首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structures of MoO2[NH2C(CH3)2CH2S]2 and MoO2[SC(CH3)2CH2NHCH2CH2NHCH2C(CH3)2S] have been determined using X-ray diffraction intensity data collected by counter techniques. MoO2[NH2C(CH3)2CH2S]2 crystallizes in space group Pbca with a = 11.234(3), b = 11.822(3) and c = 20.179(5) Å, V = 2680(2) Å3 and Z = 8. Its structure is derived from octahedral coordination with cis oxo groups [MoO = 1.705(3) and 1.705(3)], trans thiolate donors cis to the oxo groups [MoS = 2.416(1) and 2.402(1) and N donors trans to oxo [MoN = 2.325(3) and 2.385(4) Å]. MoO2[SC(CH3)2CH2NHCH2CH2NHCH2C(CH3)2S] crystallizes in the space group P21/c with a = 10.798(5), b = 6.911(2), c = 20.333(9) Å, β = 95.20°, V = 1511(2) Å3 and Z = 4. Its structure is very similar to that of MoO2[NH2C(CH3)2CH2S]2 with MoO = 1.714(2) and 1.710(2), MoS = 2.415(1) and 2.404(1) and MoN = 2.316(3) and 2.362(3). The small differences in the geometries of the two compounds are attributed to the constraints of the extra chelate ring in the complex with the tetradentate ligand. The structures in this paper stand in contrast to those reported for complexes of similar ligands wherein steric hindrance produces complexes with a skew trapezoidal bipyramidal structure.  相似文献   

2.
The title compound, I, crystallizes in the monoclinic space group P21 with cell constants: a = 6.599(3), b = 11.121(2), c = 8.375(1) Å and β = 106.35(2)°; V = 589.74 Å3 and D(calc; Z = 2) = 1.974 g cm−3. The compound is isomorphous and isostructural with its Co analogue. A total of 2982 data were collected over the range of 4°  20  70°; of these, 2537 (independent and with I ⩾ 3σ(I)) were used in the structural analysis. Data were corrected for absorption (μ = 16.6 cm−1) and the relative transmission coefficients ranged from 1.000 to 0.9504. Refinement was carried out for both enantiomeric configurations and the crystal used was found to contain cations with Δ(λδ) absolute configuration. The final R(F) and Rw(F) residuals were, respectively 0.0220 and 0.0239 for (−−−; i.e.Δ(λδ)) and 0.0231 AND 0.0317 FOR (+++; i.e.Λ(δλ)). Thus, the former was selected as correct for our specimen.In the case of I, as well as in the Co derivative [cis-Co(en)2(NO2)2]Cl (II), the conformation of one of the rings is opposite that expected for the lowest energy conformation, which in the current case should be Δ(λλ)).The RhN(NO)2 distances are 2.020(2) and 2.010(2) Å, while the RhN(amine) distances, trans to the NO2 ligands are 2.085(2) and 2.093(1) Å, values distinctly longer than the other two RhN distances (2.064(1) and 2.068(1) Å). The latter are the RhN distances to the terminalNH2 ligands located trans to each other. Thus, we observe a trans effect, which is more pronounced in I than in II, and which is of comparable magnitude to that observed in the case of the trien derivative, [cis-α-Rh(trien)(NO2)2]Cl(III).Parallel with an increase in metalN distances in going from [cis-α-Co(trien)NO2)2]Cl·H2) (IV) to (III) is an increase in the torsional angles of the outer rings (NCCN) of about 10°. Comparison of these parameters in I and II reveal that this change is not so marked for this pair since in I they are −54.9° and 52.8° while in II they are 50.2° and −48.1°; i.e. a change of only 4°. This important difference between trien and en derivatives is caused by the presence of the central five-membered ring, which for compounds III and IV remains largely unchanged, except for the metalN distances.The NO bond lengths are 1.244(3), 1.220)(2), 1.237(2) and 1.211(2) Å, which are similar to those found for the analogous Co isomer. The CN bond lengths are 1.492(3), 1.474(2), 1.486(2) and 1.475(2) Å, while the CC bonds are 1.509(3) and 1.524(3) Å. These values are also comparable with those obtained for the Co isomer and, in fact, the pattern of the bonds is nearly identical in both, including the common feature of having a longer CC bond for the en ring with the conformation opposite that expected.As was the case with the Co analogue, the Cl anion is associated with the hydrogens of the secondary nitrogen (trans to the −NO2) ligands, the Cl…H7 distance being 2.18(3) Å and the <Cl…H7N2 = 163°.  相似文献   

3.
The structure of [Ph4As] [MoOCl2(SalphO)], where SalphO is N-2-oxophenylsalicylideniminate dianion, has been determined by X-ray crystallography. The complex crystallizes in the monoclinic space group P21/n with a = 11.829(2), b = 16.149(3), c = 17.410(3) Å, β = 97.485(15)° and Z = 4. The calculated and observed densities and 1.566 and 1.573(10) g cm?3, respectively. Block-diagonal least-squares refinement of the structure using 4722 independent reflections with I ? 3σ(I) converged at R = 0.0345 and Rw = 0.0484. The crystal contains [Ph4As]+ cations and [MoOCl2(SalphO)]? anions. The Mo atom in the anion is in a distorted octahedral coordination environment. A planar terdentate Schiff base ligand occupies meridional positions with the N atom trans to the terminal oxo group (Ot). Two Cl atoms are cis to the Ot atom. The Mo atom is displaced by 0.33 Å from the equatorial plane toward the Ot atom. The MoOt distance is 1.673(3) Å. The MoN bond trans to the Ot atom is 2.298(4) Å. The two MoCl bond lengths are 2.371(1) and 2.408(1) Å. The difference of 0.037 Å is significant (30 σ). Preparations of the title complex and the related complexes are also described.  相似文献   

4.
5.
6.
《Inorganica chimica acta》1988,146(1):123-127
The compounds of general formula [Ln(DMF)3- (H2O)6](CF3SO3)3 (Ln = LaEu, Tb, Dy) were synthesized and characterized by microanalysis, conductance measurements, IR absorption (Nd3+) and emission (Eu3+) spectra. The crystal structure of the neodymium compound was determined by X-ray diffraction techniques. The compound crystallizes in the triclinic system, space group P1, a = 8.589(4), b = 11.222(2), c = 12.271(2) Å, α = 56.83(2), β = 62.13(2), γ = 75.14(2)°, V = 875.2 Å3, M = 918.4, Z = 1, Dc = 1.73 g cm−3, λ(Mo Kα) = 0.71073 Å, μ = 1.65 mm−1, F(000) = 456, R = 0.056, Rw = 0.057, for 2979 independent reflections with I > 3σ(I). Nd3+ is coordinated to the oxygen atoms of six independent water molecules at a mean distance NdO = 2.52(1) Å, and to the oxygen atoms of three independent DMF groups at a mean distance NdO = 2.40(2) Å. The coordination polyhedron is a tricapped trigonal prism of point symmetry C3v.  相似文献   

7.
《Inorganica chimica acta》1988,141(1):145-149
This contribution reports the synthesis and characterization of the organothorium alkylthiolate complex [(CH3)5C5]2Th(SCH2CH2CH3)2. This compound crystallizes in the monoclinic space group C2/c (#15) with four molecules in a cell of dimensions a=19.066(2), b=11.603(1), c=16.379(2) Å, and β=130.08(1)°. Least-squares refinement led to a value for the conventional R index (on Fo) of 0.040 for 132 variables and 2030 observations having Fo2⩾3σ(Fo2). The molecular structure consists of an unexceptional ‘bent sandwich’ [(CH3)5C5]2Th fragment coordinated to two n-propylthiolate ligands. The ThS bond distance is 2.718(3) Å; the SC(α) distance, 1.78(2) Å; the ThSC(α) angle, 108.3(5)°; and the SThS′ angle, 102.5(2)°. Contrasts are drawn with the structures of analogous actinide alkoxides  相似文献   

8.
《Inorganica chimica acta》1988,145(2):225-229
A new molybdenum(0) dithiocarbamato complex [Et4N] [Mo(CO)4(S2CNEt2)] (1) has been synthesized by the reaction of Mo(CO)6, NaS2CNEt2 and Et4NCl in MeCN and characterized by routine elemental analysis, spectroscopy methods. The crystal and molecular structure of 1 was determined from X-ray three dimension data. 1 crystallizes in the orthorhombic, space group Pbc21 with a= 8.148(2), b=19.618(2), c=14.354(2) Å; V=2294 Å3; Z=4; R1=0.052, R2=0.058 for 1308 independent reflections with I ⩾ 3σ(I). The geometry around Mo(0) atom in the anion [Mo(CO)4(S2CNEt2)]- of 1 is distorted octahedral with a small SMoS of 67.70° and a small angle of 3.6° between plane MoSS and MoC(1)C(2). Two groups of MoCO bond distances and the longer MoS bond distance observed in 1 are similar to that in the dinuclear Mo(0) complexes containing SR bridges but very different from those observed in the dithiocarbamato complexes of Mo in higher oxidation states. Different oxidizing products containing Mo in II-V oxidation states Mo(CO)2(S2CNEt2)2, MoO(S2CNEt2)2, Mo2O3(S2CNEt2)4 and Mo2O4(S2CNEt2)2 were isolated from the oxidation of 1 with I2 (or in the presence of traces of air). The electrochemical behavior of 1 in MeCN was investigated by cyclic voltammetry at Pt and C electrodes. The anodic peaks observed at 0.04, 0.14, 0.26 and 0.44 V versus SCE implied that 1 probably underwent oxidation in company with dissociation of dithiocarbamate and substitution of carbonyls resulting in several complexes of Mo in different oxidation states. The relationship between reactivity and structure is also discussed.  相似文献   

9.
The crystal structures of the organocobalt complexes, pyCo(GH)2Me(1), pyCo(GH)2Et(2) and pyCo(GH)2Pri(3) (py = pyridine, GH = monoanion of glyoxime) are reported. Compound (1) crystallizes in the space group P212121 with cell parameters a = 8.508(1), b = 13.586(2) and c = 11.614(6) Å; (2) crystallizes in the space group P212121 with cell parameters a = 8.448(4), b = 12.164(2) and c = 13.651(2) Å; (3) crystallizes in the space group P21/c with cell parameters a = 8.443(7), b = 12.913(2), c = 14.341(2) Å and β = 92.86(4).The three structures have been solved by Patterson and Fourier methods and refined by least squares methods to final R values of 0.045(1), 0.068(2) and 0.057(3) using 1819(1), 1653(2) and 1582(3) independent reflections. The pyCoalkyl fragment shows significant variation of CoN and CoC bond lengths. The latter increase from 2.003(4) to 2.084(9) Å following the increase of the alkyl bulk. The CoN(py) distances increase from 2.064(3) to 2.101(6) Å with the increasing σ-donor power of the alkyl group trans to pyridine. In comparison with cobaloximes having the same axial ligands, pyCo(DH)2alkyl (DH = monoanion of dimethylglyoxime) does not show significant differences on the pyCo alkyl fragment. CoN axial bond lengths and exchange rates of the axial neutral ligand are consistent for the two series, although changes in bond lengths are detected only when rate constants are from two to three orders of magnitude different.  相似文献   

10.
《Inorganica chimica acta》1988,149(2):259-264
The bis(N-alkylsalicylaldiminato)nickel(II) complexes Ni(R-sal)2 with R = CH(CH2OH)CH(OH)Ph (I), R = CH(CH3)CH(OH)Ph (II) and R = CH2CH2Ph (III; Ph = phenyl) were prepared and characterized. In the solid state I and II are paramagnetic (μ = 3.2 and 3.3 BM at 20 °C, respectively), whereas III is diamagnetic. It follows from the UV-Vis spectra that in acetone solution I is six-coordinate octahedral and III is four-coordinate planar, the spectrum of II showing characteristics of both modes of coordination. Vis spectrophotometry and stopped-flow spectrophotometry were applied to study the kinetics of ligand substitution in I–III by H2salen (= N,N′-disalicylidene-ethylenediamine) in the solvent acetone at different temperatures. The kinetics follow a second-order rate law, rate = k[H2-salen] [complex]. At 20 °C the sequence of rate constants is k(III):k(II):k(I) = 11 850:40.6:1. The activation parameters are ΔH(I) = 112, ΔH(II) = 40.7, ΔH(III) = 35.7 kJ mol−1 and ΔS(I) = 92, ΔS(II) = −103, ΔS(III) = −89 J K−1 mol−1. The enormous difference in rate between complexes I, II and III, which is less pronounced in methanol, is attributed to the existence of a fast equilibrium planar ⇌ octahedral, which is established in the case of I and II by intramolecular octahedral coordination through the hydroxyl groups present in the organic group R. An A-mechanism is suggested to control the substitution in the sense that the entering ligand attacks the four-coordinate planar complex, the octahedral complex being kinetically inert.  相似文献   

11.
《Inorganica chimica acta》1988,144(2):193-199
Addition of 1,2-W2Cl2(NMe2)4(W≡W) to a toluene slurry of LiCH(SiMe3)2(2 equiv) results in the formation of 1,2-W2[CH(SiMe3)2]2(NMe2)4(W≡W) (I) in 79% isolated yield. Compound I has been characterized by 1H and 13C NMR, IR, elemental analysis and single-crystal X-ray diffraction. The molecule exists exclusively in the gauche conformation in solution and in the solid state with WW = 2.320(1) Å. Compound I is very sterically encumbered as evidenced by: (1) large WWC angles, 110°, at the disyl ligand; (2) skewing of the NC2 planes of the NMe2 ligands off the WW vector; (3) anomalously large barriers to WNM2 bond rotation in solution; (4) the inertness of I towards CO2 and alcohols. However, compound I reacts with acetic anhydride to form 1,2-W2[CH(SiMe3)2]2(O2CMe)4(W≡W) (II) in 31% isolated yield. Compound II has been characterized by 1H and 13C NMR, IR, and elemental analysis. The mechanistic implications of these studies with regard to alcoholysis and CO2 insertion reactions of other 1,2-W2R2(NMe2)4 compounds are discussed. Crystal data for 1,2-W2[CH(SiMe3)2]2(NMe2)4 at −140°C: space group P21/n, a = 12.555(3), b = 18.699(5), c = 15.214(4) Å, β = 95.24(1)° and Z = 4.  相似文献   

12.
《Inorganica chimica acta》1988,149(2):177-185
CpRuCl(PPh3)2 reacted with excess R-DAB in refluxing toluene to give CpRuCl(R-DAB(4e)) (1a: R = i-Pr; 1b: R = t-Bu; 1c: R = neo-Pent; 1d: R =p-Tol). 1H NMR and 13C NMR spectroscopic data indicated that in these complexes the R-DAB ligand is bonded in a chelating 4e coordination mode.Reaction of 1a and 1b with one equivalent of [Co(CO)4] afforded CpRuCo(CO)3(R-DAB(6e)) (2a: R = i-Pr; 2b: R = t-Bu). The structure of 2b was determined by a single crystal X-ray structure determination. Crystals of 2b are monoclinic, space group P21/n, with four molecules in a unit cell of dimensions: a = 16.812(4), b = 12.233(3), c = 9.938(3) Å and β = 105.47(3)°. The structure was solved via the heavy atom method and refined to R = 0.060 and Rw = 0.065 for the 3706 observed reflections. The molecule contains a RuCo bond of 2.660(3) Å and a cyclopentadienyl group that is η5-coordinated to ruthenium [RuC(cyclopentadienyl) = 2.208(3) Å (mean)]. Two carbonyls are terminally coordinated to cobalt (CoC(1) = 1.746(7) and CoC(2) = 1.715(6) Å) while the third is slightly asymmetrically bridging the RuCo bond (RuC(3) = 2.025(6) and CoC(3) = 1.912(6) Å). The RuC(3)O(3) and CoC(3)O(3) angles are 138.4(5)° and 136.5(5)°, respectively. The t-Bu-DAB ligand is in the bridging 6e coordination mode: σ-N coordinated to Ru (RuN(2) = 2.125(4) Å), μ2-N′ bridging the RuCo bond and η2-CN coordinated to Co (RuN(1) = 2.113(5), CoN(1) = 1.941(4) and CoC(4) = 2.084(5) Å). The η2-CN′ bonded imine group has a bond length of 1.394(7) Å indicating substantial π-backbonding from Co into the anti-bonding orbital of this CN bond.1H NMR spectroscopy indicated that 2a and 2b are fluxional on the NMR time scale. The fluxionality of 6e bonded R-DAB ligands is rarely observed and may be explained by the reversible interchange of the σ-N and η2-CN′ coordinated imine parts of the R-DAB ligand.  相似文献   

13.
《Inorganica chimica acta》1988,144(2):241-248
The syntheses and ligand dissociation kinetics of vitamin B12 model compounds LCo(DH)2CHX2 with X = Cl and Br and L = different neutral N- and P- ligands are reported together with the crystal structures of the CHCl2 derivatives with L = py (1) and 1,5,6-trimethylbenzimidazole, Me3Bzm (2). Compound 1 crystallizes in the space group P21/n with cell parameters a = 9.617(1), b = 12.601(2), c = 15.586(2) Å, β = 95.44(1)°; 2 crystallizes in the space group P1 with cell parameters a = 8.867(2), b = 10.719(2), c = 13.345(2) Å, α = 94.81(2), β = 90.89(1), γ = 105.63(2)°. The two structures were solved by Patterson and Fourier methods and refined by least-squares methods to final R values of 0.037 (1) and 0.036 (2), using 3474 (1) and 4435 (2) independent reflections.The axial NCoC fragment is characterized by CoN and CoC distances of 2.045(2) and 1.995(2) Å in 1 and 2.043(2) and 1.983(2) Å in 2, respectively. The CoC bond lengths have the smallest values so far reported in both py and Me3Bzm alkylcobaloximes.The displacement of the L ligand followed SN1 LIM behaviour and the corresponding rate constants depend upon the nature of L and vary in CHCl2 derivatives from 2.42 X 10−1 s−1 for 2-aminopyridine to 1.99 X 10−5 s−1 for P(OMe)3. For fewer CHBr2 analogs the rate constants were smaller.Kinetic results confirm previous findings that the donating ability of CHBr2 is less than that of CHCl2, although the electronegativity of Cl and Br species would suggest an opposite trend. Some relationships between kinetic and structural properties are discussed.  相似文献   

14.
The crystal structures of the title compounds, M(S2COiC3H7)3, M = As(III), (1); Sb(III), (2); and Bi(III), (3) have been determined by three dimensional X-ray diffraction techniques and refined by a least square method. Crystals of (1) and (2) are isomorphous and both crystallize in the rhombohedral space group R3, with unit cell parameters for (1) ahex = 11.559(2), chex = 28.131(3) Å and for (2) ahex = 11.696(2) and chex = 28.135(2) Å, Z = 6. The central metal atom in both (1) and (2) is coordinated by three asymmetrically chelating xanthate ligands [AsS 2.305(2) and 2.978(2) Å and SbS 2.508(1) and 3.006(1) Å] which form a distorted octahedral environment consistent with the presence of a stereochemically active lone pair of electrons. Crystals of (3) are orthorhombic, space group Pnma, Z = 4 with dimensions a = 11.003(3), b = 20.833(4) and c = 9.428(2) Å. The environment of the bismuth atom in (3) is seven coordinate and is comprised of six sulphur atoms, derived from three asymmetrically coordinating xanthate ligands, and a bridging sulphur atom from a neighbouring molecule which results in the formation a polymeric array. For (1) final R and RW 0.050 and 0.047 respectively for 936 reflections [I ? 3σ(I); (2) R 0.040, Rw 0.040 for 1455 reflections I ? 2σ(I)]; and (3) R 0.052, Rw 0.039 for 1796 reflections [I ? 2σ(I).  相似文献   

15.
The complexes LMoVIO2X [L?=?hydrotris(3,5-dimethylpyrazol-1-yl)borate; X?=?Cl, Br, NCS, OPh, SPh, SCH2Ph] are converted to air-stable complexes LMoVO(OSiMe3)X by one-electron coupled electron-electrophile transfer (CEET) reactions involving cobaltocene and the electrophilic reagent Me3SiCl. These complexes may also be obtained from LMoVO(OH)X by reaction with Me3SiCl in the presence of base. LMoVO(OSiMe3)(SCH2Ph) crystallises in space group P21/n, with a?=?8.526 (1) Å, b?=?23.141 (3) Å, c?=?16.499 (2) Å, β?=?103.75 (12)° and Z?=?4. The complex exhibits a distorted octahedral structure with a facially tridentate L ligand and mutually cis oxo [Mo=O?=?1.675 (4) Å], silyloxo [Mo–O?=?1.932 (4) Å] and thiolato [Mo–S?=?2.398 (2) Å] ligands. The detailed redox properties of LMoVO(OR)X (R?=?SiMe3, alkyl, aryl) differ from those of LMoVO(OH)X. Centres [MoVO(OR)] are candidates for the stable "inhibited" forms of certain molybdenum enzymes formed under conditions which apparently disfavour the catalytically active [MoVO(OH)] centres. In the coordinating solvent pyridine (py), both LMoVIO2(SPh) and LMoVO(OSiMe3)(SPh) are reduced in one-electron steps to stable LMoIVO(py)(SPh). LMoIVO(py)(SR) complexes are also obtained from LMoVIO2(SR) (R?=?Ph, CH2Ph, CHMe2) via a two-electron oxygen atom transfer reaction with tertiary phosphines in pyridine. Consequently, the Mo(IV) product is accessible via a concerted two-electron step or via two one-electron steps.  相似文献   

16.
《Inorganica chimica acta》1988,149(1):105-110
The compounds Ta2Cl4(dmpe)2(μ-Me2S)(μ-O) (1) and Ta2Cl4(py)4(μ-THT)(μ-O) (2) where dmpe = Me2PCH2CH2PMe2 and THT = tetrahydrothiophene, have been prepared and structurally characterized. They are authentic examples of μ-O bridged TaIIITaIII edge-sharing bioctahedral complexes. Their structures are virtually identical with respect to all of the bonds that they have in common. However, the structure of 1 differs significantly in its TaTa, TaO and one type of TaCl distance from the previously reported Ta2Cl4(dmpe)2(μ-Me2S)(μ-O)·HCl (3). These differences show that in 3 there is a μ-OH group hydrogen bonded to a Cl ion. The structural differences attendant upon the μ-OH ⇌ μ-O change are of general interest and are discussed. The crystallographic data for the new compounds are as follows: 1: monoclinic (P21/c) with a = 10.412(2), b = 14.749(2), c = 22.177(3) Å, β = 99.25(1)°, V = 3361(1) Å3 and Z = 4. 2: monoclinic (P21/a) with a = 18.238(4), b = 10.402(3), c = 19.070(2) Å, β = 95.37(2), V = 3602(2) Å3 and Z = 4.  相似文献   

17.
《Inorganica chimica acta》1988,149(2):193-208
The reactions of Fe(CO)3(R-DAB; R1, H(4e)) (1a: R = i-Pr, R1 = H; 1b: R = t-Bu, R1 = H; 1c: R = c-Hex, R1 = H; 1e: R = p-Tol, R1 = H; 1f: R = i-Pr, R1 = Me) with Ru3(CO)12 and of Ru(CO)3(R-DAB; R1, H(4e)) (2a: R = i-Pr, R1 = H; 2d: R = CH(i-Pr)2, R1 = H) with Fe2(CO)9 in refluxing heptane both afforded FeRu(CO)6(R-DAB; R1, H(6e)) (3) in yields between 50 and 65%.The coordination mode of the ligand has been studied by a single crystal X-ray structure determination of FeRu(CO)6(i-Pr-DAB(6e)) (3a). Crystals of 3a are monoclinic, space group P21/a, with four molecules in a unit cell of dimensions: a = 22.436(3), b = 8.136(3), c = 10.266(1) Å and β = 99.57(1)°. The structure was refined to R = 0.049 and Rw = 0.052 using 3045 reflections above the 2.5σ(I) level. The molecule contains an FeRu bond of 2.6602(9) Å, three terminally bonded carbonyls to Fe, three terminally bonded carbonyls to Ru and bridging 6e donating i-Pr-DAB ligand. The i-Pr-DAB ligand is coordinated to Ru via N(1) and N(2) occupying an apical and equatorial site respectively (RuN(1) = 2.138(4) RuN(2) = 2.102(3) Å). The C(2)N(2) moiety of the ligand is η2-coordinated to Fe with C(2) in an apical and N(2) in an equatorial site (FeC(2) = 2.070(5) and FeN(2) = 1.942(3) Å).The 1H and 13C NMR data indicate that in all FeRu(CO)6(R-DAB(6e)) complexes (3a to 3f) exclusively η2-CN coordination to the Fe atom and not to the Ru atom is present irrespective of whether 3 was prepared by reaction of Fe(CO)3(R-DAB(4e)) (1) with Ru3(CO)12 or by reaction of Ru(CO)3(R-DAB(4e)) (2) with Fe2(CO)9. In the case of FeRu(CO)6(i-Pr-DAB; Me, H(6e)) (3f) the NMR data show that only the complex with the C(Me)N moiety of the ligand σ-N coordinated to the Ru atom and the C(H)N moiety η2-coordinated to the Fe atom was formed. Variable temperature NMR experiments up to 140 °C showed that the α-diimine ligand in 3a is stereochemically rigid bonded.FeRu(CO)6(R-DAB(6e)) (3a and 3e) reacted with allene to give FeRu(CO)5(R-DAB(4e))(C3H4) (4a and 4e). A single crystal X-ray structure determination of FeRu(CO)5(i-Pr-DAB(4e))(C3H4) (4a) was performed. Crystals of 4a are triclinic, space group P1, with two molecules in a unit cell of dimensions: a = 9.7882(7), b = 12.2609(9), c = 8.3343(7) Å, α = 99.77(1)°, β = 91.47(1)° and γ = 86.00(1)°. The structure was refined to R = 0.028 and Rw = 0.043 using 4598 reflections above the 2σ(I) level. The molecule contains an FeRu bond of 2.7405(7) Å and three terminally bonded carbonyls to iron. Two carbonyls are terminally bonded to the Ru atom together with a chelating 4e donating i-Pr-DAB ligand [RuN = 2.110(1) (mean)]. The allene ligand is coordinated in an η3-allylic fashion to the Fe atom while the central carbon of the allene moiety is σ-bonded to the Ru atom (FeC(14) = 2.166(3), FeC(15) = 1.970(2), FeC(16) = 2.127(3) and RuC(15) = 2.075(2) Å). The 1H and 13C NMR data show that in solution the coordination modes of the R-DAB and the allene ligands are the same as in the solid state.Thermolysis reactions of 3a with R-DAB or carbodiimides gave decomposition and did not afford C(imine)C(reactant) coupling products. Thermolysis reactions of 3a with M3(CO)12 (M = Ru, Os) and Me3NO gave decomposition. When the reaction of 3a with Me3NO was performed in the presence of dimethylacetylenedicarboxylate (DMADC) the known complex FeRu(CO)4(i-Pr-DAB(8e))(DMADC) (5a) was formed in low yield. In 5a the R-DAB ligand is in the 8e coordination mode with both the imine bonds η2-coordinated to iron. The acetylene ligand is coordinated in a bridging fashion, parallel with the FeRu bond.  相似文献   

18.
The crystal structures of the title compounds Sb(C9H6NO)2(S2COC2H5) (1) and Sb(S2COC2H5)3 (2) have been determined by three dimensional X-ray diffraction techniques and refined by a least squares method; final R 0.049 for 2911 reflections [I ? 3σ(I)] for (1) and R 0.047, Rw 0.046 for 846 reflections [I ? 2σ(I)] for (2). Crystals of (1) are triclinic, space group P1, a = 10.825(2), b = 11.131(2), c = 8.911(1) Å, α = 109.45(1), β = 95.92(1) and γ = 93.02(1)° with Z = 2. Crystals of (2) are rhombohedral, space group R3, arhomb = 10.138(3) Å and α = 103.43(2)°. The environment of the Sb atom in (1) is based on a pentagonal bipyramidal geometry consisting of the six donor atoms of the three chelating ligands and a stereochemically active lone-pair of electrons which occupies the remaining axial position. The xanthate ligand chelates the Sb atom almost symmetrically with two long SbS bonds of 3.059(2) and 3.171(2) Å. In contrast the xanthate ligands in (2) chelate the Sb atom with asymmetric SbS bonds of 2.511(2) and 3.002(3) Å.  相似文献   

19.
《Inorganica chimica acta》1988,147(2):189-197
Complexes of the M(en)3Ag2(CN)4 (M = Ni, Zn, Cd) and M(en)2Ag2(CN)4 (M = Ni, Cu, Zn, Cd) type were prepared and identified by elemental analysis, infrared spectroscopy, measurement of magnetic susceptibility, and X-ray powder diffractometry. The crystal structures of Ni(en)3Ag2(CN)4 (I) and Zn(en)2Ag2(CN)4 (II) were determined by the method of monocrystal structure analysis. Complex I crystallizes in the space group C2/c, a = 1.2639(5), b = 1.3739(4), c = 1.2494(4) nm, β = 113.25(4)°, Dm = 1.86(1), Dc = 1.86 gcm−3 Z = 4, R = 0.0429. The crystal structure of I consists of complex cations [Ni(en)3]2+ and complex anions [Ag(CN)2]. Complex II crystallizes in the space group I2/m, a = 0.9150(3), b = 1.3308(4), c = 0.6442(2) nm, β = 95.80(3)°, Dm = 2.14(1), Dc = 2.15 gcm−3, Z = 2, R = 0.0334. Its crystal structure consists of infinite, positively charged chains of the [-NCAgCNZn- (en)2]nn+ type and isolated [Ag(CN)2] anions. The atoms of Ag are positioned parallely to the z axis and the AgAg distance is equal to 0.3221(2) nm.  相似文献   

20.
《Inorganica chimica acta》1988,147(2):251-256
The compound, diiodooctacarbonyldiosmium(I), [Os2(CO)8I2], has been prepared by a route involving only atmospheric pressures. Its structure has been determined by X-ray crystallography. The crystals are tetragonal with a = 11.791(2), c = 23.583(4) Å, Z = 8, Dc = 3.48 Mg m−3. A total of 1637 reflections were collected out to θ = 25° on a CAD4 diffractometer in ω—2θ mode using Mo Kα (λ = 0.7107 Å) radiation. Lp and empirical absorption corrections were applied. The structure was solved in the space group I41cd using conventional heavy atom methods and refined to R = 0.0477 [Rw = 0.0424, w = (σ2F)−1]. The molecule of [Os2(CO)8l2] has two crystallographically equivalent halves joined by a single OsOs bond of length 2.947(3) )Å. There are no bridging ligands. The geometry about each osmium is pseudo-octahedral and the iodine atoms occupy equatorial positions with an OsI distance of 2.767(3) Å. The equatorial ligands on one osmium atom are staggered with respect to the equatorial ligands on the other osmium atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号