首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
隋文  黄敏  孙长凯 《生命的化学》2007,27(2):161-163
近几年的研究表明,病毒内吞进入细胞的途径是多样化的。除了经典的网格蛋白介导的病毒内吞,还有小窝(caveolae)或脂筏(lipid raft)介导的病毒内吞。在研究过程中还发现了新的细胞器小窝体(caveosome)。小窝体甚至还与网格蛋白介导的内吞相关的细胞器(如内体)存在着联系。这些研究加深了我们对病毒的认识,为我们发现新的抗病毒药物打下基础。同时病毒可以作为一个有用的工具来研究细胞内吞的路径和与之相关的细胞器。使人类更加了解细胞本身的奥秘。  相似文献   

2.
3.
The collective properties of the lipids that form biological membranes give rise to a very high level of lateral organization within the membranes. Lipid-driven membrane organization allows the segregation of membrane-associated components into specific lipid rafts, which function as dynamic platforms for signal transduction, protein processing, and membrane turnover. A number of events essential for the functional integrity of the nervous system occur in lipid rafts and depend on lipid raft organization. Alterations of lipid composition that lead to abnormal lipid raft organization and consequent deregulation of lipid raft-dependent signaling are often associated with neurodegenerative diseases. The amyloidogenic processing of proteins involved in the pathogenesis of major nervous system diseases, including Alzheimer’s disease and Parkinson’s disease, requires lipid raft-dependent compartmentalization at the membrane level. Improved understanding of the forces that control lipid raft organization will facilitate the development of novel strategies for the effective prevention and treatment of neurodegenerative and age-related brain diseases.  相似文献   

4.
5.
Integrin-mediated adhesion regulates the recruitment of the small GTPase Rac to the plasma membrane and subsequent activation of downstream signaling. We recently reported that Rac binds preferentially to cholesterol-rich membranes (“lipid rafts”), and integrins regulate Rac function by preventing the internalization of its binding sites within these domains. Regulation of lipid rafts by integrins may be important for the spatial control of cell migration and signaling pathways involved in anchorage-dependent cell growth.  相似文献   

6.
脂筏的结构与功能   总被引:9,自引:1,他引:9  
脂筏是膜脂双层内含有特殊脂质及蛋白质的微区.小窝是脂筏的一种类型,由胆固醇、鞘脂及蛋白质组成,以小窝蛋白为标记蛋白.脂筏的组分和结构特点有利于蛋白质之间相互作用和构象转化,可以参与信号转导和细胞蛋白质运转.一些感染性疾病、心血管疾病、肿瘤、肌营养不良症及朊病毒病等可能与脂筏功能紊乱有着密切的关系.  相似文献   

7.
8.
9.
流感病毒造成的季节性流行性疾病给全世界带来沉重的健康负担.近年来,甲型流感病毒的变种H5N1、H7N9给各国带来了很大危害.流感病毒属于正黏附病毒科,它的遗传物质由多个节段的负链RNA组成,其组装和出芽剪切生殖是一个涉及到多种病毒因子,多步骤、复杂的生化过程.流感病毒会使用宿主的细胞膜上的"脂筏"区域作为病毒出芽位点.首先病毒的两种糖蛋白NA蛋白、HA蛋白会在脂筏区域聚集,造成脂筏区膜变形弯曲,并且发动出芽的过程.接着,流感病毒基质蛋白M1的C端与HA、NA结合,其自身在脂筏区域开始多聚化并使膜向外弯曲形成原始病毒体的内部结构,接着招募病毒的核糖核蛋白复合物(VRNP)与M2蛋白,使组装的过程进一步完成.最后,M2蛋白会富集在原始病毒体的底部,完成膜的剪切和病毒体的释放.  相似文献   

10.
11.
脂筏在病毒感染中的作用   总被引:3,自引:0,他引:3  
脂筏是细胞膜上富含鞘脂和胆固醇的微区结构,广泛分布于细胞的膜系统.脂筏中含有诸多信号分子和免疫受体,在细胞的生命活动中扮演非常重要的角色.更为重要的是,脂筏为细胞表面发生的蛋白质-蛋白质和蛋白质-脂类分子间的相互作用提供了平台.研究表明,很多病毒可以利用细胞膜表面的脂筏结构介导其侵入宿主细胞,一些病毒可以借助脂筏结构完成病毒颗粒的组装和出芽.本文将综述不同类型的病毒如SV40、HIV等借助脂筏完成入侵以及流感病毒等利用脂筏完成组装和出芽的证据及机理,并概述目前研究病毒与脂筏相互作用的方法及存在的问题.深入研究脂筏在病毒感染中的作用,将有助于对病毒与宿主细胞的相互作用的理解,从而可能发现新的、有效的对抗病毒的方法。  相似文献   

12.
The recent Keystone Symposium on Lipid Rafts and Cell Function (March 23-28, 2006 in Steamboat Springs, CO) brought together biophysicists, biochemists, and cell biologists to discuss the structure and function of lipid rafts. What emerged from the meeting was a consensus definition of a membrane raft: "Membrane rafts are small (10-200 nm), heterogeneous, highly dynamic, sterol- and sphingolipid-enriched domains that compartmentalize cellular processes. Small rafts can sometimes be stabilized to form larger platforms through protein-protein and protein-lipid interactions." This definition helps to clarify current thinking in a field that has been plagued by the heterogeneous and sometimes ephemeral nature of its subject.  相似文献   

13.
14.
Steady-state surface levels of the apical Na/K/2Cl cotransporter NKCC2 regulate NaCl reabsorption by epithelial cells of the renal thick ascending limb (THAL). We reported that constitutive endocytosis of NKCC2 controls NaCl absorption in native THALs; however, the pathways involved in NKCC2 endocytosis are unknown. We hypothesized that NKCC2 endocytosis at the apical surface depends on dynamin-2 and clathrin. Measurements of steady-state surface NKCC2 and the rate of NKCC2 endocytosis in freshly isolated rat THALs showed that inhibition of endogenous dynamin-2 with dynasore blunted NKCC2 endocytosis by 56 ± 11% and increased steady-state surface NKCC2 by 67 ± 27% (p < 0.05). Expression of the dominant negative Dyn2K44A in THALs slowed the rate of NKCC2 endocytosis by 38 ± 8% and increased steady-state surface NKCC2 by 37 ± 8%, without changing total NKCC2 expression. Inhibition of clathrin-mediated endocytosis with chlorpromazine blunted NKCC2 endocytosis by 54 ± 6%, while preventing clathrin from interacting with synaptojanin also blunted NKCC2 endocytosis by 52 ± 5%. Disruption of lipid rafts blunted NKCC2 endocytosis by 39 ± 4% and silencing caveolin-1 by 29 ± 4%. Simultaneous inhibition of clathrin- and lipid raft-mediated endocytosis completely blocked NKCC2 internalization. We concluded that dynamin-2, clathrin, and lipid rafts mediate NKCC2 endocytosis and maintain steady-state apical surface NKCC2 in native THALs. These are the first data identifying the endocytic pathway for apical NKCC2 endocytosis.  相似文献   

15.
We have demonstrated that antibody-mediated crosslinking of GPI-anchored TAG-1 induced activation of src-family kinase Lyn and rapid tyrosine phosphorylation of an 80-kDa protein (p80), a putative substrate for Lyn, in the lipid raft fraction prepared from primary cerebellar cultures, suggesting the functional association of TAG-1 with Lyn in lipid rafts of the rat cerebellum. In this study, the association was confirmed using a cDNA expression system. TAG-1-expressing CHO transfectants exhibited enhanced self-aggregation and promoted neurite outgrowth of primary cerebellar cultures as a culture substrate. The anti-TAG-1 antibody co-immunoprecipitated Lyn with TAG-1 and induced co-patching of TAG-1 with Lyn in both TAG-1 and Lyn-expressing CHO transfectants. Density gradient analysis revealed that TAG-1 is present in the lipid raft fraction of the CHO transfectants. Furthermore, pretreatment with a sphingolipid biosynthesis inhibitor ISP-1 reduced the extent of tyrosine phosphorylation of p80 by the antibody-mediated crosslinking of TAG-1. Immunocytochemical study showed that both TAG-1 and Lyn are present in cerebellar granule cells. These observations suggest that TAG-1 associates with Lyn in lipid rafts of rat cerebellar granule cells.  相似文献   

16.
17.
18.
李力力  曹亚 《生命的化学》2005,25(3):221-224
在脂筏和胞膜窖中存在有多种参与细胞信号转导的跨膜蛋白质,在细胞内或/和细胞外信号的刺激下。脂筏能改变蛋白质的大小和组成,有助于特异的蛋白质与蛋白质之间的相互作用,从而导致了信号级联反应的激活。脂筏在细胞信号转导事件中的重要作用已越来越受到人们的关注。  相似文献   

19.
Astrocyte endfeet surrounding blood vessels are active domains involved in water and potassium ion transport crucial to the maintenance of water and potassium ion homeostasis in brain. A growing body of evidence points to a role for dystroglycan and its interaction with perivascular laminin in the targeting of the dystrophin complex and the water-permeable channel, aquaporin 4 (AQP4), at astrocyte endfeet. However, the mechanisms underlying such compartmentalization remain poorly understood. In the present study we found that AQP4 resided in Triton X-100-insoluble fraction, whereas dystroglycan was recovered in the soluble fraction in astrocytes. Cholesterol depletion resulted in the translocation of a pool of AQP4 to the soluble fraction indicating that its distribution is indeed associated with cholesterol-rich membrane domains. Upon laminin treatment AQP4 and the dystrophin complex, including dystroglycan, reorganized into laminin-associated clusters enriched for the lipid raft markers GM1 and flotillin-1 but not caveolin-1. Reduced diffusion rates of GM1 in the laminin-induced clusters were indicative of the reorganization of raft components in these domains. In addition, both cholesterol depletion and dystroglycan silencing reduced the number and area of laminin-induced clusters of GM1, AQP4, and dystroglycan. These findings demonstrate the interdependence between laminin binding to dystroglycan and GM1-containing lipid raft reorganization and provide novel insight into the dystrophin complex regulation of AQP4 polarization in astrocytes.The basement membrane is a specialized extracellular matrix (ECM)2 composed of collagen, fibronectin, perlecan, agrin, and laminin. Several studies have focused on the involvement of these ECM molecules in the formation and maturation of neuromuscular junctions (14) and interneuronal synapses (5). More recently, much effort has been made by our group and others to understand the role of these molecules at the interface of astroglia and blood vessels (68). Laminin is highly expressed at the perivascular ECM, and the laminin receptor, dystroglycan (α-DG), together with many other components of the dystrophin-associated protein (DAP) complex, is particularly enriched at astrocyte endfeet abutting the blood vessels (911). The binding of laminin to α-DG at these specialized astrocyte domains in brain plays a key role in the polarized distribution of components of the DAP complex (6, 12).Multiple lines of evidence indicate that the DAP complex is crucial for the functional distribution both of the water-permeable channel, AQP4, and the inwardly rectifying potassium channel, Kir4.1, at astrocyte endfeet. Indeed, mutations in the dystrophin gene, deletion of α-syntrophin, or loss of laminin binding to α-DG caused by a mutation in the Large1 glycosyltransferase result in a dramatic reduction of the expression of AQP4 and Kir4.1 at perivascular astrocyte endfeet (6, 7, 1215). The mislocalization of AQP4 in the dystrophin mutant and α-syntrophin null mice results in delayed onset of brain edema and K+ clearance (1618). Collectively, these studies highlight a cooperative role of the ECM and both the extracellular and cytoplasmic components of the DAP complex in the proper targeting of proteins to functional domains of astrocytes leading to the regulation of electrolyte balance and fluid movement.Although the role of DG in targeting other members of the DAP complex (6) as well as AQP4 and Kir4.1 to astrocyte endfeet has been well established (12), the mechanisms underlying this highly organized distribution remain poorly understood. In C2C12 myotubes, agrin triggers AChR clustering, a DG-dependent process, through the coalescence of lipid rafts, which is necessary for proper AChR gating functions (1921). In oligodendrocytes, laminin induces the relocalization of α6β1 integrin to lipid rafts containing PDGFαR, thereby providing a potential mechanism for the incorporation of cell survival signals (22). Lipid rafts are defined as small (10–200 nm), heterogeneous, highly dynamic, sterol- and sphingolipid-enriched domains that compartmentalize cellular processes. These small rafts can sometimes be stabilized to form larger platforms through protein-protein and protein-lipid interactions (23). Indeed, the immunological synapse is a good example where rafts are brought together to form large functional membrane domains (24). At the immunological synapse, agrin induces the clustering of lipid rafts and their colocalization with CD3 and CD28 complex surface antigens as well as with Lck tyrosine kinase leading to T cell activation (24). Together, these studies provide evidence for a functional role of ligand-induced clustering of lipid rafts.We have previously shown that laminin induces the coclustering of the DAP complex with Kir4.1 and AQP4 in glial cell cultures (8, 25). Moreover, in vivo studies have shown that the perivascular localization of these channels and several components of the DAP complex at astrocyte endfeet require the interaction of laminin with α-DG (6, 12). In light of these data we asked whether lipid rafts contribute to the laminin-DG-dependent compartmentalization of the DAP complex and AQP4 to key active domains of astrocytes. We show here using fluorescently labeled cholera toxin subunit B (CtxB), a common marker for GM1-containing lipid rafts, that laminin induces a dramatic reorganization of GM1 into large clusters or macrodomains that colocalize extensively with components of the DAP complex in cortical astrocyte cultures. Laminin-mediated clustering of AQP4 is dependent both on cholesterol-sensitive lipid rafts and the DAP complex bringing novel insight into ECM-dependent membrane domain organization and the mechanisms underlying the polarized distribution of these proteins in astrocytes.  相似文献   

20.
The RET receptor tyrosine kinase (RTK) contributes to kidney and nervous system development, and is implicated in a number of human cancers. RET is expressed as two protein isoforms, RET9 and RET51, with distinct interactions and signaling properties that contribute to these processes. RET isoforms are internalized from the cell surface into endosomal compartments in response to glial cell line‐derived neurotropic factor (GDNF) ligand stimulation but the specific mechanisms of RET trafficking remain to be elucidated. Here, we used total internal reflection fluorescence (TIRF) microscopy to demonstrate that RET internalization occurs primarily through clathrin coated pits (CCPs). Activated RET receptors colocalize with clathrin, but not caveolin. The RET51 isoform is rapidly and robustly recruited to CCPs upon GDNF stimulation, while RET9 recruitment occurs more slowly and is less pronounced. We showed that the clathrin‐associated adaptor protein complex 2 (AP2) interacts directly with each RET isoform through its AP2 μ subunit, and is important for RET internalization. Our data establish that interactions with the AP2 complex promote RET receptor internalization via clathrin‐mediated endocytosis but that RET9 and RET51 have distinct internalization kinetics that may contribute to differences in their biological functions.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号