首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Abstract

The protease from Aspergillus tamarii Kita UCP1279 extraction by aqueous two-phase PEG-Citrate (ATPS) systems, using a factorial design 24, was investigated. Then, the variables studied were polyethylene glycol (PEG) molar mass (MPEG), concentrations of PEG (CPEG) and citrate (CCIT), and pH. The responses analyzed were the partition coefficient (K), activity yield (Y) and purification factor (PF). The thermodynamic parameters of the ATPS partition were estimated as a function of temperature. ATPS was able to pre-purify the protease (PF = 1.6) and obtained 84% activity yield. The thermodynamic parameters ΔG°m (?10.89?kJ mol?1), ΔHm (?5.0?kJ?mol?1) and partition ΔSm (19.74?J mol?1 K?1) showed that the preferential migration of almost all protein contaminants of the crude extract to the salt-rich phase, while the preferred protease was the PEG rich phase. The extracted enzyme presents optimum temperature and pH at range of 40–50?°C and 9.0–11.0, respectively. Moreover, the enzyme was identified as serine protease based on inhibition profile. ATPS showed the satisfactory performance as the first step for Aspergillus tamarii Kita UCP1279 protease pre-purification.  相似文献   

2.
The reactions of PtCl2en or cis-Pt(NH3)2Cl2 and their aqua species with adenine and adenosine were studied by means of ion-pair HPLC. From the chromatograms, it was found that the first binding site of Pt(II) was the N(7) site of adenine under both acidic and neutral conditions. The rates of Pt(II) binding at the (N7) site of adenosine and deoxyadenosine were measured. The rate constants, k1, were obtained for the reactions of PtCl2en or cis-Pt(NH3)2Cl2 with adenosine and deoxyadenosine at pH 3 and 7 over the temperature range 9–25 °C. The k1 values were 6.8–7.7 × 10−4 dm3 mol−1 s−1 at 25 °C. For the aqua species, the rate of [cis-Pt(NH3)2ClH2O]+ with adenosine N(7) was measured. The rate constants, k2 which were found to be smaller than those of hydrolysis, kh, were calculated at pH 3 over the temperature range 25–40 °C. The k2 value obtained at 25 °C was 1.1 × 10−2 dm3 mol−1 s−1, 15 time larger than k1. The activation parameters were also calculated.  相似文献   

3.
Abstract

This research is focussed on kinetic, thermodynamic and thermal inactivation of a novel thermostable recombinant α-amylase (Tp-AmyS) from Thermotoga petrophila. The amylase gene was cloned in pHIS-parallel1 expression vector and overexpressed in Escherichia coli. The steady-state kinetic parameters (Vmax, Km, kcat and kcat/Km) for the hydrolysis of amylose (1.39?mg/min, 0.57?mg, 148.6?s?1, 260.7), amylopectin (2.3?mg/min, 1.09?mg, 247.1?s?1, 226.7), soluble starch (2.67?mg/min, 2.98?mg, 284.2?s?1, 95.4) and raw starch (2.1?mg/min, 3.6?mg, 224.7?s?1, 61.9) were determined. The activation energy (Ea), free energy (ΔG), enthalpy (ΔH) and entropy of activation (ΔS) at 98?°C were 42.9?kJ mol?1, 74?kJ mol?1, 39.9?kJ mol?1 and ?92.3 J mol?1 K?1, respectively, for soluble starch hydrolysis. While ΔG of substrate binding (ΔGE-S) and ΔG of transition state binding (ΔGE-T) were 3.38 and ?14.1?kJ mol?1, respectively. Whereas, EaD, Gibbs free energy (ΔG*), increase in the enthalpy (ΔH*) and activation entropy (ΔS*) for activation of the unfolding of transition state were 108, 107, 105?kJ mol?1 and ?4.1 J mol?1 K?1. The thermodynamics of irreversible thermal inactivation of Tp-AmyS revealed that at high temperature the process involves the aggregation of the protein.  相似文献   

4.
The enthalpy change for phosphorylation of ADP3? by PEP3? catalysed by pyruvate kinase has been determined at 25°C using flow microcalorimetry. Measurements were made at pH 8 in three buffer systems TRIS, TEA and HEPES and also at pH 8.5 in TRIS buffer. The values of ΔH obtained, ?8.75 kJ mol?1 in TRIS, ?7.39 kJ mol? in TEA and ?6.19 kJ mol?1 in HEPES surprisingly display a dependence on the buffer system used. The enthalpy change was combined with free energy data to calculate the entropy change for the catalysed reaction.  相似文献   

5.
The stopped flow technique has been used to study the kinetics of complex formation of iron(III) with pyridoxal-5-phosphate (PLP) in the pH range 1.00–2.50, and in the temperature range 18 °C– 30 °C, at an ionic strength of. 0.50 M (NaCl). From the initial concentration dependence of PLP (TPLP,) of the reaction rate it can be shown that two kinetic steps can be represented as: kobs′ = mi + miPLP where mi and mi′ are pH-dependent parameters. The calculated activation data are δE* = 23.2 ± 1.8 kcal mol?1 and 10.98 ± 0.53 kcal mol?1 for the first and second kinetic steps, respectively and δS* are ?20.50 ± 5.96 e.u. and 24.62 ± 1.81 e.u., respeetively.  相似文献   

6.
The reaction of Ru(XTPP)(DMF)2, where XTPP is the dianion of para substituted tetraphenylporphyrins and X is MeO, Me, H, Cl, Br, I, F, with O2 and CO were studied in DMF. The process was found to be first-order in metalloporphyrin, first-order in molecular oxygen and carbon monoxide, and second-order overall. Second-order rate constants for the CO reaction ranged from 0.170 to 0.665 M?1 s?1 at 25°C, those for the O2 reaction from 0.132 to 0.840 M?1 s?1 at 25°C. Similar activation parameters (ΔHCO± = 87 ± 1 kJ mol?1, ΔSCO± = 22 ± 4 JK?1 mol?1; ΔHO2± = 81 ± 1 kJ mol?1, and ΔSO2± = 11 ± 5 JK?1 mol?1) were found within each series. Reactivities of X substituted metalloporphyrins were found to follow different Hammett σ functions. The CO reactions correlated with σ? following normal behavior; the O2 reactions correlated with σ8° indicating O2 is π-bonded in the transition states. A dissociative mechanism is postulated for the process.  相似文献   

7.
The temperature dependences of the P870+Q?A → P870QA and P870+Q?B → P870QB recombination reactions were measured in reaction centers from Rhodopseudomonas sphaeroides. The data indicate that the P870+Q?B state decays by thermal repopulation of the P870+Q?A state, followed by recombination. ΔG° for the P870+Q?A → P870+Q?B reaction is ?6.89 kJ · mol?1, while ΔH° = ?14.45 kJ · mol?1 and ?TΔS° = + 7.53 kJ · mol?1. The activation ethalpy, H3, for the P870+Q?A Δ P870+Q?B reaction is +56.9 kJ · mol?1, while the activation entropy is near zero. The results permit an estimate of the shape of the potential energy curve for the P870+Q?A → P870+Q?B electron transfer reaction.  相似文献   

8.
Rate and apparent equilibrium constants for the dissociation of pig liver carboxylesterase into three subunit molecules have been determined by complement fixation. The dependence of the dissociation equilibria on pH are consistent with dissociation reactions involving the addition of two protons per subunit, a pH-independent dissociation, and a dissociation upon the loss of one proton per subunit. The rate constants for dissociation are consistent with terms first order in hydrogen and hydroxide ions and a pH-independent path. The equilibrium constants in the range 3–35 °C at pH 7.2 exhibit no dependence on temperature; the association reaction is entropy driven with ΔS = 68 cal mol?1°K?1. The rate constants for the pH-independent dissociation follow ΔH ? 6 kcal mol?1. The order of effectiveness of concentrated salts in promoting denaturation is correlated with their effect on the activity coefficient of acetyltetraglycine ethyl ester and suggests that peptide groups become more exposed upon dissociation. The increased dissociation in the presence of urea derivatives containing alkyl substituents suggests exposure of hydrophobic regions upon dissociation; this is also consistent with ΔH = 0 for dissociation. It is likely that hydrophobic interactions contribute to the stability of the trimeric whole molecule.  相似文献   

9.
Helix-coil dynamics of a Z-helix hairpin   总被引:1,自引:0,他引:1  
The helix–coil transition of a Z-helix hairpin formed from d(C-G)5T4(C-G)5 has been characterized by equilibrium melting and temperature jump experiments in 5M NaClO4 and 10 mM Na2HPO4, pH 7.0. The melting curve can be represented by a simple all-or-none transition with a midpoint at 81.6 ± 0.4°C and an enthalpy change of 287 ± 15 kJ/mole. The temperature jump relaxation can be described by single exponentials at a reasonable accuracy. Amplitudes measured as a function of temperature provide equilibrium parameters consistent with those derived from equilibrium melting curves. The rate constants of Z-helix formation are found in the range from 1800 s?1 at 70°C to 800 s?1 at 90°C and are associated with an activation enthalpy of ?(50 ± 10) kJ/mole, whereas the rate constants of helix dissociation are found in the range from 200 s?1 at 70°C to 4500 s?1 at 90°C with an activation enthalpy +235 kJ/mole. These parameters are consistent with a requirement of 3–4 base pairs for helix nucleation. Apparently nucleation occurs in the Z-helix conformation, because a separate slow step corresponding to a B to Z transition has not been observed. In summary, the dynamics of the Z-helix–coil transition is very similar to that of previously investigated right-handed double helices.  相似文献   

10.
(S)-1-Phenylethanol derivatives, which are the precursors of many pharmacological products, have also been used as anti-Alzheimer drugs. Bioreduction experiments were performed in a batch and packed-bed bioreactor. Then, the kinetics constants were determined by examining the reaction kinetics in the batch system with free and immobilized carrot cells. Also, the effective diffusion coefficient (De) of acetophenone in calcium alginate-immobilized carrot cells was investigated. Kinetics constants for free cells, which are intrinsic values, are reaction rate Vmax?=?0.052?mmol?L?1?min?1, and constants of the Michaelis–Menten KM?=?2.31?mmol?L?1. Kinetics constants for immobilized cells, which are considered apparent values, are Vmax, app?=?0.0407?mmol?L?1 min?1, KM, app?=?3.0472?mmol?L?1 for 2?mm bead diameter, and Vmax, app?=?0.0453?mmol?L?1 min?1, KM, app?=?4.9383?mmol?L?1 for 3?mm bead diameter. Average value of effective diffusion coefficient of acetophenone in immobilized beads was determined as 1.97?×?10?6?cm2?s?1. Using immobilized carrot cells in an up-flow packed-bed reactor, continuous production of (S)-1-phenylethanol through asymmetric bioreduction of acetophenone was performed. The effects of the residence time and concentrations of substrate were investigated at pH 7.6 and 33°C. Enantiomerically pure (S)-1-phenylethanol (ee?>?99%) was produced with 75% conversion at 4-hr residence time.  相似文献   

11.
Detailed analyses of changes in the ultraviolet-visible absorption spectra of the anti-aithritic gold drug disodium gold(I) thiomalate·0 3 glycerol·2H2O with time, suggest that the solid may contain about 23% of a species with λmax of 337 and 370 nm. This disappears in a two-step process soon after dissolution in water. The reaction was monitored at a variety of temperatures (20–47°C), pH's (6–11), and ionic strengths (0.05–0.61 M). The first step is complete in ca. 3 min. The second step is independent of Au(tm) concentration with ko' = 8.5 × 10?2min?1 and activation parameters of ΔH± = 82.1 4.1 kJmol?1 and ΔS = 13.65 KJ?1 mol?1. The logarithm of the rate of this step increases linearly with the square root of the ionic strength. The reaction is readily reversed at high ionic strengths and is interpreted as a cooperative structural transition of polymeric gold(I) thiomalate, possibly involving Au(I)-Au(I) bonding. The relationship of these observations to reactions of other 1:1 Au(I) thiolate complexes and their method of preparation is discussed.  相似文献   

12.
Abstract

The interaction between Tb(IV)-NR complex and herring sperm DNA in buffer solution of Tris-HCl was investigated with the use of acridine orange(AO) as a spectral probe. The binding modes and other information were provided by the UV–spectrophotometry and fluorescence spectroscopy. The thermodynamic functions expressed that the binding constants of Tb(IV)-NR complex with DNA was Kθ298.15K = 4.03?×?105?L·mol?1, Kθ310.15K =1.30?×?107?L·mol?1, and the ΔrGθ m 298.15?K=?3.20?×?104 J·mol?1. The scatchard equation suggested that the interaction mode between Tb(IV)-NR complex and herring sperm DNA is electrostatic and weak intercalation bindings. FTIR spectroscopy results also indicate that there is a specific interaction between the Tb(IV)-NR complex and the A and G bases of DNA.  相似文献   

13.
The electron transfer reactions of horse heart cytochrome c with a series of amino acid-pentacyanoferrate(II) complexes have been studied by the stopped-flow technique, at 25°C, μ = 0.100, pH 7 (phosphate buffer). A second-order behavior was observed in the case of the Fe(CN)5 (histidine)3? complex, with k = 2.8 x 105 M?1 sec?1. For the Fe(CN)5 (alanine)4? and Fe(CN)5(L-glutamate)5? complexes, only a minor deviation of the second-order behavior, close to the experimental error (k = 3.2 × 105 and 1.6 x 105 M?1 sec?1, respectively) was noted at high concentrations of the reactants (e.g., 6 × 10?4 M). The results are in accord with recent work on the Fe(CN)64?/cytochrome c system demonstrating weak association of the reactants. The calculated self-exchange rate constants including electrostatic interactions for the imidazole,L -histidine, 4-aminopyridine, glycinate, β-alaninate, andL-glutamate pentacyanoferrate(II) complexes were 3.3 × 105, 3.3 × 105, 2.8 × 106,4.1 × 102,5.5 × 102, and 6.0 M?1 sec?1, respectively. Marcus theory calculations for the cytochrome c reactions were interpreted in terms of two nonequivalent binding sites for the complexes, with the metalloprotein self-exchange rate constants varying from 104 M?1 sec?1 (histidine, imidazole, and 4-aminopyridine complexes) to 106 M?1 sec ?1 (glycinate, β-alaninate, and L-glutamate complexes).  相似文献   

14.
A galactose biosensor is obtained by immobilizing galactose oxidase (GAO) in a microporous polyacrylonitrile (PAN) thin film. The effects of pH, potential and temperature on response current are studied. The optimum pH and apparent activation energy of enzyme-catalyzed reaction are 7.1 and 31.1?kJ?mol?1, respectively. The response current of the biosensor increases linearly with the increasing galactose concentration from 0.02 to 1.60?mmol?dm?3. The Michaelis–Menten constant value (Kmapp) is 12.15?mmol?dm?3. The biosensor shows good operational stability and reproducibility. The galactose biosensor is characterized with cyclic voltammogram, FTIR and UV-Vis.  相似文献   

15.
A steady-state kinetic analysis of the activation of bovine Factor X, by bovine Factor Xa, was undertaken. The activation was found to be dependent on the presence of divalent cations; Ca2+ showing the greatest stimulatory effect and Mn2+ exhibiting a lower degree of activity for this reaction. Although Sr2+ and Mg2+ were ineffective when present alone, each contributed synergistically to the activation rate at suboptimal levels of Ca2+. The effect of phospholipid (phosphatidylcholine:phosphatidylserine, 4:1, w:w) on the rate of activation and on the activation pathway was investigated. Phospholipid (PL) concentrations of up to 40 μm had no effect on the activation rate; whereas, concentrations of 40–180 μm were slightly inhibitory. In the absence of PL, the major product of the activation was Factor α-Xa, while in the presence of PL, lower-molecular-weight forms of Factor X (Factor β-X) and Factor Xa (Factor β-Xa were produced. At saturating levels of Ca2+, the Km app for the activation, at pH 7.4 and 37 °C, in the absence of PL, was found to be 0.6 ± 0.1 μm and the V was 1.7 ± 0.3 mol Factor X cleaved min?1 mol?1 Factor Xa. The corresponding values, in the presence of 90 μm PL, were 1.4 ± 0.2 μm and 2.2 ± 0.2 mol Factor X cleaved min?1 mol?1 Factor Xa.  相似文献   

16.
17.
We have measured the thermodynamic parameters of the slow-fast tail-fiber reorientation transition on T2L bateriophage. Proportions of the virus in each form were determined from peak-height measurements in sedimention-velocity runs and from average diffusion coefficients obtained by quasielastic laser light scattering. Computer simulation of sedimentation confirmed that there were no undetected intermediates in the transition, which was analyzed as a two-state process. Van't Hoff-type plots of the apparent equilibrium constant and of the pH midpoint of the transition as function of reciprocal temperature led to the following estimates of the thermodynamic parameters for the transition at pH 6.0 and 20°C: ΔH° = ?139 ± 18Kcal mol?1, ΔS° = ?247 ± 46 cal K?1 mol?1, and ΔG° = ?66 ± 22 kcal mol?1. Per mole of protons taken up in the transition, the analogous quantities were ?15.9 ± 1.7 kcal mol?1, ?26.3 ± 2.2 cal K?1 mol?1, and ?8.22 ± 1.8 kcal mol?1. The net number of protons taken up was about 8.5 ± 1.5. The large values of the thermodynamic functions are consistent with a highly cooperative reaction and with multiple interactions between the fibres and the remainder of the phage. The negative entropy of the transition is probably due to immobilization of the fibres.  相似文献   

18.
Lipases/acyltransferases catalyse acyltransfer to various nucleophiles preferentially to hydrolysis even in aqueous media with high thermodynamic activity of water (a w >0.9). Characterization of hydrolysis and acyltransfer activities in a large range of temperature (5 to 80 °C) of secreted recombinant homologous lipases of the Pseudozyma antarctica lipase A superfamily (CaLA) expressed in Pichia pastoris, enlighten the exceptional cold-activity of two remarkable lipases/acyltransferases: CpLIP2 from Candida parapsilosis and CtroL4 from Candida tropicalis. The activation energy of the reactions catalysed by CpLIP2 and CtroL4 was 18–23 kJ mol?1 for hydrolysis and less than 15 kJ mol?1 for transesterification between 5 and 35 °C, while it was respectively 43 and 47 kJ mol?1 with the thermostable CaLA. A remarkable consequence is the high rate of the reactions catalysed by CpLIP2 and CtroL4 at very low temperatures, with CpLIP2 displaying at 5 °C 65 % of its alcoholysis activity and 45 % of its hydrolysis activity at 30 °C. These results suggest that, within the CaLA superfamily and its homologous subgroups, common structural determinants might allow both acyltransfer and cold-active properties. Such biocatalysts are of great interest for the efficient synthesis or functionalization of temperature-sensitive lipid derivatives, or more generally to lessen the environmental impact of biocatalytic processes.  相似文献   

19.
The reaction mechanisms and rates for the H abstraction reactions between CH3SS and CN radicals in the gas phase were investigated with density functional theory (DFT) methods. The geometries, harmonic vibrational frequencies, and energies of all stationary points were obtained at B3PW91/6-311G(d,p) level of theory. Relationships between the reactants, intermediates, transition states and products were confirmed, with the frequency and the intrinsic reaction coordinate (IRC) analysis at the same theoretical level. High accurate energy information was provided by the G3(MP2) method combined with the standard statistical thermodynamics. Gibbs free energies at 298.15 K for all of the reaction steps were reported, and were used to describe the profile diagrams of the potential energy surface. The rate constants were evaluated with both the classical transition state theory and the canonical variational transition state theory, in which the small-curvature tunneling correction was included. A total number of 9 intermediates (IMs) and 17 transition states (TSs) were obtained. It is shown that IM1 is the most stable intermediate by the largest energy release, and the channel of CH3SS?+?CN?→?IM3?→?TS10?→?P1(CH2SS?+?HCN) is the dominant reaction with the lowest energy barrier of 144.7 kJ mol?1. The fitted Arrhenius expressions of the calculated CVT/SCT rate constants for the rate-determining step of the favorable channel is k =7.73?×?106? T 1.40exp(?14,423.8/T) s?1 in the temperature range of 200–2000 K. The apparent activation energy E a(app.) for the main channel is ?102.5 kJ mol?1, which is comparable with the G3(MP2) energy barrier of ?91.8 kJ mol?1 of TS10 (relative to the reactants).  相似文献   

20.
The antidepressant drug tetramezine [1,2‐bis‐(3,3‐dimethyldiaziridin‐1‐yl)ethane] consists of two bridged diaziridine moieties with four stereogenic nitrogen centers, which are stereolabile and, therefore, are prone to interconversion. The adjacent substituents at the nitrogen atoms of the diaziridines moieties exist only in an antiperiplanar conformation, which results in a coupled interconversion. Therefore, three stereoisomers exist (meso form and two enantiomeric forms), which epimerize when the diaziridine moieties are regarded as stereogenic units due to the coupled interconversion. Here, we have investigated the epimerization between the meso and enantiomeric forms by dynamic gas chromatography. Temperature‐dependent measurements were performed, and reaction rate constants were determined using the unified equation of chromatography implemented in the software DCXplorer. The activation barriers of the epimerization were found to be ΔG = 100.7 kJ mol?1 at 25°C and ΔG = 104.5 kJ mol?1 at 37°C, respectively. The activation enthalpy and entropy were determined to be ΔH = 70.3 ± 0.4 kJ mol?1 and ΔS = ?102 ± 2 J mol?1 K?1. Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号