首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Cytotherapy》2014,16(7):893-905
Background aimsCord blood (CB) and amniotic fluid (AF) could represent new and attractive mesenchymal stromal cell (MSC) sources, but their potential therapeutic applications are still limited by lack of standardized protocols for isolation and differentiation. In particular, chondrogenic differentiation has never been deeply investigated.MethodsMSCs were obtained from CB and AF samples collected during cesarean sections at term and compared for their biological and differentiation properties, with particular interest in cartilage differentiation, in which quantitative real-time polymerase chain reaction and immunohistochemical analyses were performed to evaluate the expression of type 2 collagen, type 10 collagen, SRY-box9 and aggrecan.ResultsWe were able to isolate MSCs from 12 of 30 (40%) and 5 of 20 (25%) CB and AF units, respectively. Fluorescence in situ hybridization analysis indicated the fetal origin of isolated MSC strains. Both populations expressed mesenchymal but not endothelial and hematopoietic markers, even though we observed a lower expression of human leukocyte antigen (HLA) I in CB-MSCs. No differences in proliferation rate and cell cycle analysis could be detected. After osteogenic induction, both populations showed matrix mineralization and typical marker expression. Under chondrogenic conditions, pellets derived from CB-MSCs, in contrast with AF-MSCs pellets, were significantly larger, showed cartilage-like morphology and resulted positive for chondrocyte-associated markers, such as type 2 collagen, type 10 collagen, SRY-box9 and aggrecan.ConclusionsOur results show that CB-MSCs and AF-MSCs collected at term differ from each other in their biological and differentiation properties. In particular, only CB-MSCs showed a clear chondrogenic potential and thus could represent an ideal candidate for cartilage-tissue engineering.  相似文献   

2.
Mesenchymal stromal cells (MSCs) have been widely exploited for the treatment of several conditions due to their intrinsic regenerative and immunomodulatory properties. MSC have demonstrated to be particularly relevant for the treatment of ischemic diseases, where MSC-based therapies can stimulate angiogenesis and induce tissue regeneration. Regardless of the condition targeted, recent analyses of MSC-based clinical trials have demonstrated limited benefits indicating a need to improve the efficacy of this cell product. Preconditioning MSC ex vivo through microenvironment modulation was found to improve MSC survival rate and thus prolong their therapeutic effect. This workstudy aims at enhancing the in vitro angiogenic capacity of a potential MSC-based medicinal product by comparing different sources of MSC and culture conditions. MSC from three different sources (bone marrow [BM], adipose tissue [AT], and umbilical cord matrix [UCM]) were cultured with xenogeneic-/serum-free culture medium under static conditions and their angiogenic potential was studied. Results indicated a higher in vitro angiogenic capacity of UCM MSC, compared with cells derived from BM and AT. Physicochemical preconditioning of UCM MSC through a microcarrier-based culture platform and low oxygen concentration (2% O2, compared with atmospheric air) increased the in vitro angiogenic potential of the cultured cells. Envisaging the clinical manufacturing of an allogeneic, off-the-shelf MSC-based product, preconditioned UCM MSC maintain the angiogenic gene expression profile upon cryopreservation and delivery processes in the conditions of our study. These results are expected to contribute to the development of MSC-based therapies in the context of angiogenesis.  相似文献   

3.
Perivascular cells are known to be ancestors of mesenchymal stem cells (MSCs) and can be obtained from heart, skin, bone marrow, eye, placenta and umbilical cord (UC). However detailed characterization of perivascular cells around the human UC vein and comparative analysis of them with MSCs haven’t been done yet. In this study, our aim is to isolate perivascular cells from human UC vein and characterize them versus UC blood MSCs (UCB-MSCs). For this purpose, perivascular cells around the UC vein were isolated enzymatically and then purified with magnetic activated cell sorting (MACS) method using CD146 Microbead Kit respectively. MSCs were isolated from UCB by Ficoll density gradient solution. Perivascular cells and UCB-MSCs were characterized by osteogenic and adipogenic differentiation procedures, flow cytometric analysis [CD146, CD105, CD31, CD34, CD45 and alpha-smooth muscle actin (α-SMA)], and immunofluorescent staining (MAP1B and Tenascin C). Alizarin red and Oil red O staining results showed that perivascular cells and MSCs had osteogenic and adipogenic differentiation capacity. However, osteogenic differentiation capacity of perivascular cells were found to be less than UCB-MSCs. According to flow cytometric analysis, CD146 expression of perivascular cells were appeared to be 4.8-fold higher than UCB-MSCs. Expression of α-SMA, MAP1B and Tenascin-C from perivascular cells was determined by flow cytometry analysis and immunfluorescent staining. The results appear to support the fact that perivascular cells are the ancestors of MSCs in vascular area. They may be used as alternative cells to MSCs in the field of vascular tissue engineering.  相似文献   

4.
5.
Background aimsStem cells provide a promising source for treatment of type 1 diabetes, but the treatment strategy and mechanism remain unclear. The aims of this study were to investigate whether co-transplantation of umbilical cord-derived mesenchymal stromal cells (UC-MSCs) and cord blood mononuclear cells (CB-MNCs) could reverse hyperglycemia in type 1 diabetic mice and to determine the appropriate ratio for co-transplantation. The treatment mechanism was also studied.MethodsA simple and efficient isolation method was developed to generate qualified UC-MSCs. UC-MSCs and CB-MNCs were then transplanted into type 1 diabetic mice at different ratios (UC-MSCs to CB-MNCs = 1:1, 1:4, 1:10) to observe the change in blood glucose concentration. Histology, immunohistochemistry, and human Alu polymerase chain reaction assay were performed to evaluate for the presence of donor-derived cells and the repair of endogenous islets. We also induced UC-MSCs into islet-like cells under specific culture conditions to determine their differentiate potential in vitro.ResultsCo-transplantation of UC-MSCs and CB-MNCs at a ratio of 1:4 effectively reversed hyperglycemia in diabetic mice. The detection of human Alu sequence indicated that the engraftment of donor-derived cells had homed into the recipient's pancreas and kidney. Although neither human insulin nor human nuclei antigen was detected in the regenerated pancreas, UC-MSCs could differentiate into insulin-secreted cells in vitro.ConclusionsCo-transplantation of UC-MSCs and CB-MNCs at a ratio of 1:4 could efficiently reverse hyperglycemia and repair pancreatic tissue.  相似文献   

6.
Bone marrow mesenchymal stromal cells (BM-MSCs) are multipotent cells capable of differentiating toward osteoblatic and adipocytic phenotypes. BM-MSCs play several key roles including bone remodeling, establishment of hematopoietic niche and immune tolerance induction. Here, we investigated the effect of resveratrol (RSV), a therapeutically promising natural polyphenol, on the commitment of human BM-MSCs primary cultures. Cell differentiation was evaluated by means of morphological analysis, specific staining and expression of osteogenic and adipocytic master genes (Runx-2, PPARγ). To maintain BM-MSC multipotency, all experiments were performed on cells at very early passages. At any concentration RSV, added to standard medium, did not affect the phenotype of confluent BM-MSCs, while, when added to osteogenic or adipogenic medium, 1 μM RSV enhances the differentiation toward osteoblasts or adipocytes, respectively. Conversely, the addition of higher RSV concentration (25 μM) to both differentiation media resulted exclusively in BM-MSCs adipogenesis. Surprisingly, the analysis of RSV molecular effects demonstrated that the compound completely substitutes insulin, a key component of adipogenic medium. We also observed that RSV treatment is associated to enhanced phosphorylation of CREB, a critical effector of insulin adipogenic activity. Finally, our observations contribute to the mechanistic elucidation of the well-known RSV positive effect on insulin sensitivity and type 2 diabetes mellitus.  相似文献   

7.
《Cytotherapy》2014,16(10):1371-1383
Background aimsThe purpose of this study was to examine neurotrophic and neuroprotective effects of limbus stroma-derived mesenchymal stromal cells (L-MSCs) on cortical neurons in vitro and in vivo.MethodsCultured L-MSCs were characterized by flow cytometry and immunofluorescence through the use of specific MSC marker antibodies. Conditioned media were collected from normoxia- and hypoxia-treated L-MSCs to assess neurotrophic effects. Neuroprotective potentials were evaluated through the use of in vitro hypoxic cortical neuron culture and in vivo rat focal cerebral ischemia models. Neuronal morphology was confirmed by immunofluorescence with the use of anti-MAP2 antibody. Post-ischemic infarct volume and motor behavior were assayed by means of triphenyltetrazolium chloride staining and open-field testing, respectively. Human growth antibody arrays and enzyme-linked immunoassays were used to analyze trophic/growth factors contained in conditioned media.ResultsIsolated human L-MSCs highly expressed CD29, CD90 and CD105 but not CD34 and CD45. Mesenchymal lineage cell surface expression pattern and differentiation capacity were identical to MSCs derived form human bone marrow and adipose tissue. The L-MSC normoxic and hypoxic conditioned media both promoted neurite outgrowth in cultured cortical neurons. Hypoxic conditioned medium showed superior neurotrophic function and neuroprotective potential with reduced ischemic brain injury and improved functional recovery in rat focal cerebral ischemia models. Human growth factor arrays and enzyme-linked immunoassays measurements showed neuroprotective and growth-associated cytokines (vascular endothelial growth factor [VEGF], VEGFR3, brain-derived neurotrophic factor, insulin-like growth factor -2 and hepatocyte growth factor) contained in conditioned media. Hypoxic exposure caused VEGF and brain-derived neurotrophic factor upregulation, possibly contributing to neurotrophic and neuroprotective effects.ConclusionsL-MSCs can secrete various neurotrophic factors stimulating neurite outgrowth and protecting neurons against brain ischemic injury through paracrine mechanism.  相似文献   

8.
9.
Umbilical cord blood serum (UCBS) is a promising replacement for animal sera for the culture of human mesenchymal stem cells (hMSC), the unique serum composition of UCBS appearing to have variable effects on their proliferation and differentiation. Conditioning UCBS with methods such as charcoal stripping assists specific processes such as adipogenesis and osteogenesis in hMSCs. The charcoal stripping of serum removes lipophilic materials such as oestrogens, which are known inhibitors of adipogenesis. hMSC cultures supplemented with charcoal-stripped UCBS (CS-UCBS) show enhanced adipogenesis in adipogenic induction medium (AIM) containing indomethacin, 3-isobutyl-1-methylxanthine and dexamethasone. To obtain efficient adipogenesis without CS-UCBS, we have developed a modified protocol in which cells cultured separately with UCBS and CS-UCBS are constantly treated with minimal doses of insulin (1.1 μg/ml) for 10 days prior to the addition of AIM. hMSC cultures differentiated by using the modified protocol show improved adipogenesis under fetal bovine serum (FBS), UCBS and CS-UCBS conditions, with levels of adipogenesis being highest in UCBS, thereby eliminating the need for charcoal stripping. Furthermore, in each of the three sera, the insulin-pre-treated hMSCs accumulate lipid droplets faster and exhibit improved adipogenesis overall when compared with normal AIM-induced adipogenesis. We have also compared the levels of osteogenesis in hMSCs by using an induction medium devoid of dexamethasone. Maximum calcium deposition has been observed in hMSCs cultured with UCBS, as compared with those cultured with FBS or CS-UCBS. Our newly developed methods with a humanized serum supplement thus enhance the differentiation of cultured hMSCs.  相似文献   

10.
Mesenchymal stem cells (MSCs) isolated from umbilical cord blood (UCB) in equines have not been well characterized with respect to the expression of pluripotency and mesenchymal markers and for tenogenic differentiation potential in vitro. The plastic adherent fibroblast-like cells isolated from 13 out of 20 UCB samples could proliferate till passage 20. The cells expressed pluripotency markers (OCT4, NANOG, and SOX2) and MSC surface markers (CD90, CD73, and CD105) by RT-PCR, but did not express CD34, CD45, and CD14. On immunocytochemistry, the isolated cells showed expression of CD90 and CD73 proteins, but tested negative for CD34 and CD45. In flow cytometry, CD29, CD44, CD73, and CD90 were expressed by 96.36??±?1.28%, 93.40??±?0.70%, 73.23??±?1.29% and 46.75??±?3.95% cells, respectively. The UCB-MSCs could be differentiated to tenocytes by culturing in growth medium supplemented with 50 ng/ml of BMP-12 by day 10. The differentiated cells showed the expression of mohawk homeobox (Mkx), collagen type I alpha 1 (Col1α1), scleraxis (Scx), tenomodulin (Tnmd) and decorin (Dcn) by RT-PCR. In addition, flow cytometry detected tenomodulin and decorin protein in 95.65?±?2.15% and 96.30?±?1.00% of differentiated cells in comparison to 11.30?±?0.10% and 19.45?±?0.55% cells, respectively in undifferentiated control cells. The findings support the observation that these cells may be suitable for therapeutic applications, including ruptured tendons in racehorses.  相似文献   

11.
Mesenchymal stem cells (MSCs) are promising candidates for cell therapy and tissue engineering, but their application has been impeded by lack of knowledge of their core biological properties. In order to identify MSC-specific proteins, the hydrophobic protein fraction was individually prepared from two different umbilical cord blood (UCB)-derived MSC populations; these were then subjected to two-dimensional (2D) gel electrophoresis and peptide mass fingerprinting matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)-mass spectrometry (MS). Although the 2D gel patterns differed somewhat between the two samples, computer-assisted image analysis identified shared protein spots. 35 spots were reliably identified corresponding to 32 different proteins, many of which were chaperones. Based on their primary sub-cellular locations the proteins could be grouped into 6 categories: extracellular, cell surface, endoplasmic reticular, mitochondrial, cytoplasmic and cytoskeletal proteins. This map of the water-insoluble proteome may provide valuable insights into the biology of the cell surface and other compartments of human MSCs.  相似文献   

12.
《Cytotherapy》2022,24(2):110-123
Mesenchymal stromal cells (MSCs) are very advantageous in the field of regenerative medicine because of their immunomodulatory properties. However, reports show that these properties vary from source to source. Hence, understanding the source-dependent specificity of MSCs and their immunomodulatory abilities will enable optimal use of MSCs in cell-based therapies. Here, we studied human MSCs from three different sources, adipose tissue (AT), bone marrow (BM) and Wharton's jelly (WJ), with respect to phenotypic responses of human peripheral blood mononuclear immune cells (hPBMCs/MNCs) and the concurrent changes in cytokine expression in MSCs, under mitogen-stimulated co-culture conditions. We used cytometric analysis to study the immunoregulatory properties of MSCs on MNCs and cytokine profiling of MSCs using a customized PCR array and solid-phase sandwich enzyme-linked immunosorbent assay. Our results reveal differential modulation of immune cells as well as MSCs upon activation by the mitogen phytohemagglutinin, independently and in co-culture. Notably, we observed source-specific MSC-cytokine signatures under stimulated conditions. Our results show that AT-MSCs up-regulate VEGF, BM-MSCs up-regulate PTGS-2 and WJ-MSCs increase expression of IDO considerably compared with controls. This remarkable modulation in source-specific cytokine expression was also validated at a functional level by quantitative protein expression studies. In our hands, even though MSCs from AT, BM and WJ sources exhibit characteristic immunomodulatory properties, our results highlight that MSCs sourced from different tissues may exhibit unique cytokine signatures and thus may be suitable for specific regenerative applications.  相似文献   

13.
Mesenchymal stromal cells from umbilical cord blood   总被引:1,自引:0,他引:1  
Mesenchymal Stromal Cells (MSC) are key candidates for cellular therapies. Although most therapeutic applications have focused on adult bone marrow derived MSC, increasing evidence suggests that MSC are present within a wide range of tissues. Umbilical cord blood (CB) has been proven to be a valuable source of hematopoietic stem cells, but its therapeutic potential extends beyond the hematopoietic component suggesting regenerative potential in solid organs as well. There is evidence that other stem or progenitor populations, such as MSC, exist in CB which might be responsible for these effects. Many different stem and progenitor cell populations have been postulated with potential ranging from embryonic like to lineage-committed progenitor cells. Based on the confusing data, this review focuses on a human CB derived, plastic adherent fibroblastoid population expressing similar characteristics to bone marrow derived MSC. It concentrates especially on concepts of isolation and expansion, comparing the phenotype with bone marrow derived MSC, describing the differentiation capacity and finally in the last the therapeutic potential with regard to regenerative medicine, stromal support, immune modulation and gene therapy.  相似文献   

14.
《Cytotherapy》2014,16(11):1476-1485
Background aimsMultipotency is one of the hallmarks of mesenchymal stromal cells (MSCs). Given the widespread adoption of MSC-based clinical applications, the need for rapid and reliable methods to estimate MSC multipotency is demanding. Adipogenic potential is commonly evaluated by staining cell lipid droplets with oil red O. This cytochemical assay is performed at the terminal stage of adipogenic induction (21–28 days) and necessitates the destruction of the specimen. In this study, we investigated whether it is possible to assess MSC adipogenic differentiation in a more efficient, timely and non-destructive manner, while monitoring in vitro secretion of adiponectin, a hormone specifically secreted by adipose tissue.MethodsA commercially available enzyme-linked immunosorbent assay kit was used to quantify adiponectin secreted in the culture medium of adipo-induced human bone marrow–derived MSCs. Oil red O staining was used as a reference method.ResultsAdiponectin is detectable after 10 days of induction at a median concentration of 5.13 ng/mL. The secretion of adiponectin steadily increases as adipogenesis proceeds. Adiponectin is undetectable when adipogenic induction is pharmacologically blocked, inefficient or when human MSCs are induced to differentiate toward the osteogenic lineage, proving the specificity of the assay. Furthermore, the results of adiponectin secretion strongly correlate with oil red O quantification at the end of induction treatment.ConclusionsOur results demonstrate that quantification of secreted adiponectin can be used as a reliable and robust method to evaluate adipogenic potential without destroying samples. This method provides a useful tool for quality control in the laboratory and in clinical applications of human MSCs.  相似文献   

15.
Fei XM  Wu YJ  Chang Z  Miao KR  Tang YH  Zhou XY  Wang LX  Pan QQ  Wang CY 《Cytotherapy》2007,9(4):338-347
BACKGROUND: The major challenge for cord blood transplantation (CBT) is higher rates of delayed and failed engraftment. In an attempt to broaden the application of CBT to more candidates, ex vivo expansion of hematopoietic stem/progenitor cells in CB is a major area of investigation. The purpose of this study was to employ human BM mesenchymal stromal cells (hBM-MSC) as the feeding-layer to expand CB cells ex vivo. METHODS: In this study, hBM-MSC were isolated and characterized by morphologic, mmunophenotypic and RT-PCR analysis. The hBM-MSC at passage 3 were employed as the feeding-layer to expand CB CD34(+) cells in vivo in the presence of thrombopoietin, flt3/flk2 ligand, stem cell factor and G-CSF. The repopulating capacity of the ex vivo-expanded CB cells was also evaluated in a NOD/SCID mice transplant experiment. RESULTS: After 1 or 2 weeks of in vitro expansion, hBM-MSC supported more increasing folds of CB in total nucleated cells, CD34(+) cells and colony-forming units (CFU) compared with CB without hBM-MSC. Furthermore, although NOD/SCID mice transplanted with CB cells expanded only in the presence of cytokines showed a higher percentage of human cell engraftment in BM than those with unexpanded CB CD34(+) cells, expanded CB cells co-cultured with hBM-MSC were revealed to enhance short-term engraftment further in recipient mice. DISCUSSION: Our study suggests that hBM-MSC enhance in vitro expansion of CB CD34(+) cells and short-term engraftment of expanded CB cells in NOD/SCID mice, which may be valuable in a clinical setting.  相似文献   

16.
Background aimsAdvances in bone tissue engineering with mesenchymal stromal cells (MSC) as an alternative to conventional orthopedic procedures has opened new horizons for the treatment of large bone defects. Bone marrow (BM) and trabecular bone are both sources of MSC. Regarding clinical use, we tested the potency of MSC from different sources.MethodsWe obtained MSC from 17 donors (mean age 64.6 years) by extensive washing of trabecular bone from the femoral head and trochanter, as well as BM aspirates of the iliac crest and trochanter. The starting material was evaluated by histologic analysis and assessment of colony-forming unit–fibroblasts (CFU-F). The MSC populations were compared for proliferation and differentiation potential, at RNA and morphologic levels.ResultsMSC proliferation potential and immunophenotype (expression of CD49a, CD73, CD90, CD105, CD146 and Stro-1) were similar whatever the starting material. However, the differentiation potential of MSC obtained by bone washing was impaired compared with aspiration; culture-amplified cells showed few Oil Red O-positive adipocytes and few mineralized areas and formed inconsistent Alcian blue-positive high-density micropellets after growth under adipogenic, osteogenic and chondrogenic conditions, respectively. MSC cultured with 1 ng/mL fibroblast growth factor 2 (FGF-2) showed better differentiation potential.ConclusionsTrabecular bone MSC from elderly patients is not good starting material for use in cell therapy for bone repair and regeneration, unless cultured in the presence of FGF-2.  相似文献   

17.
Human, rat, and mouse studies have demonstrated the existence of a population of adipose mesenchymal stem cells (AMSCs) that can undergo multilineage differentiation in vitro. Understanding the clinical potential of AMSCs may require their use in preclinical large-animal models such as pigs. Thus, the objectives of this study were to establish a protocol for the isolation of porcine AMSCs from adipose tissue and to examine their ex vivo differentiation potential to adipocytes and osteoblast. The porcine AMSCs from passage 4 were selected for differentiation analysis. The adipocytes were identified morphologically by staining with Oil Red O, and the adipogenic marker genes were examined by RT-PCR technique. Osteogenic lineage was documented by deposition of calcium stained with Alzarin Red S, visualization of alkaline phosphatase activity, and expression of marker gene. Our result indicates that porcine AMSCs have been successfully isolated and induced differentiation into adipocytes and osteoblasts. This study suggested that porcine AMSCs are also a valuable model system for the study on the mesenchymal lineages for basic research and tissue engineering.  相似文献   

18.
19.
20.

Background

The introduction of specific BCR-ABL inhibitors in chronic myelogenous leukemia therapy has entirely mutated the prognosis of this hematologic cancer from being a fatal disorder to becoming a chronic disease. Due to the probable long lasting treatment with tyrosine-kinase inhibitors (TKIs), the knowledge of their effects on normal cells is of pivotal importance.

Design and Methods

We investigated the effects of dasatinib treatment on human bone marrow-derived mesenchymal stromal cells (MSCs).

Results

Our findings demonstrate, for the first time, that dasatinib induces MSCs adipocytic differentiation. Particularly, when the TKI is added to the medium inducing osteogenic differentiation, a high MSCs percentage acquires adipocytic morphology and overexpresses adipocytic specific genes, including PPARγ, CEBPα, LPL and SREBP1c. Dasatinib also inhibits the activity of alkaline phosphatase, an osteogenic marker, and remarkably reduces matrix mineralization. The increase of PPARγ is also confirmed at protein level. The component of osteogenic medium required for dasatinib-induced adipogenesis is dexamethasone. Intriguingly, the increase of adipocytic markers is also observed in MSCs treated with dasatinib alone. The TKI effect is phenotype-specific, since fibroblasts do not undergo adipocytic differentiation or PPARγ increase.

Conclusions

Our data demonstrate that dasatinib treatment affects bone marrow MSCs commitment and suggest that TKIs therapy might modify normal phenotypes with potential significant negative consequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号