首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Imprinted gene expression corresponds to parental allele-specific DNA CpG methylation and chromatin composition. Histone tail covalent modifications have been extensively studied, but it is not known whether modifications in the histone globular domains can also discriminate between the parental alleles. Using multiplex chromatin immunoprecipitation-single nucleotide primer extension (ChIP-SNuPE) assays, we measured the allele-specific enrichment of H3K79 methylation and H4K91 acetylation along the H19/Igf2 imprinted domain. Whereas H3K79me1, H3K79me2, and H4K91ac displayed a paternal-specific enrichment at the paternally expressed Igf2 locus, H3K79me3 was paternally biased at the maternally expressed H19 locus, including the paternally methylated imprinting control region (ICR). We found that these allele-specific differences depended on CTCF binding in the maternal ICR allele. We analyzed an additional 11 differentially methylated regions (DMRs) and found that, in general, H3K79me3 was associated with the CpG-methylated alleles, whereas H3K79me1, H3K79me2, and H4K91ac enrichment was specific to the unmethylated alleles. Our data suggest that allele-specific differences in the globular histone domains may constitute a layer of the “histone code” at imprinted genes.Imprinted genes are defined by the characteristic monoallelic silencing of either the paternally or maternally inherited allele. Most imprinted genes exist in imprinted gene clusters (10), and these clusters are usually associated with one or more differentially methylated regions (DMRs) (27, 65). DNA methylation at DMRs is essential for the allele-specific expression of most imprinted genes (31). Maternal or paternal allele-specific DNA methylation of a subset of DMRs (germ line DMRs) is gamete specific (27, 39). These maternal or paternal methylation differences are established during oogenesis or spermatogenesis, respectively, by the de novo DNA methyltransferases Dnmt3a and Dnmt3b together with Dnmt3L (5, 26, 48). The gamete-specific methylation differences set the stage for the parental allele-specific action of germ line DMRs, some of which have been shown to control the monoallelic expression of the associated genes in the respective domains (11, 34, 36, 53, 66, 71-73, 77). These DMRs are called imprinting control regions (ICRs).Two recurring themes have been reported for ICR action. ICRs can function as DNA methylation-regulated promoters of a noncoding RNA or as methylation-regulated insulators. Recent evidence suggests that both of these mechanisms involve chromatin organization by either the noncoding RNA (45, 50) or the CTCF insulator protein (17, 32) along the respective imprinted domains. The CTCF insulator binds in the unmethylated maternal allele of the H19/Igf2 ICR and blocks the access of the Igf2 promoters to the shared downstream enhancers. CTCF cannot bind in the methylated paternal ICR allele; hence, here the Igf2 promoters have access to the enhancers (4, 18, 24, 25, 62). When CTCF binding is abolished in the ICR of the maternal allele, Igf2 expression becomes biallelic, and H19 expression is missing from both alleles (17, 52, 58, 63). Importantly, CTCF is the single major organizer of the allele-specific chromatin along the H19/Igf2 imprinted domain (17). Significantly, CTCF recruits, at a distance, Polycomb-mediated H3K27me3 repressive marks at the Igf2 promoter and at the Igf2 DMRs (17, 32).A role for chromatin composition is suggested in the parental allele-specific expression of imprinted genes. Repressive histone tail covalent modifications, such as H3K9me2 H3K9me3, H4K20me3, H3K27me3, and the symmetrically methylated H4R3me2 marks, are generally associated with the methylated DMR alleles, while activating histone tail covalent modifications, such as acetylated histone tails and also H3K4me2 and H3K4me3, are characteristic of the unmethylated alleles (7-9, 12-15, 17, 21, 33, 35, 43, 44, 51, 55, 56, 67, 69, 74, 75). Importantly, the maintenance of imprinted gene expression depends on the allele-specific chromatin differences. ICR-dependent H3K9me2 and H3K27me3 enrichment in the paternal allele (67) is required for paternal repression of a set of imprinted genes along the Kcnq1 imprinted domain in the placenta (30). Imprinted Cdkn1c and Cd81 expression depends on H3K27 methyltransferase Ezh2 activity in the extraembryonic ectoderm (64). Similarly, H3K9 methyltransferase Ehmt2 is required for parental allele-specific expression of a number of imprinted genes, including Osbpl5, Cd81, Ascl2, Tfpi2, and Slc22a3 in the placenta (44, 45, 70).There is increasing evidence that covalent modifications, not only in the histone tails but also in the histone globular domains, carry essential information for development and gene regulation. The H3K79 methyltransferase gene is essential for development in Drosophila (60) and in mice (22). H3K79 methylation is required for telomeric heterochromatin silencing in Drosophila (60), Saccharomyces cerevisiae (47, 68), and mice (22). The H4K91 residue regulates nucleosome assembly (76). Whereas mutations at single acetylation sites in the histone tails have only minor consequences, mutation of the H4K91 site in the histone H4 globular domain causes severe defects in silent chromatin formation and DNA repair in yeast (37, 42, 76).Contrary to the abundant information that exists regarding the allele-specific chromatin composition at DMRs of imprinted genes, no information is available about the parental allele-specific marking in the histone globular domains at the DMRs. We hypothesized that chromatin marks in the globular domains of histones also distinguish the parental alleles of germ line DMRs. In order to demonstrate this, we measured the allele-specific enrichment of H3K79me1, H3K79me2, H3K79me3, and H4K91ac at 11 mouse DMRs using quantitative multiplex chromatin immunoprecipitation-single nucleotide primer extension (ChIP-SNuPE) assays. In general, H3K79me3 was associated with the methylated allele at most DMRs, whereas the unmethylated allele showed enrichment for H3K79me1, H3K79me2, and H4K91ac. These results are consistent with the possibility that allele-specific differences in the globular domains of histones contribute to the “histone code” at DMRs.  相似文献   

3.
4.
5.
6.
7.
8.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

9.
10.
11.
12.
Separase is a critical protease that catalyzes the cleavage of sister chromatid cohesins to allow the separation of sister chromatids in the anaphase. Its activity must be inhibited prior to the onset of the anaphase. Two inhibitory mechanisms exist in vertebrates that block the protease activity. One mechanism is through binding and inhibition by securin, and another is phosphorylation on Ser1126 (in humans [Ser1121 in mice]). These two mechanisms are largely redundant. However, phosphorylation on Ser1121 is critical for the prevention of premature sister separation in embryonic germ cells. As a result, Ser1121-to-Ala mutation leads to depletion of germ cells in development and subsequently to infertility in mice. Here, we report that the same mutation also causes embryogenesis failure between the 8- and 16-cell stages in mice. Our results indicate a critical role of separase phosphorylation in germ cell development as well as in early embryogenesis. Thus, deregulation of separase may be a significant contributor to infertility in humans.Sister chromatids are held together by a multisubunit complex called cohesin composed of Smc1 and -3 and Scc1 and -3 (24). To separate the sister chromosomes, cohesin complexes are removed in a two-step process. First, cohesins on chromosome arms are removed by Plk1- and Aurora B-mediated phosphorylation before the anaphase (4, 8, 19, 20, 31, 35). Second, the centromere-localized cohesins, which are protected by Sgo and PP2A from phosphorylation-mediated removal (13, 21, 28, 29, 32), are cleaved by a protease called separase at the onset of the anaphase (33, 34). Prior to the anaphase, separase is inhibited by securin and by phosphorylation, which is most likely catalyzed by cyclin B1/Cdk1. phosphorylation by cyclin B1/Cdk1 per se is not inhibitory to separase. Rather, the phosphorylation allows the binding of cyclin B1/Cdk1 as an inhibitor to separase (5). Two phosphorylation sites in separase, Ser1126 and Thr1326 (Ser1121 and Thr1321 in mice, respectively), that are important for the inhibition have been identified (30). Activation of separase depends on the function of the E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C), since both securin and cyclin B1 are substrates of APC/C (1-3, 15, 16, 23, 25, 27, 36). Given that APC/C is inhibited by the spindle assembly checkpoint, separation of sister chromatids therefore cannot occur until the checkpoint is satisfied. Thus, the spindle assembly checkpoint prevents premature sister separation and ensures chromosomal stability.Missegregation of chromosomes has dire consequences. It causes genetic imbalances that may transform cells and lead to cancer development in somatic tissues. In germ lines, missegregation in either meiosis I, mainly manifested as nondisjunction of homologue chromosomes, or meiosis II, manifested as premature sister chromatid separation, will generate aneuploid gametes, directly affecting the fecundity of an organism (26, 37). Although the molecular mechanisms underlying chromosome segregation errors in meiosis are still not clear (6), deregulation of separase, either directly or indirectly, is likely a significant contributor.We previously showed that securin and separase phosphorylation are redundant in almost all somatic tissues, as mice lacking either separase inhibitory mechanism are essentially normal (9, 22). However, phosphorylation of separase is uniquely required during germ line development (9). Mice carrying a nonphosphorylatable separase (S1121A) allele are sterile, largely due to depletion of germ cells during embryogenesis. The failure of the germ cells to reach sexually mature stages in the mutant mice prevented us from assessing the function of the inhibitory phosphorylation of separase in meiosis. Here we report our analysis of mice with an oocyte-specific S1121A mutation in separase. We found that these mice were still infertile. However, the infertility was not a result of meiotic errors caused by the mutant separase but was rather a failure of early embryogenesis of zygotes carrying the mutant allele prior to the 16-cell stage.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号