首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Di-μ-azido-bis[azido(2-aminopyridine)aquo]dicopper(II), [Cu(2-ampy)(N3)2(H2O)]2, was synthesized and characterized by X-ray crystallography. The crystals are triclinic, space group P1, with a = 7.142(1), b = 7.812(1), c = 9.727(1) Å, a = 96.52(1), β = 95.52(1), γ = 113.47(1)°, and Z = 1. The structure was refined to RF = 0.030 for 1960 observed MoKα diffractometer data. The dimeric molecule, which possesses a crystallographic inversion center, contains both terminal and μ(1)-bridging azido groups. Each copper(II) atom is further coordinated by a 2-aminopyridine ligand (via its ring N atom) and a water molecule to give a distorted square pyramid, with the metal atom raised by 0.17 Å above the N4 basal plane [CuN (ring) = 2.001(2), CuN (azide) = 1.962(3)–2.018(2) Å] towards the apical aquo ligand [CuO = 2.371(2) Å]. Each water molecule forms an intramolecular O?HN (amine) acceptor hydrogen bond, and is linked by two OH?N (terminal azide) intermolecular donor hydrogen bonds to adjacent dimeric complexes to yield a layer structure parallel to (001). Infrared and electronic spectral data are presented and discussed.  相似文献   

2.
《Inorganica chimica acta》1988,147(2):251-256
The compound, diiodooctacarbonyldiosmium(I), [Os2(CO)8I2], has been prepared by a route involving only atmospheric pressures. Its structure has been determined by X-ray crystallography. The crystals are tetragonal with a = 11.791(2), c = 23.583(4) Å, Z = 8, Dc = 3.48 Mg m−3. A total of 1637 reflections were collected out to θ = 25° on a CAD4 diffractometer in ω—2θ mode using Mo Kα (λ = 0.7107 Å) radiation. Lp and empirical absorption corrections were applied. The structure was solved in the space group I41cd using conventional heavy atom methods and refined to R = 0.0477 [Rw = 0.0424, w = (σ2F)−1]. The molecule of [Os2(CO)8l2] has two crystallographically equivalent halves joined by a single OsOs bond of length 2.947(3) )Å. There are no bridging ligands. The geometry about each osmium is pseudo-octahedral and the iodine atoms occupy equatorial positions with an OsI distance of 2.767(3) Å. The equatorial ligands on one osmium atom are staggered with respect to the equatorial ligands on the other osmium atom.  相似文献   

3.
The kinetics of the reactions between anhydrous HCl and trans-[MoL(CNPh)(Ph2PCH2CH2PPh2)2] (L=CO, N2 or H2) have been studied in thf at 25.0 °C. When L=CO, the product is [MoH(CO)(CNPh)(Ph2PCH2CH2PPh2)2]+, and when L=H2 or N2 the product is trans-[MoCl(CNHPh)(Ph2PCH2CH2PPh2)2]. Using stopped-flow spectrophotometry reveals that the protonation chemistry of trans-[MoL(CNPh)(Ph2PCH2CH2PPh2)2] is complicated. It is proposed that in all cases protonation occurs initially at the nitrogen atom of the isonitrile ligand to form trans-[MoL(CNHPh)(Ph2PCH2CH2PPh2)2]+. Only when L=N2 is this single protonation sufficient to labilise L to dissociation, and subsequent binding of Cl gives trans-[MoCl(CNHPh)(Ph2PCH2CH2PPh2)2]. At high concentrations of HCl a second protonation occurs which inhibits the substitution. It is proposed that this second proton binds to the dinitrogen ligand. When L=CO or H2, a second protonation is also observed but in these cases the second protonation is proposed to occur at the carbon atom of the aminocarbyne ligand, generating trans-[MoL(CHNHPh)(Ph2PCH2CH2PPh2)2]2+. Addition of the second proton labilises the trans-H2 to dissociation, and subsequent rapid binding of Cl and dissociation of a proton yields the product trans-[MoCl(CNHPh)(Ph2PCH2CH2PPh2)2]. Dissociation of L=CO does not occur from trans-[Mo(CO)(CHNHPh)(Ph2PCH2CH2PPh2)2]2+, but rather migration of the proton from carbon to molybdenum, and dissociation of the other proton produces [MoH(CO)(CNPh)(Ph2PCH2CH2PPh2)2]+.  相似文献   

4.
The crystal structure of [Sm(OPMePh2)4I2]I, 1, was determined by X-ray diffraction and refined anisotropically to a final R value of 0.067 from 3040 reflections with I>3.0σ(I). The space group was P2/a and Z=2. The unit cell dimensions were: a= 17.777(6), b=13.559(2), c=11.656(4) Å, α=γ= 90.0 and β=97.25(3)°. The cation geometry was octahedral with the Sm(III) bonded to two mutually trans I ions and four OPMePh2 groups. A third non-bonded I was present elsewhere in the cell. The SmI and SmO distances were 3.077(1) and 2.27(1) Å respectively. Two of the SmOP angles were 172.1(6)° and the other two were 162.0(6)°.  相似文献   

5.
The crystal and molecular structures of the complexes MoO2((SCH2CH2)2NCH2CH2SCH3), I and MoO2((SCH2CH2)2NCH2CH2N(CH3)2), II, have been determined from X-ray intensity data collected by counter methods. Compound I crystallizes in two forms, Ia and Ib. In form Ia the space group is P21/n with cell parameters a = 7.235(2), b = 7.717(2), c = 24.527(6) Å, β = 119.86(2)°, V = 1188(1) Å3, Z = 4. In form Ib the space group is P21/c with cell parameters a = 14.945(5), b = 11.925(5), c = 14.878(4) Å, β = 114.51(2)°, V = 2413(3) Å3, Z = 8. The molecules of I in Ia and Ib are very similar having an octahedral structure with cis oxo groups, trans thiolates (cis to both oxo groups) and N and thioether sulfur atoms trans to oxo groups. Average ditances are MoO = 1.70, MoS (thiolate) = 2.40, MoN = 2.40 and MoS (thioether) = 2.79 Å. Molecule II crystallizes in space group P212121 with a = 7.188(1), b = 22.708(8), c = 7.746(2) Å, V = 1246(1) Å3 and Z = 4. The coordination about Mo is octahedral with cis oxo groups, trans thiolates and N atoms trans to oxo. Distances in the first coordination sphere are MoO = 1.705(2), 1.699(2), MoS = 2.420(1), 2.409(1) and MoN = 2.372(2), 2.510(2) Å. The conformational features of the complexes are discussed. Complex I displays MoO and MoS distances which are very similar to those found by EXAFS in sulfite oxidase. This similarity is discussed.  相似文献   

6.
The structures of MoO2[NH2C(CH3)2CH2S]2 and MoO2[SC(CH3)2CH2NHCH2CH2NHCH2C(CH3)2S] have been determined using X-ray diffraction intensity data collected by counter techniques. MoO2[NH2C(CH3)2CH2S]2 crystallizes in space group Pbca with a = 11.234(3), b = 11.822(3) and c = 20.179(5) Å, V = 2680(2) Å3 and Z = 8. Its structure is derived from octahedral coordination with cis oxo groups [MoO = 1.705(3) and 1.705(3)], trans thiolate donors cis to the oxo groups [MoS = 2.416(1) and 2.402(1) and N donors trans to oxo [MoN = 2.325(3) and 2.385(4) Å]. MoO2[SC(CH3)2CH2NHCH2CH2NHCH2C(CH3)2S] crystallizes in the space group P21/c with a = 10.798(5), b = 6.911(2), c = 20.333(9) Å, β = 95.20°, V = 1511(2) Å3 and Z = 4. Its structure is very similar to that of MoO2[NH2C(CH3)2CH2S]2 with MoO = 1.714(2) and 1.710(2), MoS = 2.415(1) and 2.404(1) and MoN = 2.316(3) and 2.362(3). The small differences in the geometries of the two compounds are attributed to the constraints of the extra chelate ring in the complex with the tetradentate ligand. The structures in this paper stand in contrast to those reported for complexes of similar ligands wherein steric hindrance produces complexes with a skew trapezoidal bipyramidal structure.  相似文献   

7.
《Inorganica chimica acta》1987,128(2):161-167
The complexes (Bu4N)[TcO(O2C6H4)2] (1) and Na[TcO(OCH2CH2O)2] (2) have been prepared by reacting TcOCl4- with respective diols in methanol. Compound 2 was identified by its elemental analysis and field desorption mass spectrum. Crystals of compound 1 are monoclinic, C2/c, with cell dimensions a = 10.393(3), b = 13.835(3), c = 20.643(5) Å, β = 101.74(3)° and four formula units in the unit cell. The crystal structure was determined by standard methods and refined to R1 = 0.0694, R2 = 0.0613, on the basis of 2887 independent reflections. The data were collected with use of Mo Kα radiation and a Syntex P21 diffractometer. The anion of 1 is square pyramidal with a short TcO(oxo) bond (1.648(5) Å). TcO distances to the diolate groups are longer (1.956(3), 1.958(3) Å). The technetium atom lies 0.7014(4) Å out of the plane of the four diolate oxygen atoms. Compound 2 is hydrolytically unstable in pure water, but can be stabilized by the addition of a several-fold molar excess of ethylene glycol. Compound 1 decomposes minimally in pure water after 24 h. These complexes are shown to be good structural models for 99mTc-radiopharmaceuticals containing purely oxygen-donor ligands. Comparison of the physical properties of the structurally characterized members of the series of complexes with core structures TcOSxO(4-x) (x = O, 2, 4) shows a shift to low energy in the frequency of the terminal oxygen-technetium band in the IR correlated with increasing softness of the basal plane donor atom set.  相似文献   

8.
《Inorganica chimica acta》1988,146(2):181-185
The reactions between [TcOCl4] and the sterically bulky thiols ArSH (Ar = 2,4,6-Me3C6H2, 2,4,6- Pri3C6H2 and 2,6-Ph2C6H3) in methanol afford complexes of formula [TcO(SAr)4] which may be isolated as salts with bulky organic cations. The molecular structure of [Bun4N][TcO(2,4,6-Me3C6H2S)4] was determined by X-ray diffraction methods. The Tc(V) centre was found to adopt the expected square pyramidal geometry in which an oxo group occupies the apical site and the four thiolate sulphurs the basal sites. The TcO distance is 1.659(11) Å and the average TcS distance 2.38(2) Å. The average cis STcS, trans STcS and OTcS angles are respectively 82.7(6)°, 138.4(3)° and 110.8(4)°.  相似文献   

9.
The crystal structure of chloro-(1-methyltyminato- N3)-cis-diammineplatinum(II) monohydrate, cis- (NH3)2Pt(C6H7N2O2)Cl·H2O, is reported. The compound crystallizes in space group P1 with a = 6.911(2) Å, b = 8.598(3) Å, c = 11.464(4) Å, α = 100.13(3)°, β = 120.03(3)°, γ = 93.16(3)°, Z = 2. The structure was refined to R = 0.048 and Rw = 0.057. The compound contains the deprotonated 1-methylthymine ligand coordinated to Pt through N3 (1.973(10) Å). This distance represents the shortest Pt-N3(pyrimidine-2.4-dione) bond reported so far. The two PtNH3 bond lengths differ significantly: PtNH3 (trans to Cl) is longer (2.052(10) Å) than PtNH3 (trans to N3 of 1-MeT) (2.002(11) Å). The PtCl distance (2.326(3) Å) is normal, as is the large dihedral angle between the Pt coordination plane and the nucleobase (76.5°).  相似文献   

10.
The title compounds were made by reacting bis(diphenylphosphino)methane (dppm) with reduced solutions of OsCl64? and Ru2OCl104?. The crystal and molecular structures of these compounds have been determined form three-dimensional X-ray study. The cis-isomers crystallize with one CHCl3 per molecule of the complex. All three compounds crystallize in the monoclinic space group P21/n with unit cell dimensions as follows: Cis-OsCl2(dppm)2·CHCl3: a = 13.415(4) Å, b = 22.859(4) Å, c = 16.693(3) Å, β = 105.77(3)°, V = 4926(3) Å3, Z = 4. cis-RuCl2(dppm)2·CHCl3: a = 13.442(3) Å, b = 22.833(7) Å, c = 16.750(4) Å, β = 105.53(2)°, V = 4953(3) Å3, Z = 4. trans-RuCl2(dppm)2: a = 11.368(7) Å, b = 10.656(6) Å, c = 18.832(12) Å; β = 103.90(6)°, V = 2213(7) Å3; Z = 2. The structures were refined to R = 0.044 (Rw = 0.055) for cis-OsCl2(dppm)2·CHCl3; R = 0.065 (Rw = 0.079) for cis-RuCl2(dppm)2·CHCl3 and R = 0.028 (Rw = 0.038) for trans-RuCl2(dppm)2. The complexes are six coordinate with stable four-membered chelate rings. The PMP angle in the chelate rings is ca. 71° in each case.  相似文献   

11.
The crystal structures of two copper(II) complexes of 4-fluorophenoxyacetic acid (4-FPAH) have been determined by X-ray diffraction. [Cu(4-FPA)2(H2O)2]·2(4-FPAH)·2H2O (1) is triclinic, space group P1 with Z = 1 in a cell of dimensions a = 14.808(2), b = 9.832(2), c = 6.847(2) Å, α = 87.77(2), β = 98.41(2), γ = 112.33(2)° and was refined to a residual of 0.038 for 1697 ‘observed’ reflections. The coordination sphere in this complex is tetragonally distorted octahedral comprising two waters [CuO, 1.940(3) Å], two unidentate carboxylate oxygens [CuO, 1.942(2) Å] and two ether oxygens [CuO, 2.471(2) Å]. Two adducted [4-FPAH] acid molecules are linked to the un-coordinated oxygens of the acid ligands by hydrogen bonds [2.547(4) Å]. [Cu2(4-FPA)4(2-aminopyrimidine)2] (2) is triclinic, space group P1 with Z = 1 in a cell of dimensions a = 12.688(2), b = 11.422(2), c = 7.951(1) Å, α = 78.74(1), β = 107.51(1), γ = 75.78(1)°, and was refined to a residual of 0.042 for 2683 ‘observed’ reflections. (2) is a centrosymmetric tetracarboxylate bridged dimer with four similar CuO (equatorial) distances [1.967–1.987 Å; 1.977(3) Å mean] and the axial position occupied by the hetero nitrogen of the 2-aminopyrimidine ligand [CuN, 2.176(3) Å]. The Cu---Cu separation is 2.710(1) Å. Crystal data are also presented which confirm the isostructurality of complex (2) with [Cu2(phenoxyacetate)4(2-aminopyrimidine)2], the CoII, MgII and MnII4-fluorophenoxyacetate complexes with their phenoxyacetic and 4-chlorophenoxyacetic acid analogues, and of CdII4-fluorophenoxyacetate with CdII and ZnII phenoxyacetates.  相似文献   

12.
13.
The complexes LMoVIO2X [L?=?hydrotris(3,5-dimethylpyrazol-1-yl)borate; X?=?Cl, Br, NCS, OPh, SPh, SCH2Ph] are converted to air-stable complexes LMoVO(OSiMe3)X by one-electron coupled electron-electrophile transfer (CEET) reactions involving cobaltocene and the electrophilic reagent Me3SiCl. These complexes may also be obtained from LMoVO(OH)X by reaction with Me3SiCl in the presence of base. LMoVO(OSiMe3)(SCH2Ph) crystallises in space group P21/n, with a?=?8.526 (1) Å, b?=?23.141 (3) Å, c?=?16.499 (2) Å, β?=?103.75 (12)° and Z?=?4. The complex exhibits a distorted octahedral structure with a facially tridentate L ligand and mutually cis oxo [Mo=O?=?1.675 (4) Å], silyloxo [Mo–O?=?1.932 (4) Å] and thiolato [Mo–S?=?2.398 (2) Å] ligands. The detailed redox properties of LMoVO(OR)X (R?=?SiMe3, alkyl, aryl) differ from those of LMoVO(OH)X. Centres [MoVO(OR)] are candidates for the stable "inhibited" forms of certain molybdenum enzymes formed under conditions which apparently disfavour the catalytically active [MoVO(OH)] centres. In the coordinating solvent pyridine (py), both LMoVIO2(SPh) and LMoVO(OSiMe3)(SPh) are reduced in one-electron steps to stable LMoIVO(py)(SPh). LMoIVO(py)(SR) complexes are also obtained from LMoVIO2(SR) (R?=?Ph, CH2Ph, CHMe2) via a two-electron oxygen atom transfer reaction with tertiary phosphines in pyridine. Consequently, the Mo(IV) product is accessible via a concerted two-electron step or via two one-electron steps.  相似文献   

14.
The title compound (pipzH2)2Mo2Cl8·4H2O (pipz = piperazine),was isolated from the solution of (morphH)2Mo2Cl6(H2O)2 in HCl 1:1 by addition of (pipzH2)Cl2. This reaction indicates the reversibility of the substitution of chloride ions in Mo2Cl84? by water molecules. (pipzH2)2Mo2Cl8·4H2O crystallizes in the Pbca space group, with a = 15.154(2), b = 13.170(2), c = 12.208(2) Å and Z = 4. The structure was solved by the Patterson method and refined to the unweighted and weighted residuals of 0.050 and 0.048. The crystal structure is built form Mo2Cl84?, (pipzH2)2+ and H2O. The MoMo distance of 2.129(3) Å is the shortest one found in all structurally-characterised Mo2X84? (X = Cl, Br) anions. Four independent MoCl distances are 2.456(3), 2.445(3), 2.463(4) and 2.455(4) Å. The (pipzH22+ exists in a usual chair conformation. There is a network of hydrogen bonds of the type NH?Cl, NH?O, OH?Cl and OH?O between the ions and water molecules.  相似文献   

15.
《Inorganica chimica acta》1988,145(2):225-229
A new molybdenum(0) dithiocarbamato complex [Et4N] [Mo(CO)4(S2CNEt2)] (1) has been synthesized by the reaction of Mo(CO)6, NaS2CNEt2 and Et4NCl in MeCN and characterized by routine elemental analysis, spectroscopy methods. The crystal and molecular structure of 1 was determined from X-ray three dimension data. 1 crystallizes in the orthorhombic, space group Pbc21 with a= 8.148(2), b=19.618(2), c=14.354(2) Å; V=2294 Å3; Z=4; R1=0.052, R2=0.058 for 1308 independent reflections with I ⩾ 3σ(I). The geometry around Mo(0) atom in the anion [Mo(CO)4(S2CNEt2)]- of 1 is distorted octahedral with a small SMoS of 67.70° and a small angle of 3.6° between plane MoSS and MoC(1)C(2). Two groups of MoCO bond distances and the longer MoS bond distance observed in 1 are similar to that in the dinuclear Mo(0) complexes containing SR bridges but very different from those observed in the dithiocarbamato complexes of Mo in higher oxidation states. Different oxidizing products containing Mo in II-V oxidation states Mo(CO)2(S2CNEt2)2, MoO(S2CNEt2)2, Mo2O3(S2CNEt2)4 and Mo2O4(S2CNEt2)2 were isolated from the oxidation of 1 with I2 (or in the presence of traces of air). The electrochemical behavior of 1 in MeCN was investigated by cyclic voltammetry at Pt and C electrodes. The anodic peaks observed at 0.04, 0.14, 0.26 and 0.44 V versus SCE implied that 1 probably underwent oxidation in company with dissociation of dithiocarbamate and substitution of carbonyls resulting in several complexes of Mo in different oxidation states. The relationship between reactivity and structure is also discussed.  相似文献   

16.
The preparations are reported of cis[Pt(caffeine)2Cl2]·0.4H2O, Pd(caffeine)2Cl2, the methanol adduct of the previously known compound K[Pt(caffeine)Cl3], and Pt(caffeine)(cytidine)Cl2. Crystals of [Pt(caffeine)2Cl2]·0.4H2O are tetragonal P42/n with a = 13.156(2) 0?, c = 12.734(2) 0?, Z = 4. The structure was refined on 945 reflections to R = 0.025. The molecule is cis with a crystallographic two-fold axis bisecting the ClPtCl and NPtN angles. The Pt is square planar with PtN and PtCl bonds of 2.029(5) Å and 2.271(2) Å respectively. There is a 5.4° dihedral angle between the imidazole and pyrimidine rings, and the imidazole ring is rotated away from the coordination plane by 86.4°. Symmetry related caffeine units pack parallel to each other with an inter-ring separation of 3.45 Å.  相似文献   

17.
2-Deoxy-β-d-arabino-hexopyranose, C6H12O5, is orthorhombic, P212121, with cell dimensions at ?150° [20°], a = 6.484(2) [6.510(3)], b = 10.364(2) [10.427(4)], c = 11.134(3) [11.153(5)] Å, V = 748.2 [757.1] Å3, Z = 4, Dx = 1.457 [1.440], and Dm = [1.455] g.cm?3. The intensities of 1269 reflections were measured by using MoKα radiation. The structure was solved by direct methods, and refined by full-matrix least-squares, with anisotropic, thermal parameters for the carbon and oxygen atoms, and isotropic parameters for the hydrogen atoms. The pyranose has the 4C1(d) conformation, with puckering parameters Q = 0.563 Å, θ = 3.9°, and ? = 350.3°. The departure from ideality is very small, and less than that in β-d-glucopyranose, Q = 0.584 Å and θ = 6.9°. The β-glycosidic, CO bond is short, 1.383(4) Å, and the OCOH torsion angle is ?87°, consistent with the anomeric effect. The hydrogen-bonding scheme consists of infinite chains, with side chains terminating at a ring-oxygen atom.  相似文献   

18.
The reaction of [Cu2(O2CCH3)4·2H2O] with trimethoprim is reported. In methanol a green solution was obtained, which, on adding benzene, yielded tetrakis(μ-acetato)bis(trimethoprim)dicopper(II) di-benzene methanol solvate. The compound crystallizes with four molecules per cell in the monoclinic space group C2/c, with a = 24.109(5), b = 15.256(3), c = 16.532(3) Å, β = 116.89(2) for λ(Mo-Kα) = 0.71073 Å. The copper atoms are bridged by four acetate groups to form the binuclear molecule [Cu2-(O2CCH3)4(TMP)2]·2C6H6·CH3OH. The TMP ligand acts as a donor molecule through one pyrimidinic nitrogen atom.  相似文献   

19.
A 1:1 complex of mercuric chloride with D-peniccillamine has been isolated and characterised as 2[(μ3-Cl){HgSC(CH3)2CH(NH3)COO}3]·3(μ2-Cl)·2(H3O)·(H2O·Cl)3. The compound crystallises in cubic space group P4132, with a = 18.679(5) Å and Z = 4. The structure, refined to RF = 0.086 for 443 observed Mo-Kα diffractometer data, features a triply bridging chloride ion linking three equivalent [HgSC(CH3)2CH(NH3)COO]+ units [Hg-Cl = 2.37(1) Å, Hg-Cl-Hg′ = 98.5(9)°]. The carboxylate groups of a pair of adjacent penicillamine ligands are strongly linked via a symmetrical O?H?O hydrogen bond of length 2.24(8) Å, and neighboring pyramidal trinuclear [μ3-Cl){HgSC(CH3)2CH(NH3)-COO}3]2+ moieties are further connected by symmetrical chloride bridges [Hg-Cl = 3.06(2) Å; HgClHg′' = 79.6(7)°] to form a three-dimensional network. The voids in the lattice are filled by hydronium ions and novel planar cyclic hydrogen-bonded (H2O·Cl?)3 rings of edge O-H?Cl = 2.46(4) Å.  相似文献   

20.
《Inorganica chimica acta》1986,113(2):157-160
2-Carboxyquinolinatobis(triphenylphosphite)rhodium (I) was prepared by means of the following reaction: [Rh(Qin)(CO)2] + 2P(OPh)3→ [Rh(Qin)(P(OPh)3)2] + 2CO It crystallizes in the triclinic space groupP] witha = 12.406,b = 18.702,c = 9.547 Å, α = 76.36, β = 111.35, γ = 97.88o and Z = 2. The structure was determined from 4520 observed reflections. the final R value was 0.051. The RhP bond distances may indicate (although the difference is only about 3σ) that the nitrogen atom the chelate ring has the largest trans influence. The chelate ring is significantly folded along the N---O axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号