首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The compounds W(CO)5P(C6H4-4-CH2CH2(CF2)7CF3)3 (1) and W(CO)5P(CH2CH2(CF2)5CF3)3 (2) were synthesized in order to probe the electronic and physical effects of ligation by perfluorocarbon substituted tertiary phosphine ligands in a W(CO)5L complex. The π-accepting ability of the fluorous phosphines was found to rank with non-fluorous comparators as P(CH2CH2(CF2)5CF3)3 > P(C6H4-4-CH2CH2(CF2)7CF3)3 > PPh3 > P(p-tolyl)3 > P(n-octyl)3. The X-ray crystal structure of W(CO)5P(C6H4-4-CH2CH2(CF2)7CF3)3 shows strong intermolecular association of fluorous components but confirms that the para fluorocarbon subtituents have an insignificant effect on the tungsten coordination environment. Partition coefficients (toluene/perfluoromethylcyclohexane) were measured for compounds 1 and 2.  相似文献   

2.
The reactions of Zr(C5H5)(6,6-dmch)(PMe3)2 and Zr(6,6-dmch)2(PMe3)2 (dmch=dimethylcyclohexadienyl) with CO lead to the selective replacement of one PMe3 ligand by CO. Both carbonyl complexes have been structurally characterized. Additionally, the reaction of the latter complex with PhC2SiMe3 leads to a similar replacement of one PMe3 ligand, involving simple coordination of the alkyne, rather than any coupling to the dmch ligand.  相似文献   

3.
The reactions of lithium(diphenylphosphino)tetramethylcyclopentadienide with CpTiCl3 and secondly with TiCl3 followed by CCl4 oxidation lead to the formation of two titanocene phosphines: (η5-C5H5)[η5-C5Me4P(C6H5)2]TiCl2 (2) and [η5-C5Me4P(C6H5)2]2TiCl2 (3), respectively. The metalloligand 3 reacts readily with Mo(CO)4cod, Mo(CO)5THF and Mo(CO)6 to give in each case [(η5-C5Me4 o(CO)4 (6) as a sole product. The structure of 6 has been determined by X-ray diffraction. Crystal data: P , a = 11.716(1), b = 11.753(2), c = 16.110(2) Å, α = 99.06(1), β = 92.61(1), γ = 104.20(1)°, Z = 2. The molybdenum-titanium distance of 5.194(1) Å rules out any metal-metal interaction. The chlorine substitution reactions by CO in 2 and 3 and by thiolate group (pH3C-C6H4-S) in 16 are reported.  相似文献   

4.
The reaction of 2 equiv. of [Os3(CO)10(MeCN)2] with R-CC-L-CC-R (R = H, L = (C4H2S); R = SiMe3, L = (C4H2S-C4H2S), (C4H2S-C4H2S-C4H2S), (C4H2S)-(C14H8)-(C4H2S)) affords the series of linked clusters [{Os3(CO)10}(HCC(C4H2S)CCH){Os3(CO)10}] (1), [{Os3(CO)10}(Me3SiCC(C4H2S-C4H2S)CCSiMe3){Os3(CO)10}] (2), [{Os3(CO)10}(Me3SiCC(C4H2S-C4H2S-C4H2S)CCSiMe3){Os3(CO)10}] (4) and [{Os3(CO)10}(Me3SiCC(C4H2S)-(C14H8)-(C4H2S)CCSiMe3){Os3(CO)10}] (6) as the major products. The complexes have been characterised by a range of spectroscopic methods and, in the case of 1 and 2 by single crystal X-ray crystallography. The alkyne groups cap the osmium triangles in the expected μ32-||-bonding mode and each triangle is coordinated by nine terminal and one μ2-carbonyl group. Solution UV-Vis spectra of the complexes were similar to those observed for the free ligands consistent with there being little delocalisation between the cluster units and the thiophene groups.  相似文献   

5.
A series of tridentate ligands consisting of mixed aromatic and aliphatic amine derivatives of single amino acid chelates and phenylpiperazine have been developed, and their reactions with [NEt4]2[ReBr3(CO)3] have been investigated. The compounds [Re(CO)3{(NC5H4CH2)NCH3(C2H4)NHCH3}]Br (4), [Re(CO)3{(NC5H4CH2)NCH3(C2H4)NCH3(CH2)xCOOC2H5}]Br (x = 1, 5; x = 4, 6) [Re(CO)3{(NC5H4CH2)NH(C2H4)N(CH3)2}]Br (7), [Re(CO)3{(NC5H4CH2)N(CH 2COOC2H5)(C2H4)N(CH3)2}]Br (8) and [Re(CO)3(NC5H4CH2)(C2H4NH2)N(CH2)3-CH3Ophenpip]Br (9) (phenpip: phenylpiperazine, -C6H4-(CH2CH2)2N-) were prepared and characterized by elemental analysis, NMR, IR, HSMS and X-ray crystallography. All complexes exhibit fac-{Re(CO)3N3} coordination geometry in the cationic molecular unit. Crystal data for C13H17BrN3O3Re (4): orthorhombic, Pbca, a = 13.4510(8) Å, b = 10.5728(6) Å, c = 22.5378(13) Å, V = 3205.2(3) Å3, Z = 8; C17H23BrN3O5Re (5): orthorhombic, Pcca, a = 16.5907(7) Å,b = 14.8387(6) Å, c = 16.7075(7) Å, V = 4113.1(3) Å3, Z = 8; C13H25BrN3O7Re (7 · 4H2O): monoclinic, P21/n, a = 14.0698(17) Å, b = 9.6760(12) Å, c = 15.6099 (19) Å, β = 114.930(2)°, V = 1927.1(4) Å3, Z = 4; C17H23BrN3O5Re (8): monoclinic, P21/n, a = 7.5312(5) Å, b = 16.0366(10) Å, c = 16.8741(10) Å, β = 98.9990(10)°, V = 2012.9(2) Å3, Z = 4.  相似文献   

6.
Short-bite aminobis(phosphonite) containing olefinic functionalities, PhN{P(OC6H3(OMe-o)(C3H5-p))2}2 (1) was synthesized by reacting PhN(PCl2)2 with eugenol in the presence of triethylamine. The ligand 1 acts as a bidentate chelating ligand toward metal complexes [M(CO)4(C5H10NH)2] forming [M(CO)42-PhN{P(OC6H3(OMe-o)(C3H5-p))2}2}] (M = Mo, 2; W, 3). The reaction between 1 and [CpFe(CO)2]2 leads to the cleavage of one of the P-N bonds due to the metal assisted hydrolysis to give a mononuclear complex [CpFe(CO){P(O)(OC6H3(OMe-o)(C3H5-p))2}{PhN(H)(P(OC6H3(OMe-o)(C3H5-p))2)}] (4). Treatment of 1 with gold(I) derivative, [AuCl(SMe2)] resulted in the formation of a dinuclear complex, [(AuCl)2{PhN{P(OC6H3(OMe-o)(C3H5-p))2}2}] (5) with a Au···Au distance of 3.118(2) Å indicating the possibility of aurophilic interactions. An equimolar reaction between 1 and [Ru(η6-p-cymene)Cl2]2 afforded a tri-chloro-bridged bimetallic complex [(η6-p-cymene)Ru(μ-Cl)3Ru{PhN(P(OC6H3(OMe-o)(C3H5-p))2)2}Cl] (6). The crystal structures of 1-3 and 5 were established by single crystal X-ray diffraction studies.  相似文献   

7.
The photolytic CO-substitution reaction of the organoiron thiocarboxylate complexes CpFe(CO)2SCOR (R=CH3, 2-CH3C6H4, 2-NO2C6H4, 4-NO2C6H4, 3,5-(NO2)2C6H3) with diphosphines (Ph2P(CH2)nPPh2) [n=1 (dppm), n=2 (dppe), n=3 (dpppr), n=4 (dppb), n=5 (dppp), n=6 (dpph)] at room temperature using 1:2 (metal-ligand) molar ratio afforded exclusively the disubstituted complexes CpFe(Ph2P(CH2)nPPh2)SCOR when n=1, 2 and 3 and the monosubstituted analogs CpFe(CO)(Ph2P(CH2)nPPh2)SCOR when n=4, 5 and 6. This reaction was found to be strongly influenced by the backbone length of the diphosphine ligand, the nature of the R group of the thiocarboxylate moiety and the metal-ligand molar ratios. The crystal structure of CpFe(dppm)SCO(3,5-(NO2)2C6H3) was determined.  相似文献   

8.
The reaction of lead(II) nitrate with trisodium citrate Na3(C6H5O7) in a 1:22.5 ratio at pH 4.8 provides crystals of {Na(H2O)3}[Pb5(H2O)3(C6H5O7)3(C6H6O7)]·9.5H2O (1). The structure of 1 is two-dimensional and exhibits five distinct Pb(II) sites and four different modes of citrate bonding. The five lead sites all display hemidirected coordination geometries, that is, irregular distribution of neighboring oxygen atoms resulting in obvious gaps in the coordination spheres. Consequently, the lead coordination geometries exhibit proximal bonding to a number of oxygen donors, as well as distal interactions with nearest neighbors. The coordination numbers vary from 8 to 10, with ‘5+3’, ‘5+4’, ‘6+4’ and ‘7+3’ coordination modes where the first number refers to the proximal ligands and the second to the distal set. The four crystallographically distinct citrate groups include three with deprotonated carboxylate groups (C6H5O7)3− and one with a single protonated carboxyl group (C6H6O7)2. The citrate ligands bridge 3, 5, 7 and 7 lead sites. Three of the citrate groups exhibit tridentate chelation coordination to a lead site through two carboxylate oxygen donors and the hydroxyl groups. One citrate group projects an uncoordinated -OH group and a pendant protonated carboxyl group into the interlamellar domain. This latter carboxyl group coordinates to a sodium cation, which exhibits five coordinate geometry defined by three aqua ligands and the carbonyl oxygen of the -CO2H groups in the basal plane and a citrate -OH donor in the apical position.  相似文献   

9.
The thermal reaction of Ru3(CO)12 with various carboxylic acids (benzoic, 4-hydroxyphenylacetic, ferrocenic, stearic, oleic, 4-(octadecyloxy)benzoic) in refluxing tetrahydrofuran, followed by addition of 5-(4-pyridyl)-10,15,20-triphenylporphyrin (L), gives the dinuclear complexes Ru2(CO)4(OOCR)2L2 (1: R = -C6H5, 2: R = -CH2-p-C6H4OH, 3: R = -C5H4FeC5H5, 4: R = -(CH2)16CH3, 5: R = -(CH2)7CHCH(CH2)7CH3, 6: R = -p-C6H4O(CH2)17CH3). Complexes 1-6 were characterised by IR, NMR, and ESI-MS as well as by elemental analysis. The UV-Vis spectra show the Soret band centred at 417 nm and the Q bands at 515, 550, 590 and 645 nm, respectively.  相似文献   

10.
The reaction of uranyl oxalate trihydrate with guanidinium acetate at room temperature in water yields known uranyl complex with composition (CN3H6)2[UO2(C2O4)2(H2O)]·H2O as a first phase and a novel complex (CN3H6)5[(UO2)3O(OH)2(CH3COO)(C2O4)3] as a second. The second phase was investigated by means of IR spectroscopy and X-ray diffraction. The trinuclear discrete complex contains two symmetrically independent uranyl ions with a pentagonal bipyramid structure and has a nonplanar geometry. The distortion of its equatorial plane is caused by substitution of a monodentate bridge hydroxide anion by a bidentate bridge acetate-anion. The acidic ligands found in the complex are usually in competition for a place in coordination sphere of an uranyl ion, thus peculiarities of the complex formation are discussed in terms of ‘crystallochemical analysis’.  相似文献   

11.
Reaction of the trivalent uranium complex (C5Me5)2U(O-2,6-iPr2C6H3)(THF) (1) with copper(I) chloride affords the corresponding tetravalent mixed-ligand aryloxide-chloride complex (C5Me5)2U(O-2,6-iPr2C6H3)(Cl) (2). The oxidative functionalization protocol cannot be extended to the synthesis of (C5Me5)2U(O-tBu)(Cl) (3) since the corresponding trivalent precursor is not stable. Salt metathesis between (C5Me5)2UCl2 and KOtBu is the method of choice for the preparation of the tetravalent alkoxide-chloride derivative (C5Me5)2U(O-tBu)(Cl) (3). The X-ray crystal structures of (C5Me5)2U(O-2,6-iPr2C6H3)(Cl) (2) and (C5Me5)2U(O-tBu)(Cl) (3) are reported and represent the first structurally characterized uranium(IV) metallocene aryloxide-chloride and alkoxide-chloride complexes, respectively. Both complexes adopt a pseudo-tetrahedral geometry, with a chloride and aryloxide/alkoxide ligand occupying the plane bisecting the metallocene unit.  相似文献   

12.
Reaction of HSi(OEt)3 with IrCl(CO)(PPh3)2 (5:1 molar ratio) at room temperature for 1 h gives IrCl(H){Si(OEt)3}(CO)(PPh3)2 (1), which is observed by the 1H and 31P{1H} NMR spectra of the reaction mixture. The same reaction, but in 20:1 molar ratio at 50 °C for 24 h produces IrCl(H)2(CO)(PPh3)2 (2) rather than the expected product Ir(H)2{Si(OEt)3}(CO)(PPh3)2 (3) that was previously reported to be formed by this reaction. Accompanying formation of Si(OEt)4, (EtO)3SiOSi(OEt)3, and (EtO)2HSiOSi(OEt)3 is observed. On the other hand, trialkylhydrosilane HSiEt3 reacts with IrCl(CO)(PPh3)2 (10:1 molar ratio) at 80 °C for 84 h to give Ir(H)2(SiEt3)(CO)(PPh3)2 (4) in a high yield, accompanying with a release of ClSiEt3.  相似文献   

13.
The room-temperature electronic spectra of the chromium chalcocarbonyl complexes, Cr(CO)5(CX) and (η6-C6H6)Cr(CO)2(CX) (X = O, S, Se), have been recorded in solution, and in some cases, in the gas phase. Assignments for the thiocarbonyl and selenocarbonyl spectra are proposed on the basis of the literature assignments for the parent all-CO derivatives. Overall, the data support the order of increasing electron withdrawing capacity of the chalcocarbonyl ligands as CO < CS < CSe.  相似文献   

14.
The structures and relative energies of the As2Co2(CO)n (n = 6, 5, 4) derivatives are predicted by density functional theory to be analogous to those of the corresponding H2C2Co2(CO)n derivatives. Thus As2Co2(CO)6 is predicted to have three carbonyls on one cobalt atom eclipsed relative to the three carbonyls on the other cobalt atom. The corresponding As2Co2(CO)6 structure with a staggered rather than eclipsed arrangement of the Co(CO)3 units is a transition state rather than a genuine minimum. For As2Co2(CO)5 the structure in which an equatorial group is removed from the As2Co2(CO)6 structure and a singly bridged As2Co2(CO)4(μ-CO) structure are predicted to have essentially the same energies, within <2 kcal/mol. A higher energy As2Co2(CO)5 structure by 9 ± 2 kcal/mol is derived from the As2Co2(CO)6 structure by removal of an axial carbonyl group. The two unbridged As2Co2(CO)5 structures correspond to those observed experimentally in the photolysis of As2Co2(CO)6 in Nujol matrices at low temperatures. In such photolysis experiments the higher energy isomer is produced initially and then converted to the lower energy isomer upon annealing. A singly bridged structure was found for As2Co2(CO)4. The analogous structure was not observed in the previous work with H2C2Co2(CO)4. However, such a H2C2Co(CO)3(μ-CO) structure is found here for the acetylene complex. This singly bridged structure is predicted to lie 1.9 kcal/mol below the H2C2Co2(CO)44-1S structure by the BP86 method but 3.5 kcal/mol above the latter by the B3LYP method. In addition to the singly bridged As2Co2(CO)4 structure, the same six unbridged structures were located for As2Co2(CO)4 that were previously found for H2C2Co2(CO)6.  相似文献   

15.
Photolysis of cis-Fe(CO)4X2, where X = Br and I, results in low energy, facile rearrangement to the trans isomer with no evidence of CO-loss. In contrast, the isoelectronic cis-Mn(CO)4Br2 anion exhibits CO-loss upon photolysis with only weak evidence for the trans isomer. The photolysis of Mn(CO)5Br, Mn(CO)4Br(PBu3) and Mn(CO)3Br(PBu3)2 have also been examined in frozen matrices.  相似文献   

16.
Arylpiperazines, XC6H4N(CH2CH2)2NH, are readily alkylated to give the N-alkylpiperazines of the type XC6H4N(CH2CH2)2N(CH2)nNH2. The amine functions of these derivatives are in turn easily subjected to mono- or dialkylation to provide potentially tridentate ligands of the types XC6H4N(CH2CH2)2N(CH2)nN(H)(CH2Y) and XC6H4N(CH2CH2)2N(CH2)nN(CH2Y)(CH2Z), respectively. The latter class of dialkylated derivatives may be symmetrically (Y=Z) or unsymmetrically (Y ≠ Z) substituted. The donor groups Y and Z of this study include pyridine, imidazole, methyl-imidazole, thiazole, carboxylate and thiolate.The reactions of these ligands with [NEt4]2[Re(CO)3Br3] yield complexes of the type [Re(CO)3{(YCH2)N(H)(CH2)n(H)xN(CH2CH2)2N(H)yC6H4X}]n and [Re(CO)3{(ZCH2)(YCH2)N(CH2)n(H)xN(CH2CH2)2N(H)yC6H4X}]n where the molecular charge n (0, +1, or +2) depends on the nature of the donor groups Y and Z (whether neutral or anionic or a combination of neutral and anionic) and on the degree of protonation of the piperazine unit (x=0 or 1; y=0 or 1). This variety of tridentate chelators provides complexes with fac-{Re(CO)3N3}, {Re(CO)3N2O}, {Re(CO)3NO2}, {Re(CO)3N2S} and {Re(CO)3NS2} coordination geometries. The structures of the model compound [Re(CO)3{(CH3N2C3H2CH2)N(H)CH2CH2-piperidine}]Br · H2O, [Re(CO)3{(CH3N2C3H2CH2)N(H)CH2CH2-Fphenpip}]Br, [Re(CO)3{(NC5H4CH2)N(H)CH2CH2-Fphenpip}]Br, [Re(CO)3{(O2CCH2)2NCH2CH2CH2-CH3OphenpipH}] · xCH3OH (x≈0.875), [Re(CO)3{(NC5H4CH2)2NCH2CH2CH2-CH3OphenpipH}]Br2 · 2CH2Cl2 · H2O and [Re(CO)3{(CH3N2C3H2CH2)(O2CCH2)NCH2CH2CH2-CH3OphenpipH2}]BrCl · 1.5CH3OH · H2O are discussed (phenpip: phenylpiperazine, -C6H4N(CH2CH2)2N-).  相似文献   

17.
Bis(pentamethylcyclopentadienyl)samarium bis- (tetrahydrofuranate), (C5Me5)2Sm(THF)2, reacts with 2,3,5,6-tetramethylphenol in toluene to yield (C5Me5)2Sm(OC6HMe4-2,3,5,6). The compound crystallizes in the space group P21/c with a = 8.725(3) Å, b=18.821(6) Å, c=18.461(6) Å, β= 111.17(2)°, V = 2827(2) Å3 and Dc=1.340 g cm−3 for Z = 4. Molecules of the aryloxide complex are monomeric and exhibit a bent metallocene structure with a nearly linear Sm---O---C(aryloxide) linkage: Sm---O = 2.13(1) Å, O---C = 1.29(2) Å, and Sm---O---C = 172.3(13)°. Reaction of the samarium complex with phenyllithium produces the previously- characterized species (C5Me5)2Sm(C6H5)(THF).  相似文献   

18.
A novel organic-inorganic hybrid pentaborate [Ni(C4H10N2)(C2H8N2)2][B5O6(OH)4]2 has been synthesized by hydrothermal reaction and characterized by FT-IR, Raman spectroscopy, elemental analyses and DTA-TGA. Its crystal structure was determined from single crystal X-ray diffraction. The structure consists of isolated polyborate anion [B5O6(OH)4] and nickel complex cation of [Ni(C4H10N2)(C2H8N2)2]2+, in which the two kinds of ligands come from the decomposition of triethylenetriamine material. The [B5O6(OH)4] units are connected to one another through hydrogen bonds, forming a three-dimensional framework with large channel along the a and c axes, in which the templating [Ni(C4H10N2)(C2H8N2)2]2+ cations are located. The assignments of the record FT-IR absorption frequencies and Raman shifts were given.  相似文献   

19.
The new aryl phosphinites PPh2OR (R = 2,4,6-Me3C6H2, 1; R = 2,6-Ph2C6H3, 2) have been prepared from chlorodiphenylphosphine and the corresponding phenols. In these ligands, the ortho-positions of the aromatic phosphite function are blocked by methyl and phenyl substituents, which allows coordination to metal centres without ortho-metallation. Thus, reaction with [PdCl2(cod)] leads to the complexes trans-[PdCl2(PPh2OR)2] (R = 2,4,6-Me3C6H2, 3; R = 2,6-Ph2C6H3, 4), while the reaction with [Rh2(CO)4Cl2] gives trans-[Rh(CO)Cl(PPh2OR)2] (R = 2,4,6-Me3C6H2, 5; R = 2,6-Ph2C6H3, 6). The single-crystal X-ray structure analyses of 3 and 5 confirm the trans-coordination of the new ligands in these square-planar complexes.  相似文献   

20.
Trityl borate salts [4-RPyCPh3][B(C6F5)4] (R = H 1, tBu 2, Et 3, NMe24) and [R3PCPh3][B(C6F5)4] (R = Me 5, nBu 6, Ph[1] 7, p-MeC6H48) are readily prepared via equimolar reaction of the appropriate pyridine or phosphine and trityl borate [CPh3][B(C6F5)4]. The analogous reactions of PiPr3 affords the product [(p-iPr3P-C6H4)Ph2CH][B(C6F5)4] (9) while the corresponding reactions of Cy3P and tBu3P gave the cyclohexadienyl derivatives [(p-R3PC6H5)CPh2][B(C6F5)4] (R = Cy 10, tBu 11). X-ray structures of 5 and 9 are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号