首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
钟海英  张雅林  魏琮 《昆虫学报》2020,63(4):421-432
【目的】本研究通过合哑蝉Karenia caelatata成虫消化道的形态学、组织学和超微结构研究,进一步了解蝉科(Cicadidae)代表种类的消化道形态和功能分化。【方法】利用光学显微镜和透射电子显微镜技术,对合哑蝉雄成虫消化道的整体形态以及食道、滤室(中肠前端及后端、马氏管基部、后肠基部)、滤室外中肠(锥形体、中肠环)、后肠(回肠、直肠)的一般形态和超微结构进行了详细观察,同时对滤室的组织结构进行了研究。【结果】结果表明,合哑蝉消化道由食道、滤室、滤室外中肠及后肠组成。食道狭长,被有上表皮和内表皮。中肠前端、中肠后端、马氏管基部以及后肠基部被一肌肉鞘包围形成滤室构造。组成中肠前端和后端的细胞基膜高度内褶,顶端的微绒毛发达。中肠后端分布许多线粒体和高电子密度的分泌颗粒。滤室外的中肠包括膨大的锥形体、中肠环。其中,锥形体由两种细胞组成;中肠环分为前、中、后3个不同的区段。前中肠细胞包含大量的分泌颗粒、线粒体、粗面内质网和溶酶体;中中肠细胞含有分泌颗粒;后中肠细胞包括许多低电子密度的分泌颗粒和滑面内质网。类铁蛋白颗粒零星分布于中肠环的前、中区段。组成锥形体和中肠环前端的细胞顶端微绒毛被...  相似文献   

2.
The alimentary canal of cicada Platypleura kaempferi is described. It comprises the oesophagus, filter chamber, external midgut section and hindgut. The elongate oesophagus expands posteriorly, with its posterior end constricting to become a bulb. The filter chamber consists of two parts: a very thin sheath and a filter organ. The filter organ is composed of the anterior and posterior ends of the midgut (internal midgut section), and the internal proximal ends of the Malpighian tubules. The external midgut section differentiates into a collapsed sac and a midgut loop. The latter is divided into three distinct segments. The hindgut contains a dilated rectum and a long narrow ileum. The distal portions of the four Malpighian tubules are enclosed in a peritoneal sheath together with the distal ileum before reaching to the rectum. Ultrastructurally, the oesophagus and the hindgut are lined with a cuticle. The filter chamber sheath consists of cells with large irregular nuclei. Filamentous substances coat the microvilli of the cells of the internal midgut section. The posterior end of the midgut comprises two types of cells, with the first type of cells containing many vesicles and scattered elements of rough endoplasmic reticulum. The anterior and posterior segments of the midgut loop cells have ferritin‐like granules. The ileum cells have well‐developed apical leaflets associated with mitochondria. Accumulations of virus‐like particles enclosed in the membrane are observed in the esophagus, conical segment, mid‐ and posterior segments of the midgut loop.  相似文献   

3.
The midgut of cicadoid and cercopoid insects is differentiated at the anatomical, ultrastructural and cytochemical levels into a conical segment, anterior, mid, and posterior midgut. The cells of the conical segment and anterior midgut are cytochemically very similar. They differ in ultrastructure, the anterior midgut cells having a submicrovillar row of mitochondria and a very marked mucoprotein coat investing the microvilli. The mid-midgut contains mineral spherites, which are formed in cisternae in the endoplasmic reticulum, and ferritin. The posterior midgut differs cytochemically from the anterior midgut and the cells are characterized by deep narrow basal invaginations and the absence of a mucoprotein coat investing the microvilli. It is suggested that nutrient absorption occurs in the conical segment and anterior midgut. Ion absorption may also occur in the anterior midgut. Storage excretion of calcium, magnesium and phosphate occurs in the mid-midgut. Ferritin is also stored here but may be found in other regions of the midgut, particularly in the cicada. The posterior midgut may be involved in ion secretion which could be related to filter chamber function.  相似文献   

4.
Cicadas feed on xylem fluid. This is hypotonic to the haemolymph and contains high concentrations of potassium, sodium, calcium, magnesium, chloride, and phosphate ions. The urine contains the same ions in the same proportions but in slightly lower concentrations. Amino acids and sucrose are present in xylem fluid and traces of amino acids are also found in urine.Water is rapidly shunted from foregut to hindgut via the filter chamber. Injection of xylem fluid into the oesophagus results in an immediate tenfold increase in flow rate in the ileum. The osmotic pressure of xylem fluid in the filter chamber rapidly rises whilst the osmotic pressure in the anterior part of the ileum rapidly falls.Absorption of nutrients and ions into the haemolymph probably occurs in the conical segment and anterior tubular midgut. Storage excretion of divalent ions occurs in the mid-midgut and ions may be transported from the haemolymph into the posterior tubular midgut.The Malpighian tubules secrete a fluid slightly hypertonic to blood containing K+ (42 mM/l.] and Na+ (14 mM/l.).The osmotic pressures within the internal Malpighian tubules and internal midgut in the filter chamber are considerably higher than the osmotic pressure of the xylem fluid when it first enters the filter chamber proper. Passive osmosis will occur and water will be shunted into the ileum.Reabsorption of K+ and Na+ occurs in the ileum.  相似文献   

5.
The filter chamber is a complex junction of anterior and posterior extremities of the midgut and Malpighian tubules. The sac-like anterior extremity, or filter chamber proper, comprises two cell types. These are large cuboidal cells which secrete a mucoprotein, and extremely thin cells which have regular tubular invaginations of the basal plasma membrane. The posterior extremity of the midgut and the internal Malpighian tubules coil round the filter chamber proper. They consist of thin epithelial cells identical in ultrastructure. The basal plasma membrane in these cells is formed into leaflets. A thin cellular sheath and thick muscle layers surround the filter chamber. The filter chamber proper is lined by the mucoprotein secretion of the cuboidal cells. This secretion appears to bind potassium ions. ATPase and alkaline phosphatase cannot be detected in the filter chamber epithelia. The structure and cytochemistry of the filter chamber suggests that water flows from filter chamber proper to midgut and Malpighian tubules by passive osmosis. This may be facilitated by ion binding in the filter chamber proper and by hydrostatic pressure engendered by contraction of the muscular coat. The Malpighian tubules appear to be structurally and chemically adapted for ion secretion by active transport and possibly for reabsorption in the Malpighian duct segment.  相似文献   

6.
The epithelium of anterior midgut of adult Cenocorixa bifida was examined with light and electron microscopy. The folded epithelium is composed of tall columnar cells extending to the lumen, differentiating dark and light cells with interdigitating apices and regenerative basal cells in the nidi surrounded by villiform ridges that penetrate deeply into the epithelium. The columnar cells display microvilli at their luminal surface. Microvilli lined intercellular spaces and basal plasma membrane infoldings are associated with mitochondria. These ultrastructural features suggest their role in absorption of electrolytes and nutrients from the midgut lumen. The columnar cells contain large oval nuclei with prominent nucleoli. Their cytoplasm is rich in rough endoplasmic reticulum, Golgi complexes and electron-dense secretory granules indicating that they are also engaged in synthesis of digestive enzymes. The presence of secretory granules in close proximity of the apical plasma membrane suggests the release of secretion is by exocytosis. The presence of degenerating cells containing secretory granules at the luminal surface and the occurance of empty vesicles and cell fragments in the lumen are consistent with the holocrine secretion of digestive enzymes. Apical extrusions of columnar cells filled with fine granular material are most likely formed in response to the lack of food in the midgut. The presence of laminated concretions in the cytoplasm is indicative of storageexcretion of surplus minerals. The peritrophic membrane is absent from the midgut of C. bifida.  相似文献   

7.
The ultrastructure of the Malpighian tubes in human louse Pediculus humanus corporis has been studied. The cells of the Malpighian tubules have the uniform structure: the apical surface is covered with microvilli, the basal plasmatic membrana forms relatively small invaginations. The microvilli are most developed in cells of the proximal department of the Malpighian tubules. Microvilli of the apical surface of the cells do not contain mitochondria which are localized mainly in supranuclear part of the cell. Cells are lined with a homogenous basal membrane.  相似文献   

8.
The pyloric region of Eosentomon and Acerentomon (Insecta, Protura) is described. In both species the posterior cells of the midgut carry short microvilli. Beneath the epithelial cells there is a muscular pyloric sphincter for closing the intestinal lumen. Behind the sphincter is a wide pyloric chamber lined by cells with very long microvilli which point anteriorly toward the midgut. These cells regulate the passage of the intestinal contents into the hindgut. Secretions from the Malpighian papillae are emitted into the gut at this level. In Eosentomon three regions (R1, R2 and R3) are visible in the Malpighian papillae, whereas in Acerentomon region R1 is lacking. The R1 region contains secretory cells with elaborate glycoprotein-containing granules. The R2 region is composed of cells somewhat resembling the secretory cells of Malpighian tubules of insects. Presumably R1 and R2 cells emit secretions into the central cavity of each papilla. Cells of R3 form a duct for the secretion. It is suggested that the R2 region represents a basic excretory region, common to Protura, whereas the R1 region, in Eosentomon, may be a specialized area performing supplementary excretory functions.  相似文献   

9.
The excretory and osmoregulatory system of Halobiotus crispae consists of two lateral and one smaller dorsal Malpighian tubules, which empty into the digestive tract in the transition zone of the midgut and rectum. The tubules are identical at the ultrastructural level, and consist of an initial segment with three large cells, a thin transitional distal part lacking a nucleus, and a proximal part with 9–12 nuclei. The initial segment possesses deep basal infoldings and interdigitating, finger-shaped processes of the plasma membrane, large mitochondria and giant nuclei. The distal part is a short section which supports the initial segment. Cellular offshoots from the succeeding proximal part constitute the distal part. The distal and proximal parts contain intercellular canals with concretions of variable size. The exit of the proximal part into the digestive tract is characterized by the presence of microvilli. Correlated with the different stages in the cyclomorphosis of H. crispae , we observed size variation of the Malpighian tubules; thus, pseudosimplex stages have the largest tubules. We present suggestions concerning the physiology of the tubules and compare the Malpighian tubules of Tardigrada with the Malpighian papillae of Protura.  相似文献   

10.
The ultrastructure of the midgut and the tubular salivary glands of Frankliniella occidentalis (Thysanoptera : Thripidae) is described. The microvilli have 2 different types of glycocalyx: in the anterior part of the midgut they are surrounded by a myelin-like membrane; in the posterior region, the microvilli have numerous rod-like projections arranged to form a continuous layer. Microfilaments longitudinally cross each microvillus; the microfilaments contain F-actin. Tubular salivary glands flank the midgut but do not fuse with it. The distal part of these glands have microvillated cells containing large amounts of electron-transparent material. The cells of the proximal part are lined with a thin cuticle.  相似文献   

11.
M S Jarial 《Tissue & cell》1988,20(3):355-380
The larval Malpighian tubules of Chironomus tentans were studied using light and electron microscopy. The tubules are composed of two cell types: primary and stellate cells. Both cell types lack muscles, tracheoles, and laminate crystals in the cytoplasm and mitochondria in the microvilli. The primary cells exhibit long, wide basal membrane infoldings associated with mitochondria. They have a number of canaliculi and long, closely packed microvilli. The stellate cells possess shorter interconnecting basal infoldings and shorter, well-spaced microvilli. Both cell types are linked by septate and gap junctions. They have cytoplasmic processes and pedicels which enclose narrow slits between them and that are apposed to a basal lamella. In the 'fed' larva, the cells are stuffed with glycogen which is depleted in the 'starved' larva. Both cell types are involved in the vesicular transport of biliverdin. The presence of coated vesicles, tubular elements and various forms of lysosomes in the primary cells suggests they transport and break down functional hemoglobin. Structural modification of basal infoldings, canaliculi and microvilli is strongly correlated with increased secretory activity of the Malpighian tubules in 'fed' versus 'starved' larva.  相似文献   

12.
Varanus niloticus (Linnaeus, 1766), the Nile monitor lizard, is considered the largest lizard in Africa and one of the most widespread. The Egyptian Nile monitor lizard exists in variable habitats, from grasslands to rainforests. This study pointed to investigate the light and ultrastructural features of the renal tissue of this lizard. Microscopically, the lizard nephron deprived from loop of henle and no demarcation could be detected between the cortical and medullary tissues. The renal corpuscles were small, but complex structures. The proximal convoluted tubules were lined by acidophilic cuboidal cells with hemosiderin pigment in their apical cytoplasm. The cytoplasm of the distal convoluted tubular cells reacted strongly with alcian blue stain. The sexual segment of the lizard kidney was lined with high columnar cells with massive periodic acid–Schiff-positive/alcian blue-negative supra-nuclear granules. Ultrastructurally, the basal infoldings of the proximal convoluted cells were evident. Supra-nuclear electron-dense vesicles were detected in the cytoplasm of the sexual segment cells. In summary, the kidney of the Egyptian Nile monitor lizard shares many histochemical features with other reptiles. However, they own several structural specializations in order to adapt to their harsh environments. Future studies focusing on the histochemical components of the sexual segment secretion would be required.  相似文献   

13.
庭疾灶螽中肠及马氏管结构   总被引:1,自引:0,他引:1  
【目的】本研究旨在以庭疾灶螽Tachycines asynamorus为例探索驼螽消化系统和排泄系统在结构上与其生活环境的适应关系。【方法】运用解剖学方法、石蜡切片技术、冰冻切片技术及超薄切片技术对庭疾灶螽中肠及马氏管的结构进行研究。【结果】庭疾灶螽中肠向前延伸出3个胃盲囊包围着前胃。中肠上皮由再生细胞、柱状上皮细胞和内分泌细胞构成,具有典型的再生细胞龛;闭合型内分泌细胞紧贴在再生细胞龛的外围,基底区聚集大量的分泌颗粒。柱状上皮细胞内聚集有2类大的分泌颗粒:线团状颗粒和电子密度很高的球状颗粒;中肠管腔内有明显的围食膜结构,中肠基底部由基膜和肌肉层组成。马氏管着生在中后肠的交界处,从横切面看马氏管管壁具有3~5个细胞,细胞近管腔端部具有大量长微绒毛,细胞质内分布着电子致密的同心圆球晶体,基底膜内折形成膜迷路。【结论】庭疾灶螽中肠柱状上皮细胞的线团状颗粒由微丝包裹;内分泌细胞由再生细胞龛中的细胞分化而来,产生内分泌颗粒并将其排到血腔;中肠基膜发达,包含微丝与复合糖成分,基膜通过对中肠上皮细胞的支撑作用为肠道蠕动提供保障。庭疾灶螽马氏管细胞中可见大量颗粒和大量同心圆球晶体,推测可能是一种储存排泄。  相似文献   

14.
Summary The Dacus oleae larva possesses four Malpighian tubules, two anterior and two posterior ones, which in pairs enter into a ureter. Before opening into the gut, at the level of the transition zone between the mid- and hindgut, each ureter is dilated into an ampulla.The anterior tubules are divided into four regions: distal, transition, middle and proximal ones: while in the posterior tubules only middle and proximal segments are detectable. The distribution of the enzyme systems is indicated in Fig. 3, while the ultrastructural organization which is typical of the cells composing the different regions is schematically represented in Fig. 1. According to the ultrastructural and enzymatic findings, and the discussion on this subject in the literature, the authors are led to assume that in the distal segment occurs the segregation of uric acid, urates and calcium salts. In the transition segment, and still more in the intermediate one, an indiscriminate transport of water and solutes occurs from the haemocoel into the lumen of the tubule by pinocytosis. A fraction of the catabolites is precipitated as chromolipoidal pigments. The transition stages between cytosomes and pigment are described. Along with secretory phenomena the resorption of useful substances occurs in the proximal region. A similar function is performed by the ureter. In the ampulla, which is characterized by a conspicuous system of deep tubular infoldings both at the apical and basal surfaces of its cells, a massive water resorption is presumed to occur.  相似文献   

15.
The midgut of Cryptocellus boneti was studied by light and electron microscopy. The epithelia of the diverticula and of the anterior part of the midgut tube are composed of two cell types: digestive and secretory. In contrast, the epithelia of posterior part of the midgut tube and of the stercoral pocket consist of one type of cells only. In some places, parts of the midgut system are connected by an intermediate tissue. Digestive cells are characterized by an apical system of tubules, nutritional vacuoles, and spherites; characteristic features of secretory cells are secretory granules and a prominent rough endoplasmic reticulum. Cells of the midgut tube appear not to be involved in the absorption of food. © 1994 Wiley-Liss, Inc.  相似文献   

16.
The study of the ileum of the ant Formica nigricans by light and electron microscopy revealed the existence of three differentiated regions: proximal, middle, and distal ileum. The middle region constitutes most of the length of the organ. Its wall is made up by a folded simple epithelium lined by a cuticle, which is surrounded by an inner circular muscle layer and various external longitudinal muscle fibers adjacent to the hemolymph. A subepithelial space is present between the epithelium and the circular muscle layer. Epithelial cells show extensive infoldings of the apical, and to a lesser extent the basolateral plasma membrane. Apical infoldings are characterized by the presence of 10-nm particles (portasomes) covering the cytoplasmic side of the membrane. Mitochondria are abundant throughout the cytoplasm, although they mainly are present underneath the apical infoldings. Lateral borders of epithelial cells display an apical junctional complex, mainly constituted by a long and convoluted pleated septate junction. These features support the view that epithelial cells in the middle ileum are specialized in ion solutes and water transport. The proximal ileum connects with the ampulla into which the Malpighian tubules drain. As opposed to the middle ileum, epithelial cells of the proximal ileum show less developed basolateral infoldings, and the apical plasma membrane is devoid of portasomes and only occasionally invaginates. These features suggest that the proximal ileum plays no relevant role in ion and water transport. The distal ileum penetrates into the rectal sac, forming a valve-like structure; this region presumably controls the amount of urine reaching the rectum.  相似文献   

17.
This paper describes the different regions of the Malpighian tubules and the associated structures (ampulla, midgut, ileum) in the cockroach, Periplaneta americana. There are about 150 tubules in each insect. Each tubule consists of at least three parts. The short distal region is thinner than the other parts and is highly contractile. The middle region comprises most of the tubule length and is composed of primary and stellate cells. Primary cells contain numerous refractile mineral concretions, while stellate cells have smaller nuclei, fewer organelles, simpler brush border, and numerous multivesicular bodies. Symbiont protozoa are sometimes present within the lumen of the middle region near where it opens into the proximal region of the tubule. The latter is a short region that drains the tubular fluid into one of the six ampullae. These are contractile diverticula of the intestine located at the midgut-hindgut junction. The ampulla is highly contractile, and consists of a layer of epithelial cells surrounding a cavity that opens into the gut via a narrow slit lined by cells of unusual morphology. The proximal region of the tubule and the ampulla resemble the midgut in that they have similar micromal origin and reabsorptive function for the proximal region of the tubule and for the ampulla. A number of inclusions found within the tubule cells are described, including peroxisomes and modified mitochondria. Current theories of fluid transport are evaluated with regard to physiological and morphological characteristics of Malpighian tubules. The possible role of long narrow channels such as those between microvilli and within basal folds is considered, as is the mechanism by which these structures are formed and maintained. Also discussed is the role of peroxisomes and symbionts in the excretory process.  相似文献   

18.
The fine structure of the midgut, pyloric region, Malpighian papillae, and hindgut of Sinentomon erythranum (Protura : Sinentomidae) is described. Midgut cells are rich in mineral concretions and are presumably involved in excretory activity; the pyloric chamber, a cavity in the proturan intestine behind the midgut, is formed by cells with microvilli pointing anteriorly; the secretion from 6 Malpighian papillae flows into this cavity. The hindgut consists of 2 regions; the anterior of the 2 has a series of specializations typical of cells engaged in active water reabsorption. Long infoldings of the apical plasma membrane reach deep into the cells. The findings are compared with the gut organization of other genera of Protura examined to date.  相似文献   

19.
The fine structure of the midgut and the Malpighian papillae in Campodea (Monocampa) quilisi Silvestri, 1932 (Hexapoda, Diplura) specimens was described. We observed the presence of electron-dense granules (EDGs) in the midgut epithelial cells, similar in genesis, structure and aspect to the type A spherocrystals described in the midgut epithelium of Collembola and Diplopoda. Energy-dispersive X-ray microanalysis was used to detect the chemical composition of the granules and to relate it to the concentrations of some potential toxic heavy metals (Pb, Cu, Zn) in soil and litter. Chemical composition of the granules seems strongly influenced by the presence and bioavailability of heavy metals in the external environment. Specimens from a contaminated abandoned mining and smelting area (Colline Metallifere, southern Tuscany) were able to accumulate Fe, Mn, Zn, Pb and Cu in their midgut EDGs. In addition, we observed that C. (M.) quilisi was able to excrete the metal-containing granules into the external medium by the moulting of the intestinal epithelium. This confirms that the process of ionic retention of midgut cells is particularly significant in animals lacking Malpighian tubules.  相似文献   

20.
The localization of Na(+) , K(+) -ATPase (NKA) and the ultrastructural features of kidney were examined in larvae of the Persian sturgeon Acipenser persicus (L 31-41 mm total length and 182·3-417·3 mg). Investigations were conducted through light and electron microscopy and through immunofluorescence for NKA detection. The kidney nephrons consisted of a large glomerulus and tubules (neck, proximal, distal and collecting), which connected to the ureters. Posteriorly, ureters extended and joined together into a thin-walled ureter terminal sac. Ultrastructurally, the glomerular cells (podocytes) possessed distinctive pedicels that extended to the basal membrane. The proximal tubule (PT) showed two different cells. The cells lining the anterior part of PT possessed apical tall microvilli (c. 2·7 μm), a sub-apical tubular system, a basal nucleus and dense granules. Posteriorly in the cells, the sub-apical tubular system and granules were absent and round mitochondria associated with basolateral infoldings were found; the apical microvilli were reduced. Distal and collecting tubular cells showed the typical features of osmoregulatory cells, i.e. well-developed basolateral infoldings associated with numerous mitochondria. No immunofluorescence of NKA was detected in the glomeruli. A weak immunostaining was observed at the basolateral side of the cells lining the neck and PT. A strong immunostaining of NKA was observed in the entire cells of the distal tubules, collecting tubules and in some isolated cells of the ureters. In all immunostained cells, the basolateral region showed a much higher fluorescence and nuclei were immunonegative. In conclusion, the epithelial cells of kidney tubules had morphological and enzymatic features of ionocytes, particularly in the distal and collecting tubules. Thus, the kidney of A. persicus larvae possesses active ion exchange capabilities and, beside its implication in excretion, participates in osmoregulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号