filamentous actinomycetes. The wide distribution of this gene was observed to extend to some rare lineages with higher occurrences and large sequence diversity. Subsequent phylogenetic analyses revealed that strains containing highly homologous halogenases tended to produce halometabolites with similar structures, and halogenase genes are likely to propagate by horizontal gene transfer as well as vertical inheritance within actinomycetes. Higher percentages of halogenase gene-positive strains than those of halogenase gene-negative ones contained polyketide synthase genes and/or nonribosomal peptide synthetase genes or displayed antimicrobial activities in the tests applied, indicating their genetic and physiological potentials for producing secondary metabolites. The robustness of this halogenase gene screening strategy for the discovery of particular biosynthetic gene clusters in rare actinomycetes besides streptomycetes was further supported by genome-walking analysis. The described distribution and phylogenetic implications of the FADH2-dependent halogenase gene present a guide for strain selection in the search for novel organohalogen compounds from actinomycetes.It is well known that actinomycetes, notably filamentous actinomycetes, have a remarkable capacity to produce bioactive molecules for drug development (4, 6). However, novel technologies are demanded for the discovery of new bioactive secondary metabolites from these microbes to meet the urgent medical need for drug candidates (5, 9, 31).Genome mining recently has been used to search for new drug leads (7, 20, 42, 51). Based on the hypothesis that secondary metabolites with similar structures are biosynthesized by gene clusters that harbor certain homologous genes, such homologous genes could serve as suitable markers for distinct natural-product gene clusters (26, 51). A wide range of structurally diverse bioactive compounds are synthesized by polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) systems in actinomycetes, therefore much attention has been given to revealing a previously unrecognized biosynthetic potential of actinomycetes through the genome mining of these genes (2, 3, 22). However, the broad distribution of PKS and NRPS genes and their high numbers even in a single actinomycete complicate their use (2, 3). To rationally exploit the genetic potential of actinomycetes, more and more special genes, such as tailoring enzyme genes, are being utilized for this sequence-guided genetic screening strategy (20, 38).Tailoring enzymes, which are responsible for the introduction and generation of diversity and bioactivity in several structural classes during or after NRPS, PKS, or NRPS/PKS assembly lines, usually include acyltransferases, aminotransferases, cyclases, glycosyltransferases, halogenases, ketoreductases, methyltransferases, and oxygenases (36, 45). Halogenation, an important feature for the bioactivity of a large number of distinct natural products (16, 18, 30), frequently is introduced by one type of halogenase, called reduced flavin adenine dinucleotide (FADH2)-dependent (or flavin-dependent) halogenase (10, 12, 35). More than 4,000 halometabolites have been discovered (15), including commercially important antibiotics such as chloramphenicol, vancomycin, and teicoplanin (43).Previous investigations of FADH2-dependent halogenase genes were focused largely on related gene clusters in the genera Amycolatopsis (33, 44, 53) and Streptomyces (8, 10, 21, 27, 32, 34, 47-49) and also on those in the genera Actinoplanes (25), Actinosynnema (50), Micromonospora (1), and Nonomuraea (39); however, none of these studies has led to the rest of the major families and genera of actinomycetes. In addition, there is evidence that FADH2-dependent halogenase genes of streptomycetes usually exist in halometabolite biosynthetic gene clusters (20), but we lack knowledge of such genes and clusters in other actinomycetes.In the present study, we show that the distribution of the FADH2-dependent halogenase gene in filamentous actinomycetes does indeed correlate with the potential for halometabolite production based on other genetic or physiological factors. We also showed that genome walking near the halogenase gene locus could be employed to identify closely linked gene clusters that likely encode pathways for organohalogen compound production in actinomycetes other than streptomycetes.  相似文献   

10.
11.
Sister chromatid recombination (SCR) is a potentially error-free pathway for the repair of DNA lesions associated with replication and is thought to be important for suppressing genomic instability. The mechanisms regulating the initiation and termination of SCR in mammalian cells are poorly understood. Previous work has implicated all the Rad51 paralogs in the initiation of gene conversion and the Rad51C/XRCC3 complex in its termination. Here, we show that hamster cells deficient in the Rad51 paralog XRCC2, a component of the Rad51B/Rad51C/Rad51D/XRCC2 complex, reveal a bias in favor of long-tract gene conversion (LTGC) during SCR. This defect is corrected by expression of wild-type XRCC2 and also by XRCC2 mutants defective in ATP binding and hydrolysis. In contrast, XRCC3-mediated homologous recombination and suppression of LTGC are dependent on ATP binding and hydrolysis. These results reveal an unexpectedly general role for Rad51 paralogs in the control of the termination of gene conversion between sister chromatids.DNA double-strand breaks (DSBs) are potentially dangerous lesions, since their misrepair may cause chromosomal translocations, gene amplifications, loss of heterozygosity (LOH), and other types of genomic instability characteristic of human cancers (7, 9, 21, 40, 76, 79). DSBs are repaired predominantly by nonhomologous end joining or homologous recombination (HR), two evolutionarily conserved DSB repair mechanisms (8, 12, 16, 33, 48, 60, 71). DSBs generated during the S or G2 phase of the cell cycle may be repaired preferentially by HR, using the intact sister chromatid as a template for repair (12, 26, 29, 32, 71). Sister chromatid recombination (SCR) is a potentially error-free pathway for the repair of DSBs, which has led to the proposal that SCR protects against genomic instability, cancer, and aging. Indeed, a number of human cancer predisposition genes are implicated in SCR control (10, 24, 45, 57, 75).HR entails an initial processing of the DSB to generate a free 3′ single-stranded DNA (ssDNA) overhang (25, 48, 56). This is coupled to the loading of Rad51, the eukaryotic homolog of Escherichia coli RecA, which polymerizes to form an ssDNA-Rad51 “presynaptic” nucleoprotein filament. Formation of the presynaptic filament is tightly regulated and requires the concerted action of a large number of gene products (55, 66, 68). Rad51-coated ssDNA engages in a homology search by invading homologous duplex DNA. If sufficient homology exists between the invading and invaded strands, a triple-stranded synapse (D-loop) forms, and the 3′ end of the invading (nascent) strand is extended, using the donor as a template for gene conversion. This recombination intermediate is thought to be channeled into one of the following two major subpathways: classical gap repair or synthesis-dependent strand annealing (SDSA) (48). Gap repair entails the formation of a double Holliday junction, which may resolve into either crossover or noncrossover products. Although this is a major pathway in meiotic recombination, crossing-over is highly suppressed in somatic eukaryotic cells (26, 44, 48). Indeed, the donor DNA molecule is seldom rearranged during somatic HR, suggesting that SDSA is the major pathway for the repair of somatic DSBs (26, 44, 49, 69). SDSA terminates when the nascent strand is displaced from the D-loop and pairs with the second end of the DSB to form a noncrossover product. The mechanisms underlying displacement of the nascent strand are not well understood. However, failure to displace the nascent strand might be expected to result in the production of longer gene conversion tracts during HR (36, 44, 48, 63).Gene conversion triggered in response to a Saccharomyces cerevisiae or mammalian chromosomal DSB generally results in the copying of a short (50- to 300-bp) stretch of information from the donor (short-tract gene conversion [STGC]) (14, 47, 48, 67, 69). A minority of gene conversions in mammalian cells entail more-extensive copying, generating gene conversion tracts that are up to several kilobases in length (long-tract gene conversion [LTGC]) (26, 44, 51, 54, 64). In yeast, very long gene conversions can result from break-induced replication (BIR), a highly processive form of gene conversion in which a bona fide replication fork is thought to be established at the recombination synapse (11, 36, 37, 39, 61, 63). In contrast, SDSA does not require lagging-strand polymerases and appears to be much less processive than a conventional replication fork (37, 42, 78). BIR in yeast has been proposed to play a role in LOH in aging yeast, telomere maintenance, and palindromic gene amplification (5, 41, 52). It is unclear to what extent a BIR-like mechanism operates in mammalian cells, although BIR has been invoked to explain telomere elongation in tumors lacking telomerase (13). It is currently unknown whether LTGC and STGC in somatic mammalian cells are products of mechanistically distinct pathways or whether they represent alternative outcomes of a common SDSA pathway.Vertebrate cells contain five Rad51 paralogs—polypeptides with limited sequence homology to Rad51—Rad51B, Rad51C, Rad51D, XRCC2, and XRCC3 (74). The Rad51 paralogs form the following two major complexes: Rad51B/Rad51C/Rad51D/XRCC2 (BCDX2) and Rad51C/XRCC3 (CX3) (38, 73). Genetic deletion of any one of the rad51 paralogs in the mouse germ line produces early embryonic lethality, and mouse or chicken cells lacking any of the rad51 paralogs reveal hypersensitivity to DNA-damaging agents, reduced frequencies of HR and of sister chromatid exchanges, increased chromatid-type errors, and defective sister chromatid cohesion (18, 72, 73, 82). Collectively, these data implicate the Rad51 paralogs in SCR regulation. The purified Rad51B/Rad51C complex has been shown to assist Rad51-mediated strand exchange (62). XRCC3 null or Rad51C null hamster cells reveal a bias toward production of longer gene conversion tracts, suggesting a role for the CX3 complex in late stages of SDSA (6, 44). Rad51C copurifies with branch migration and Holliday junction resolution activities in mammalian cell extracts (35), and XRCC3, but not XRCC2, facilitates telomere shortening by reciprocal crossing-over in telomeric T loops (77). These data, taken together with the meiotic defects observed in Rad51C hypomorphic mice, suggest a specialized role for CX3, but not for BCDX2, in resolving Holliday junction structures (31, 58).To further address the roles of Rad51 paralogs in late stages of recombination, we have studied the balance between long-tract (>1-kb) and short-tract (<1-kb) SCR in XRCC2 mutant hamster cells. We found that DSB-induced gene conversion in both XRCC2 and XRCC3 mutant cells is biased in favor of LTGC. These defects were suppressed by expression of wild-type (wt) XRCC2 or XRCC3, respectively, although the dependence upon ATP binding and hydrolysis differed between the two Rad51 paralogs. These results indicate that Rad51 paralogs play a more general role in determining the balance between STGC and LTGC than was previously appreciated and suggest roles for both the BCDX2 and CX3 complexes in influencing the termination of gene conversion in mammals.  相似文献   

12.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

13.
Factors potentially contributing to the lower incidence of Lyme borreliosis (LB) in the far-western than in the northeastern United States include tick host-seeking behavior resulting in fewer human tick encounters, lower densities of Borrelia burgdorferi-infected vector ticks in peridomestic environments, and genetic variation among B. burgdorferi spirochetes to which humans are exposed. We determined the population structure of B. burgdorferi in over 200 infected nymphs of the primary bridging vector to humans, Ixodes pacificus, collected in Mendocino County, CA. This was accomplished by sequence typing the spirochete lipoprotein ospC and the 16S-23S rRNA intergenic spacer (IGS). Thirteen ospC alleles belonging to 12 genotypes were found in California, and the two most abundant, ospC genotypes H3 and E3, have not been detected in ticks in the Northeast. The most prevalent ospC and IGS biallelic profile in the population, found in about 22% of ticks, was a new B. burgdorferi strain defined by ospC genotype H3. Eight of the most common ospC genotypes in the northeastern United States, including genotypes I and K that are associated with disseminated human infections, were absent in Mendocino County nymphs. ospC H3 was associated with hardwood-dominated habitats where western gray squirrels, the reservoir host, are commonly infected with LB spirochetes. The differences in B. burgdorferi population structure in California ticks compared to the Northeast emphasize the need for a greater understanding of the genetic diversity of spirochetes infecting California LB patients.In the United States, Lyme borreliosis (LB) is the most commonly reported vector-borne illness and is caused by infection with the spirochete Borrelia burgdorferi (3, 9, 52). The signs and symptoms of LB can include a rash, erythema migrans, fever, fatigue, arthritis, carditis, and neurological manifestations (50, 51). The black-legged tick, Ixodes scapularis, and the western black-legged tick, Ixodes pacificus, are the primary vectors of B. burgdorferi to humans in the United States, with the former in the northeastern and north-central parts of the country and the latter in the Far West (9, 10). These ticks perpetuate enzootic transmission cycles together with a vertebrate reservoir host such as the white-footed mouse, Peromyscus leucopus, in the Northeast and Midwest (24, 35), or the western gray squirrel, Sciurus griseus, in California (31, 46).B. burgdorferi is a spirochete species with a largely clonal population structure (14, 16) comprising several different strains or lineages (8). The polymorphic ospC gene of B. burgdorferi encodes a surface lipoprotein that increases expression within the tick during blood feeding (47) and is required for initial infection of mammalian hosts (25, 55). To date, approximately 20 North American ospC genotypes have been described (40, 45, 49, 56). At least four, and possibly up to nine, of these genotypes are associated with B. burgdorferi invasiveness in humans (1, 15, 17, 49, 57). Restriction fragment length polymorphism (RFLP) and, subsequently, sequence analysis of the 16S-23S rRNA intergenic spacer (IGS) are used as molecular typing tools to investigate genotypic variation in B. burgdorferi (2, 36, 38, 44, 44, 57). The locus maintains a high level of variation between related species, and this variation reflects the heterogeneity found at the genomic level of the organism (37). The IGS and ospC loci appear to be linked (2, 8, 26, 45, 57), but the studies to date have not been representative of the full range of diversity of B. burgdorferi in North America.Previous studies in the northeastern and midwestern United States have utilized IGS and ospC genotyping to elucidate B. burgdorferi evolution, host strain specificity, vector-reservoir associations, and disease risk to humans. In California, only six ospC and five IGS genotypes have been described heretofore in samples from LB patients or I. pacificus ticks (40, 49, 56) compared to approximately 20 ospC and IGS genotypes identified in ticks, vertebrate hosts, or humans from the Northeast and Midwest (8, 40, 45, 49, 56). Here, we employ sequence analysis of both the ospC gene and IGS region to describe the population structure of B. burgdorferi in more than 200 infected I. pacificus nymphs from Mendocino County, CA, where the incidence of LB is among the highest in the state (11). Further, we compare the Mendocino County spirochete population to populations found in the Northeast.  相似文献   

14.
Methanogens are of great importance in carbon cycling and alternative energy production, but quantitation with culture-based methods is time-consuming and biased against methanogen groups that are difficult to cultivate in a laboratory. For these reasons, methanogens are typically studied through culture-independent molecular techniques. We developed a SYBR green I quantitative PCR (qPCR) assay to quantify total numbers of methyl coenzyme M reductase α-subunit (mcrA) genes. TaqMan probes were also designed to target nine different phylogenetic groups of methanogens in qPCR assays. Total mcrA and mcrA levels of different methanogen phylogenetic groups were determined from six samples: four samples from anaerobic digesters used to treat either primarily cow or pig manure and two aliquots from an acidic peat sample stored at 4°C or 20°C. Only members of the Methanosaetaceae, Methanosarcina, Methanobacteriaceae, and Methanocorpusculaceae and Fen cluster were detected in the environmental samples. The three samples obtained from cow manure digesters were dominated by members of the genus Methanosarcina, whereas the sample from the pig manure digester contained detectable levels of only members of the Methanobacteriaceae. The acidic peat samples were dominated by both Methanosarcina spp. and members of the Fen cluster. In two of the manure digester samples only one methanogen group was detected, but in both of the acidic peat samples and two of the manure digester samples, multiple methanogen groups were detected. The TaqMan qPCR assays were successfully able to determine the environmental abundance of different phylogenetic groups of methanogens, including several groups with few or no cultivated members.Methanogens are integral to carbon cycling, catalyzing the production of methane and carbon dioxide, both potent greenhouse gases, during organic matter degradation in anaerobic soils and sediment (8). Methanogens are widespread in anaerobic environments, including tundra (36), freshwater lake and wetland sediments (9, 12), estuarine and marine sediments (2), acidic peatlands (4, 14), rice field soil (10, 16), animal guts (41), landfills (30), and anaerobic digesters treating animal manure (1), food processing wastewater (27), and municipal wastewater and solid waste (37, 57). Methane produced in anaerobic digesters may be captured and used for energy production, thus offsetting some or all of the cost of operation and reducing the global warming potential of methane release to the atmosphere.Methanogens are difficult to study through culture-based methods, and therefore many researchers have instead used culture-independent techniques to study methanogen populations. The 16S rRNA gene is the most widely used target for gene surveys, and a number of primers and probes have been developed to target methanogen groups (9, 11, 31, 36, 38, 40, 46, 48, 57). To eliminate potential problems with nonspecific amplification, some researchers have developed primers for the gene sequence of the α-subunit of the methyl coenzyme M reductase (mcrA) (17, 30, 49). The Mcr is exclusive to the methanogens with the exception of the methane-oxidizing Archaea (18) and shows mostly congruent phylogeny to the 16S rRNA gene, allowing mcrA analysis to be used in conjunction with, or independently of, that of the 16S rRNA gene (3, 30, 49). A number of researchers have examined methanogen communities with mcrA and have found uncultured clades quite different in sequence from cultured methanogen representatives (9, 10, 12, 14, 17, 22, 28, 47).Previous studies described methanogen communities by quantitation of different clades through the use of rRNA-targeted or rRNA gene-targeted probes with techniques such as dot blot hybridization (1, 27, 37, 38, 48) and fluorescent in situ hybridization (11, 40, 44, 57). Real-time quantitative PCR (qPCR) is an alternate technique capable of determining the copy number of a particular gene present in the DNA extracted from an environmental sample. Only a few studies have used qPCR to quantitatively examine different clades within methanogen communities, and most of these studies have exclusively targeted the 16S rRNA gene (19, 41, 42, 54-56). Far fewer researchers have used qPCR to quantify methanogen clades by targeting the mcrA (21, 34, 45), and these studies were limited to only a few phylogenetic groups.In this paper we present a methodology for determining methanogen gene copy numbers through the use of qPCR targeting the mcrA. Methanogens were quantified in total using methanogen-specific primers in SYBR green assays and also as members of nine different phylogenetic groups using TaqMan probes targeting specific subsets of methanogens.  相似文献   

15.
16.
17.
Newly designed primers for [Fe-Fe]-hydrogenases indicated that (i) fermenters, acetogens, and undefined species in a fen harbor hitherto unknown hydrogenases and (ii) Clostridium- and Thermosinus-related primary fermenters, as well as secondary fermenters related to sulfate or iron reducers might be responsible for hydrogen production in the fen. Comparative analysis of [Fe-Fe]-hydrogenase and 16S rRNA gene-based phylogenies indicated the presence of homologous multiple hydrogenases per organism and inconsistencies between 16S rRNA gene- and [Fe-Fe]-hydrogenase-based phylogenies, necessitating appropriate qualification of [Fe-Fe]-hydrogenase gene data for diversity analyses.Molecular hydrogen (H2) is important in intermediary ecosystem metabolism (i.e., processes that link input to output) in wetlands (7, 11, 12, 33) and other anoxic habitats like sewage sludges (34) and the intestinal tracts of animals (9, 37). H2-producing fermenters have been postulated to form trophic links to H2-consuming methanogens, acetogens (i.e., organisms capable of using the acetyl-coenzyme A [CoA] pathway for acetate synthesis) (7), Fe(III) reducers (17), and sulfate reducers in a well-studied moderately acidic fen in Germany (11, 12, 16, 18, 22, 33). 16S rRNA gene analysis revealed the presence of Clostridium spp. and Syntrophobacter spp., which represent possible primary and secondary fermenters, as well as H2 producers in this fen (11, 18, 33). However, H2-producing bacteria are polyphyletic (30, 31, 29). Thus, a structural marker gene is required to target this functional group by molecular methods. [Fe-Fe]-hydrogenases catalyze H2 production in fermenters (19, 25, 29, 30, 31), and genes encoding [Fe-Fe]-hydrogenases represent such a marker gene. The objectives of this study were to (i) develop primers specific for highly diverse [Fe-Fe]-hydrogenase genes, (ii) analyze [Fe-Fe]-hydrogenase genes in pure cultures of fermenters, acetogens, and a sulfate reducer, (iii) assess [Fe-Fe]-hydrogenase gene diversity in H2-producing fen soil enrichments, and (iv) evaluate the limitations of the amplified [Fe-Fe]-hydrogenase fragment as a phylogenetic marker.  相似文献   

18.
19.
20.
The cationic lytic peptide cecropin B (CB), isolated from the giant silk moth (Hyalophora cecropia), has been shown to effectively eliminate Gram-negative and some Gram-positive bacteria. In this study, the effects of chemically synthesized CB on plant pathogens were investigated. The S50s (the peptide concentrations causing 50% survival of a pathogenic bacterium) of CB against two major pathogens of the tomato, Ralstonia solanacearum and Xanthomonas campestris pv. vesicatoria, were 529.6 μg/ml and 0.29 μg/ml, respectively. The CB gene was then fused to the secretory signal peptide (sp) sequence from the barley α-amylase gene, and the new construct, pBI121-spCB, was used for the transformation of tomato plants. Integration of the CB gene into the tomato genome was confirmed by PCR, and its expression was confirmed by Western blot analyses. In vivo studies of the transgenic tomato plant demonstrated significant resistance to bacterial wilt and bacterial spot. The levels of CB expressed in transgenic tomato plants (∼0.05 μg in 50 mg of leaves) were far lower than the S50 determined in vitro. CB transgenic tomatoes could therefore be a new mode of bioprotection against these two plant diseases with significant agricultural applications.Bacterial plant diseases are a source of great losses in the annual yields of most crops (5). The agrochemical methods and conventional breeding commonly used to control these bacterially induced diseases have many drawbacks. Indiscriminate use of agrochemicals has a negative impact on human, as well as animal, health and contributes to environmental pollution. Conventional plant-breeding strategies have limited scope due to the paucity of genes with these traits in the usable gene pools and their time-consuming nature. Consequently, genetic engineering and transformation technology offer better tools to test the efficacies of genes for crop improvement and to provide a better understanding of their mechanisms. One advance is the possibility of creating transgenic plants that overexpress recombinant DNA or novel genes with resistance to pathogens (36). In particular, strengthening the biological defenses of a crop by the production of antibacterial proteins with other origins (not from plants) offers a novel strategy to increase the resistance of crops to diseases (35, 39, 41). These antimicrobial peptides (AMPs) include such peptides as cecropins (2, 15, 20, 23-24, 27, 31, 42, 50), magainins (1, 9, 14, 29, 47), sarcotoxin IA (35, 40), and tachyplesin I (3). The genes encoding these small AMPs in plants have been used in practice to enhance their resistance to bacterial and fungal pathogens (8, 22, 40). The expression of AMPs in vivo (mostly cecropins and a synthetic analog of cecropin and magainin) with either specific or broad-spectrum disease resistance in tobacco (14, 24, 27), potato (17, 42), rice (46), banana (9), and hybrid poplar (32) have been reported. The transgenic plants showed considerably greater resistance to certain pathogens than the wild types (4, 13, 24, 27, 42, 46, 50). However, detailed studies of transgenic tomatoes expressing natural cecropin have not yet been reported.The tomato (Solanum lycopersicum) is one of the most commonly consumed vegetables worldwide. The annual yield of tomatoes, however, is severely affected by two common bacterial diseases, bacterial wilt and bacterial spot, which are caused by infection with the Gram-negative bacteria Ralstonia solanacearum and Xanthomonas campestris pv. vesicatoria, respectively. Currently available pesticides are ineffective against R. solanacearum, and thus bacterial wilt is a serious problem.Cecropins, one of the natural lytic peptides found in the giant silk moth, Hyalophora cecropia (25), are synthesized in lipid bodies as proteins consisting of 31 to 39 amino acid residues. They adopt an α-helical structure on interaction with bacterial membranes, resulting in the formation of ion channels (12). At low concentrations (0.1 μM to 5 μM), cecropins exhibit lytic antibacterial activity against a number of Gram-negative and some Gram-positive bacteria, but not against eukaryotic cells (11, 26, 33), thus making them potentially powerful tools for engineering bacterial resistance in crops. Moreover, cecropin B (CB) shows the strongest activity against Gram-negative bacteria within the cecropin family and therefore has been considered an excellent candidate for transformation into plants to improve their resistance against bacterial diseases.The introduction of genes encoding cecropins and their analogs into tobacco has been reported to have contradictory results regarding resistance against pathogens (20). However, subsequent investigations of these tobacco plants showed that the expression of CB in the plants did not result in accumulation of detectable levels of CB, presumably due to degradation of the peptide by host peptidases (20, 34). Therefore, protection of CB from cellular degradation is considered to be vital for the exploitation of its antibacterial activity in transgenic plants. The secretory sequences of several genes are helpful, because they cooperate with the desired genes to enhance extracellular secretion (24, 40, 46). In the present study, a natural CB gene was successfully transferred into tomatoes. The transgenic plants showed significant resistance to the tomato diseases bacterial wilt and bacterial spot, as well as with a chemically synthesized CB peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号