首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present evidence that the oxidation of Mn(II) in a zone above the O2/H2S interface in the water column of Saanich Inlet, British Columbia, Canada, is microbially catalyzed. We measured the uptake of 54Mn(II) in water samples under in situ conditions of pH and temperature and in the presence and absence of oxygen. Experiments in the absence of oxygen provided a measure of the exchange of the tracer between the dissolved and solid pools of Mn(II); we interpret the difference between experiments in the presence and absence of oxygen to be a measure of Mn(II) oxidation. Using this method we examined the effect of oxygen tension, Mn(II) concentration, and temperature on the initial in situ Mn(II) oxidation rate (V0). Mn(II) oxidation was almost twice as fast under conditions of 67% air saturation (V0=5.5 nM h−1) as with the in situ concentration of 15 μM (5% air saturation; V0=3.1 nM h−1). Additions of ca. 18 μM Mn(II) completely inhibited all Mn(II) oxidation at three different depths in the oxidizing zone, and there was a temperature optimum for Mn(II) oxidation of around 20°C. These results are consistent with biologically mediated Mn(II) oxidation and indicate that the rate is limited by both oxygen and the concentration of microbial binding sites in this environment.  相似文献   

2.
《Inorganica chimica acta》1988,153(4):201-204
The reactions of the superoxide ion (O2) with tetra-p-tolyporphyrinatocobalt(II) [Co(II)TTP] in dimethyl sulfoxide(DMSO) have been investigated by use of electron spin resonance (ESR) spectroscopy. In the absence of oxygen, Co(II)TTP in DMSO gives the DMSO adduct, Co(II)(TPP)(DMSO). When this DMSO adduct is exposed to air, an oxygen complex, Co(II)(TTP)(DMSO)(O2), is formed in which the binding state between Co(II) and O2 has been considered formally as Co(III)O2. When the superoxide ion (O2 is added to this oxygen complex, a new superoxide complex, Co(II)(TTP)(O2)2, is formed. The same superoxide adduct is formed by the reaction of O2 with Co(II)TTP in the absence of oxygen.  相似文献   

3.
The ability of micro‐organisms to oxidize manganese (Mn) from Mn(II) to Mn(III/IV) oxides transcends boundaries of biological clade or domain. Many bacteria and fungi oxidize Mn(II) to Mn(III/IV) oxides directly through enzymatic activity or indirectly through the production of reactive oxygen species. Here, we determine the oxygen isotope fractionation factors associated with Mn(II) oxidation via various biotic (bacteria and fungi) and abiotic Mn(II) reaction pathways. As oxygen in Mn(III/IV) oxides may be derived from precursor water and molecular oxygen, we use a twofold approach to determine the isotope fractionation with respect to each oxygen source. Using both 18O‐labeled water and closed‐system Rayleigh distillation approaches, we constrain the kinetic isotope fractionation factors associated with O atom incorporation during Mn(II) oxidation to ?17.3‰ to ?25.9‰ for O2 and ?1.9‰ to +1.8‰ for water. Results demonstrate that stable oxygen isotopes of Mn(III/IV) oxides have potential to distinguish between two main classes of biotic Mn(II) oxidation: direct enzymatic oxidation in which O2 is the oxidant and indirect enzymatic oxidation in which superoxide is the oxidant. The fraction of Mn(III/IV) oxide‐associated oxygen derived from water varies significantly (38%–62%) among these bio‐oxides with only weak relationship to Mn oxidation state, suggesting Mn(III) disproportionation may account for differences in the fraction of mineral‐bound oxygen from water and O2. Additionally, direct incorporation of molecular O2 suggests that Mn(III/IV) oxides contain a yet untapped proxy of of environmental O2, a parameter reflecting the integrated influence of global respiration, photorespiration, and several other biogeochemical reactions of global significance.  相似文献   

4.
Although quinones represent a class of organic compounds that may exert toxic effects both in vitro and in vivo, the molecular mechanisms involved in quinone species toxicity are still largely unknown, especially in the presence of transition metals, which may both induce the transformation of the various quinone species and result in generation of harmful reactive oxygen species. In this study, the oxidation of 1,4-naphthohydroquinone (NH2Q) in the absence and presence of nanomolar concentrations of Cu(II) in 10 mM NaCl solution over a pH range of 6.5–7.5 has been investigated, with detailed kinetic models developed to describe the predominant mechanisms operative in these systems. In the absence of copper, the apparent oxidation rate of NH2Q increased with increasing pH and initial NH2Q concentration, with concomitant oxygen consumption and peroxide generation. The doubly dissociated species, NQ2−, has been shown to be the reactive species with regard to the one-electron oxidation by O2 and comproportionation with the quinone species, both generating the semiquinone radical (NSQ). The oxidation of NSQ by O2 is shown to be the most important pathway for superoxide (O2) generation with a high intrinsic rate constant of 1.0×108 M−1 s−1. Both NSQ and O2 served as chain-propagating species in the autoxidation of NH2Q. Cu(II) is capable of catalyzing the oxidation of NH2Q in the presence of O2 with the oxidation also accelerated by increasing the pH. Both the uncharged (NH2Q0) and the mono-anionic (NHQ) species were found to be the kinetically active forms, reducing Cu(II) with an intrinsic rate constant of 4.0×104 and 1.2×107 M−1 s−1, respectively. The presence of O2 facilitated the catalytic role of Cu(II) by rapidly regenerating Cu(II) via continuous oxidation of Cu(I) and also by efficient removal of NSQ resulting in the generation of O2. The half-cell reduction potentials of various redox couples at neutral pH indicated good agreement between thermodynamic and kinetic considerations for various key reactions involved, further validating the proposed mechanisms involved in both the autoxidation and the copper-catalyzed oxidation of NH2Q in circumneutral pH solutions.  相似文献   

5.
《Free radical research》2013,47(4-6):259-270
Using the pulse radiolysis technique, we have demonstrated that bleomycin-Fe(III) is stoichiometrically reduced by CO2? to bleomycin-Fe(II) with a rate of (1.9 ± 0.2) × 108M?1s?1. In the presence of calf thymus DNA, the reduction proceeds through free bleomycin-Fe(III) and the binding constant of bleomycin-Fe(III) to DNA has been determined to be (3.8 ± 0.5) x 104 M?1. It has also been demonstrated that in the absence of DNA O2?1 reacts with bleomycin-Fe(III) to yield bleomycin-Fe(II)O2, which is in rapid equilibrium with molecular oxygen, and decomposes at room temperature with a rate of (700 ± 200) s?1. The resulting product of the decomposition reaction is Fe(III) which is bound to a modified bleomycin molecule. We have demonstrated that during the reaction of bleomycin-Fe(II) with O2, modification or self-destruction of the drug occurs, while in the presence of DNA no destruction occurs, possibly because the reaction causes degradation of DNA.  相似文献   

6.
In aerobic solutions, O2 consumption correlated well with N-demethylation of N,N-dimethyl-p-toluidine catalyzed by horseradish peroxidase, in the presence or absence of H2O2. In the absence of added H2O2, superoxide dismutase stimulated, and catalase inhibited, both reactions; in the presence of H2O2, argon inhibition of formaldehyde production increased with increasing concentration of horseradish peroxidase. These results provide evidence for competing reactions of the enzymatically-generated substrate radical: oxidation by O2 increases formaldehyde production, while radical dimerization decreases the yield of this product. Implications of these findings for similar reactions catalyzed by microsomal cytochrome P-450 are suggested.  相似文献   

7.
The toxic action of the superoxide anion (O2?) toward the erythrocyte was investigated with O2? generated through the autooxidation of dihydroxyfumaric acid (DHF). A suspension of human red cells exposed to DHF undergoes a rapid breakdown of the cellular hemoglobin to methemoglobin and other green pigments. This hemoglobin breakdown is inhibited by superoxide dismutase (SOD) or catalase (CAT) and is accelerated by lactoperoxidase (LP) added externally to the red cell medium. Associated with the hemoglobin breakdown is a hypotonic hemolysis also inhibited by SOD or CAT and initially accelerated but later inhibited by LP. Conversion of the red cell hemoglobin to carbonmonoxyhemoglobin in an aerated medium results in no hemoglobin breakdown or hypotonic lysis in the presence of DHF, even though O2? can be demonstrated in the medium. Although no evidence for membrane sulfhydryl oxidation or lipid peroxidation can be demonstrated in red cells exposed to DHF, the membranes of these cells were found to retain a green pigment. The presence of this green pigment in red cell membranes was inhibited by SOD, CAT, or conversion of the cellular hemoglobin to carbonmonoxyhemoglobin, but was not inhibited by LP. These results have been interpreted as a peroxide-dependent formation of O2? by DHF, followed by attack of O2? on hemoglobin. The reaction of O2? with hemoglobin leads to the formation of a hemoglobin-breakdown product that binds to the red cell membrane, resulting in an increased osmotic fragility of the cell.  相似文献   

8.
Ferric leghemoglobin reductase (FLbR) from soybean (Glycine max [L.] Merr) nodules catalyzed oxidation of NADH, reduction of ferric leghemoglobin (Lb+3), and reduction of dichloroindophenol (diaphorase activity). None of these reactions was detectable when O2 was removed from the reaction system, but all were restored upon readdition of O2. In the absence of exogenous electron carriers and in the presence of O2 and excess NADH, FLbR catalyzed NADH oxidation with the generation of H2O2 functioning as an NADH oxidase. The possible involvement of peroxide-like intermediates in the FLbR-catalyzed reactions was analyzed by measuring the effects of peroxidase and catalase on FLbR activities; both enzymes at low concentrations (about 2 μg/mL) stimulated the FLbR-catalyzed NADH oxidation and Lb+3 reduction. The formation of H2O2 during the FLbR-catalyzed NADH oxidation was confirmed using a sensitive assay based on the fluorescence emitted by dichlorofluorescin upon reaction with H2O2. The stoichiometry ratios between the FLbR-catalyzed NADH oxidation and Lb+3 reduction were not constant but changed with time and with concentrations of NADH and O2 in the reaction solution, indicating that the reactions were not directly coupled and electrons from NADH oxidation were transferred to Lb+3 by reaction intermediates. A study of the affinity of FLbR for O2 showed that the enzyme required at least micromolar levels of dissolved O2 for optimal activities. A mechanism for the FLbR-catalyzed reactions is proposed by analogy with related oxidoreductase systems.  相似文献   

9.
The kinetics of co-oxidation of cyclohexane and ferrous chloride by molecular oxygen in methanol in the temperature range 25–50°C has been studied. The total yield of the reaction products, cyclohexanol and cyclohexanone, equals about 25% of the reacted ferrous ion. A redox-active ligand, cysteine, added to the system FeCl2-C6H12-O2 increases product yield. The reaction involving FeCl2 oxidation by oxygen in the presence of HCl is bimolecular. The effective value of the activation energy of reaction is 9.0 kcal/mol. In the absence of HCl the hydroxylating species is a complex [Fe3+O2], and in the presence of HCl this complex comes together with HO2 radicals. A scheme for co-oxidation of FeCl2 and cyclohexane is proposed. Similarities and contrasts between various hydroxylating species in enzymatic and nonenzymatic hydroxylations are discussed.  相似文献   

10.
(1) Thylakoids isolated from leaves of two salt-tolerant higher plant species were found to require high (greater than 250 mM) concentrations of Cl for maximal rates of photosynthetic O2 evolution and maximum variable chlorophyll a fluorescence yield. These activities were also tolerant to extremely high (2–3 M) salt concentrations. Their pH dependence was markedly different in the absence and presence of sufficient salt levels. (2) When Cl was provided as CaCl2, as opposed to MgCl2, KCl or NaCl, higher rates of O2 evolution were obtained, suggesting that Ca2+ has an important role in Photosystem II reactions. (3) The site of Cl action was located on the electron donor side of Photosystem II. (4) O2 evolution in the presence of optimal Cl concentrations showed a pH dependence closely matched by that of 35Cl-NMR line broadening, which is indicative of Cl binding. This pH-dependent 35Cl-NMR line-width broadening was not altered significantly by treatment of the thylakoids with EDTA; it was, however, abolished by heat treatment. (5) Only anions with similar ionic radii (Br, NO3) were effective in replacing Cl. Small anions such as F and OH were inhibitory; larger ions had no effect. The inhibition by F is due, at least in part, to displacement of Cl. The selectivity is attributed to a combination of steric and ionic field effects. (6) It is proposed that Cl facilitates Photosystem II electron transport by reversible ionic binding to the O2-evolving complex itself or to the thylakoid membrane in close proximity to it.  相似文献   

11.
《Inorganica chimica acta》1988,145(2):299-302
The reactions of dirhodium(II) aquo cation {Rh2(aq)4+} with dioxygen were examined. It has been found that the nature of the oxidation product depends upon the concentration of dioxygen in the solution. The dimeric or polymeric Rh(III)(aq) cationic species with a charge of greater than +3 is formed when air oxygen slowly diffuses into a solution containing Rh2(aq)4+. The paramagnetic cation of proposed formula [(H2O)4Rh(O2)(OH)2Rh(H2O)4]3+ is formed when molecular oxygen is bubbled through a 2–3 M HClO4 solution of Rh2(aq)4+. This species has been isolated and characterized in solution.  相似文献   

12.
Extraction of Ca2+ from the oxygen-evolving complex of photosystem II (PSII) in the absence of a chelator inhibits O2 evolution without significant inhibition of the light-dependent reduction of the exogenous electron acceptor, 2,6-dichlorophenolindophenol (DCPIP) on the reducing side of PSII. The phenomenon is known as “the decoupling effect” (Semin et al. Photosynth Res 98:235–249, 2008). Extraction of Cl? from Ca2+-depleted membranes (PSII[–Ca]) suppresses the reduction of DCPIP. In the current study we investigated the nature of the oxidized substrate and the nature of the product(s) of the substrate oxidation. After elimination of all other possible donors, water was identified as the substrate. Generation of reactive oxygen species HO, H2O2, and O 2 ·? , as possible products of water oxidation in PSII(–Ca) membranes was examined. During the investigation of O 2 ·? production in PSII(–Ca) samples, we found that (i) O 2 ·? is formed on the acceptor side of PSII due to the reduction of O2; (ii) depletion of Cl? does not inhibit water oxidation, but (iii) Cl? depletion does decrease the efficiency of the reduction of exogenous electron acceptors. In the absence of Cl? under aerobic conditions, electron transport is diverted from reducing exogenous acceptors to reducing O2, thereby increasing the rate of O 2 ·? generation. From these observations we conclude that the product of water oxidation is H2O2 and that Cl? anions are not involved in the oxidation of water to H2O2 in decoupled PSII(–Ca) membranes. These results also indicate that Cl? anions are not directly involved in water oxidation by the Mn cluster in the native PSII membranes, but possibly provide access for H2O molecules to the Mn4CaO5 cluster and/or facilitate the release of H+ ions into the lumenal space.  相似文献   

13.
Oxidation of vanadyl sulfate by H2O2 involves multiple reactions at neutral pH conditions. The primary reaction was found to be oxidation of V(IV) to V(V) using 0.5 equivalent of H2O2, based on the loss of blue color and the visible spectrum. The loss of V(IV) and formation V(V) compounds were confirmed by ESR and51V-NMR spectra, respectively. In the presence of excess H2O2 (more than two equivalents), the V(V) was converted into diperoxovanadate, the major end-product of these reactions, identified by changes in absorbance in ultraviolet region and by the specific chemical shift in NMR spectrum. The stoichiometric studies on the H2O2 consumed in this reaction support the occurrence of reactions of two-electron oxidation followed by complexing two molecules of H2O2. Addition of a variety of compounds—Tris, ethanol, mannitol, benzoate, formate (hydroxyl radical quenching), histidine, imidazole (singlet oxygen quenching), and citrate—stimulated a secondary reaction of oxygen-consumption that also used V(IV) as the reducing source. This reaction requires concomitant oxidation of vanadyl by H2O2, favoured at low H2O2:V(IV) ratio. Another secondary reaction of oxygen release was found to occur during vanadyl oxidation by H2O2 in acidic medium in which the end-product was not diperoxovanadate but appears to be a mixture of VO 3 + (–546 ppm), VO3+ (–531 ppm) and VO 2 + (–512 ppm), as shown by the51V-NMR spectrum. This reaction also occurred in phosphate-buffered medium but only on second addition of vanadyl. The compounds that stimulated the oxygen-consumption reaction were found to inhibit the oxygen-release reaction. A combination of these reactions occur depending on the proportion of the reactants (vanadyl and H2O2), the pH of the medium and the presence of some compounds that affect the secondary reactions.  相似文献   

14.
Ferryl compounds [Fe(IV)=O] in living organisms play an essential role in the radical catalytic cycle and degradation processes of hemeproteins. We studied the reactions between H2O2 and hemoglobin II (HbII) (GlnE7, TyrB10, PheCD1, PheE11), recombinant hemoglobin I (HbI) (GlnE7, PheB10, PheCD1, PheE11), and the HbI PheB10Tyr mutant of L. pectinata. We found that the tyrosine residue in the B10 position tailors, in two very distinct ways, the reactivity of the ferryl species, compounds I and II. First, increasing the reaction pH from 4.86 to 7.50, and then to 11.2, caused the the second-order rate constant for HbII to decrease from 141.60 to 77.78 M−1 s−1, and to 2.96 M−1 s−1, respectively. This pH dependence is associated with the disruption of the heme–tyrosine (603 nm) protein moiety, which controls the access of the H2O2 to the hemeprotein active center, thus regulating the formation of the ferryl species. Second, the presence of compound I was evident in the UV–vis spectra (648-nm band) in the reactions of HbI and recombinant HbI with H2O2, This band, however, is completely absent in the analogous reaction with HbII and the HbI PheB10Tyr mutant. Therefore, the existence of a hydrogen-bonding network between the heme pocket amino acids (i.e., TyrB10) and the ferryl compound I created a path much faster than 3.0×10−2 s−1 for the decay of compound I to compound II. Furthermore, the decay of the heme ferryl compound I to compound II was independent of the proximal HisF8 trans-ligand strength. Thus, the pH dependence of the heme–tyrosine moiety complex determined the overall reaction rate of the oxidative reaction limiting the interaction with H2O2 at neutral pH. The hydrogen-bonding strength between the TyrB10 and the heme ferryl species suggests the presence of a cycle where the ferryl consumption by the ferric heme increases significantly the pseudoperoxidase activity of these hemeproteins.  相似文献   

15.
The bioluminescence-dependent oxidation of a long-chain fatty aldehyde catalyzed by luciferase from Photobacterium phosphoreum has been studied in 18O2 experiments. The results show the incorporation of one atom of molecular oxygen into the product, the corresponding fatty acid. This incorporation is not the result of exchange of 18O2 with the aldehyde prior to oxidation to the acid, thereby indicating that the bacterial luciferase catalyzes an aldehyde monooxygenase reaction which is coupled with bioluminescence.  相似文献   

16.
The stoichiometry of hydroxylation reactions catalyzed by cytochrome P-450 was studied in a reconstituted enzyme system containing the highly purified cytochrome from phenobarbital-induced rabbit liver microsomes. Hydrogen peroxide was shown to be formed in the reconstituted system in the presence of NADPH and oxygen; the amount of peroxide produced varied with the substrated added. NADPH oxidation, oxygen consumption, and total product formation (sum of hydroxylated compound and hydrogen peroxide) were shown to be equimolar when cyclohexane, benzphetamine, or dimethylaniline served as the substrate. The stoichiometry observed represents the sum of two activities associated with cytochrome P-450. These are (1) hydroxylase activity: NADPH + H+ + O2 + RH → NADP+ + H2O + ROH; and (2) oxidase activity: NADPH + H+ + O2 → NADP+ + H2O2. Benzylamphetamine (desmethylbenzphetamine) acts as a pseudosubstrate in that it stimulates peroxide formation to the same extent as the parent compound (benzphetamine), but does not undergo hydroxylation. Accordingly, when benzylamphetamine alone is added in control experiments to correct for the NADPH and O2 consumption not associated with benzphetamine hydroxylation, the expected 1:1:1 stoichiometry for NADPH oxidation, O2 consumption, and formaldehyde formation in the hydroxylation reaction is observed.  相似文献   

17.
2-Formylpyridine monothiosemicarbazonato copper II (CuL+) is readily taken up by red cells and is initially bound to glutathione and hemoglobin. Glutathione was depleted within 5 hr of incubation, presumably by oxidation mediated by CuL+ and O2 with concomittant generation of toxic oxygen species. Cupric ion was slowly transferred from CuL+ to hemoglobin within about 7 hr, and hemoglobin was oxidized until the major form prevailing after 10 hr was α2β2+. Little increase in hemolysis due to addition of CuL+ dissolved in the radical scavenger dimethyl sulfoxide was observed with prolonged incubation. Strong inhibition of red cell hexokinase by CuL+ was observed when the enzymes in red cell lysates and hemoglobin-free red cell lysates were examined. CuL+ was also an effective inhibitor of yeast hexokinase. However, the inhibitory effect of CuL + within the red cells was less pronounced. It is suggested that even though intracellular accumulation of CuL + creates an oxidizing environment and is potentially capable of inhibiting thiol enzymes such as hexokinase, protective effects are exerted in the red cell by the presence of hemoglobin, of radical scavengers, and of high levels of enzymes that detoxify toxic oxygen species. Address reprint requests to Dr. W.E. Antholine, Department of Radiology, or Dr. F. Taketa, Department of Bio  相似文献   

18.
19.
Neutrophilic Fe(II) oxidizing microorganisms are found in many natural environments. It has been hypothesized that, at low oxygen concentrations, microbial iron oxidation is favored over abiotic oxidation. Here, we compare the kinetics of abiotic Fe(II) oxidation to oxidation in the presence of the bacterium Leptothrix cholodnii Appels isolated from a wetland sediment. Rates of Fe(II) oxidation were determined in batch experiments at 20°C, pH 7 and oxygen concentrations between 3 and 120 μmol/l. The reaction progress in experiments with and without cells exhibited two distinct phases. During the initial phase, the oxygen dependency of microbial Fe(II) oxidation followed a Michaelis-Menten rate expression (KM = 24.5 ± 10 μmol O2/l, vmax = 1.8 ± 0.2 μmol Fe(II)/(l min) for 108 cells/ml). In contrast, abiotic rates increased linearly with increasing oxygen concentrations. At similar oxygen concentrations, initial Fe(II) oxidation rates were faster in the experiments with bacteria. During the second phase, the accumulated iron oxides catalyzed further oxidative iron precipitation in both abiotic and microbial reaction systems. That is, abiotic oxidation also dominated the reaction progress in the presence of bacteria. In fact, in some experiments with bacteria, iron oxidation during the second phase proceeded slower than in the absence of bacteria, possibly due to an inhibitory effect of extracellular polymeric substances on the growth of Fe(III) oxides. Thus, our results suggest that the competitive advantage of microbial iron oxidation in low oxygen environments may be limited by the autocatalytic nature of abiotic Fe(III) oxide precipitation, unless the accumulation of Fe(III) oxides is prevented, for example, through a close coupling of Fe(II) oxidation and Fe(III) reduction.  相似文献   

20.
Under alkaline conditions and in the presence of reductant, NADH or NADPH, and molecular oxygen, hemin catalyzes the regiospecific para-hydroxylation of aniline to form p-aminophenol [P.A. Adams, D.A. Baldwin, and M.C. Berman, J. Chem. Soc. (Lond) Chem. Commun. 856 (1979); P.A. Adams and M.C. Berman, J. Inorg. Biochem.17, 1 (1982)]. The reaction has now been studied in the presence of H2O2 and alkyl hydroperoxides and in the absence of oxygen and reductant. Results indicate that the H2O2? and alkyl hydroperoxide-supported processes proceed via different mechanisms involving, on the one hand, the hydroperoxide anion (HO2?) and on the other, the undissociated alkyl hydroperoxide molecule (ROOH). The addition of superoxide dismutase to the reaction had no effect, unlike the NADH/O2 supported reaction where the enzyme completely inhibits reaction. Similarities between the hemin-mediated peroxide-supported reactions reported here, and the cytochrome P-450-mediated peroxide-supported reactions reinforce our earlier contentions that the alkaline hemin system appears to be a good model for the in vivo activation of oxygen by hemoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号