首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Inorganica chimica acta》1987,133(2):347-352
When crystals of [Dy(OH2)7(OHMe)] [DyCl(OH2)2(18- crown-6)]2Cl7·2H2O [1] are allowed to warm from 5 °C to ambient temperature (22 °C) under the original solvent mixture (1:3 CH3OH: CH3CN), they redissolve and the title complex can be isolated by slow evaporation of the resulting solution. The crystal structure of this complex, [Dy(OH2)8]Cl3·18-crown-6·4H2O, has been determined. It crystallizes in the monoclinic space group, P21/c, with a = 10.395(1), b = 18.684(1), c = 16.259- (3) Å, β= 102.56(1)°, and Dcalc = 1.61 g cm−3 for Z = 4. A final conventional R value of 0.041 was obtained by least-squares refinement using 3453 independent observed [Fo⩾5σ(Fo)] reflections. The [Dy(OH2)8]3+ cations and crown ether molecules are hydrogen bonded in a polymeric chain with the crown molecules separating the cations and a total of seven DyOH2···O(crown ether) hydrogen bonds. The chains are connected by a hydrogen bonding network consisting of the cations, chloride ions, and uncoordinated water molecules. The geometry of the cation is best described as a bicapped trigonal prism with distortions on the reaction pathway toward dodecahedral symmetry. The two capping atoms average 2.41(1) Å from Dy, the remaining DyO distances average 2.38(2) Å. The 18-crown-6 molecule has the D3d conformation normally observed except for a distortion of one OCCO unit containing the oxygen atom accepting two hydrogen bonds.  相似文献   

2.
《Inorganica chimica acta》1988,147(2):265-274
Trifunctional dialkyl [1,2-bis(diethylcarbamoyl)- ethyl] phosphonates, (RO)2P(O)CH[C(O)N(C2H5)2]- [CH2C(O)N(C2H5)2] R  CH3, C2H5, i-C3H7, n-C6H13 were prepared from the respective sodium salts, Na[(RO)2P(O)CHC(O)N(C2H5)2] and N,N- diethylchloroacetamide, and they were characterized by elemental analysis, mass, infrared and NMR spectroscopy. The molecular structure of (i-C3H7O)2- P(O)CH[C(O)N(C2H5)2][CH2C(O)N(C2H5)2] was determined by single crystal X-ray diffraction analysis and found to crystallize in the monoclinic space group P21/c with a=15.589(6), b=9.783(4), c= 16.283(7) Å, β = 110.90(3)°, Z = 4 and V= 2320(2) Å3. The structure was solved by direct methods and blocked least-squares refinement converged with Rf = 5.7% and RwF= 4.4% on 2266 unique data with F>4σ(F). Important bond distances include PO 1.459(3) Å, CHCO 1.228(3) Å and CHCH2CO 1.223(3) Å. The coordination chemistry of the ligand with several lanthanides was examined, and the structure of the complex Gd(NO3)3{[(i-C3H7O)2P(O)CH[C(O)N(C2H5)2][CH2C(O)N(C2H5)2]}2·H2O was determined. The complex crystallized in the monoclinic space group P21/n with a = 13.524(5), b = 22.033(4), c = 19.604(4) Å β = 106.22(2)°, Z = 4 and V= 5609(3) Å3. The structure was solved by heavy atom techniques and blocked least-squares refinement converged with RF = 5.9% and RwF = 4.1% on 5275 reflections with F > 4σ(F). Both trifunctional ligands were found to bond to Gd(III) through only the phosphoryl oxygen atoms. The remainder of the Gd coordination sphere was composed of three bidentate nitrate oxygen atoms and an oxygen bonded water molecule. Several important bond distances include GdO(phosphoryl)av = 2.343(5) Å, GdO(nitrate)av = 2.475(7) Å, GdO(water) = 2.354(5) Å, PO(phosphoryl)av = 1.467(6) Å, CHCOav = 1.242(10) Å and CHCH2COav = 1.209(11) Å.  相似文献   

3.
4.
The synthesis and characterisation of a series of dinuclear and polynuclear coordination compounds with 4-allyl-1,2,4-triazole are described. Dinuclear compounds were obtained for Mn(II) and Fe(II) with composition [M2(Altrz)5(NCS)4], and for Co(II) and Ni(II) with composition [M2(Altrz)4(H2O)(NCS)4](H2O)2. The crystal structure of [Co2(Altrz)4(H2O)(NCS)4](H2O)2 was solved at room temperature. It crystallizes in the monoclinic space group P21/n. The lattice constants are a = 18.033(3) Å, b = 13.611(2) Å, c = 15.619(3) Å, β = 92.04(2)° Z = 4. One cobalt ion has an octahedrally arranged donor set of ligands consisting of three vicinal nitrogens of 1,2-bridging triazoles (CoN = 2.14–2.15 Å), one terminal triazole nitrogen (CoN = 2.12 Å) and two N-bonded NCS anions (CON = 2.08 Å). The other Co(II) ion has the same geometry, but the terminal triazole ligand is replaced by H2O (CoO = 2.15 Å). The crystal structure is stabilised by hydrogen bonding through H2O molecules, S-atoms of the NCS anions and the lone-pair electron of the monodentate triazole. The magnetic exchange in the Mn, Co and Ni compounds is antiferromagnetic with J-values of ?0.4 cm?1, ?10.9 cm?1 and ?8.7 cm?1 respectively. The Co compound was interpreted in terms of an Ising model. For [Zn2(Altrz)5(NCS)2]∞[Zn(NCS)4], [Cu2(Altrz)3(NCS)4]∞ and [Cd2(Altrz)3(NCS)4]∞ chain structures are proposed. In the Cu compound thiocyanates appear to be present, bridging via the nitrogen atom, as deduced from the IR spectrum.  相似文献   

5.
The crystal and molecular structures of the complexes MoO2((SCH2CH2)2NCH2CH2SCH3), I and MoO2((SCH2CH2)2NCH2CH2N(CH3)2), II, have been determined from X-ray intensity data collected by counter methods. Compound I crystallizes in two forms, Ia and Ib. In form Ia the space group is P21/n with cell parameters a = 7.235(2), b = 7.717(2), c = 24.527(6) Å, β = 119.86(2)°, V = 1188(1) Å3, Z = 4. In form Ib the space group is P21/c with cell parameters a = 14.945(5), b = 11.925(5), c = 14.878(4) Å, β = 114.51(2)°, V = 2413(3) Å3, Z = 8. The molecules of I in Ia and Ib are very similar having an octahedral structure with cis oxo groups, trans thiolates (cis to both oxo groups) and N and thioether sulfur atoms trans to oxo groups. Average ditances are MoO = 1.70, MoS (thiolate) = 2.40, MoN = 2.40 and MoS (thioether) = 2.79 Å. Molecule II crystallizes in space group P212121 with a = 7.188(1), b = 22.708(8), c = 7.746(2) Å, V = 1246(1) Å3 and Z = 4. The coordination about Mo is octahedral with cis oxo groups, trans thiolates and N atoms trans to oxo. Distances in the first coordination sphere are MoO = 1.705(2), 1.699(2), MoS = 2.420(1), 2.409(1) and MoN = 2.372(2), 2.510(2) Å. The conformational features of the complexes are discussed. Complex I displays MoO and MoS distances which are very similar to those found by EXAFS in sulfite oxidase. This similarity is discussed.  相似文献   

6.
The complexes M(NCS)4·xL (x = 2, M = U, L = Me3CCON(Pri)2(dippva); x = 3, M = Th, L = Me2CHCON(Pri)2(dipiba) and dippva, M = U, L = EtCON(Pr1)2(dippa), dipiba and dippva; x = 4, M = Th, L = MeCON(Pri)2(dipa), dippa and dipiba, M = U, L = dipa, dippa) and the solvates M(NCS)4·4dipa·CH2Cl2 (M = Th, U) have been prepared. Their i.r. and u.v.-visible (M = U only) spectra are reported. The crystal and molecular structure of U(NCS)4(dipa)4· CH2Cl2 has been determined by the heavy-atom method from X-ray diffractometer data and refined by least squares to R 0.029 for 1135 independent reflections. The crystal is tetragonal, space group P421c, with Z = 2, a = 15.663(4) and c = 10.512(3) Å. The coordination geometry about the 8-coordinate uranium atom is dodecahedral with the N atoms of the NCS groups occupying the dodecahedral A sites and the ‘dipa’ O atoms the B sites. The bonding distances of UO and UN are 2.363(8), and 2.444(11) Å respectively.  相似文献   

7.
The structures of MoO2[NH2C(CH3)2CH2S]2 and MoO2[SC(CH3)2CH2NHCH2CH2NHCH2C(CH3)2S] have been determined using X-ray diffraction intensity data collected by counter techniques. MoO2[NH2C(CH3)2CH2S]2 crystallizes in space group Pbca with a = 11.234(3), b = 11.822(3) and c = 20.179(5) Å, V = 2680(2) Å3 and Z = 8. Its structure is derived from octahedral coordination with cis oxo groups [MoO = 1.705(3) and 1.705(3)], trans thiolate donors cis to the oxo groups [MoS = 2.416(1) and 2.402(1) and N donors trans to oxo [MoN = 2.325(3) and 2.385(4) Å]. MoO2[SC(CH3)2CH2NHCH2CH2NHCH2C(CH3)2S] crystallizes in the space group P21/c with a = 10.798(5), b = 6.911(2), c = 20.333(9) Å, β = 95.20°, V = 1511(2) Å3 and Z = 4. Its structure is very similar to that of MoO2[NH2C(CH3)2CH2S]2 with MoO = 1.714(2) and 1.710(2), MoS = 2.415(1) and 2.404(1) and MoN = 2.316(3) and 2.362(3). The small differences in the geometries of the two compounds are attributed to the constraints of the extra chelate ring in the complex with the tetradentate ligand. The structures in this paper stand in contrast to those reported for complexes of similar ligands wherein steric hindrance produces complexes with a skew trapezoidal bipyramidal structure.  相似文献   

8.
A 1:1 complex of mercuric chloride with D-peniccillamine has been isolated and characterised as 2[(μ3-Cl){HgSC(CH3)2CH(NH3)COO}3]·3(μ2-Cl)·2(H3O)·(H2O·Cl)3. The compound crystallises in cubic space group P4132, with a = 18.679(5) Å and Z = 4. The structure, refined to RF = 0.086 for 443 observed Mo-Kα diffractometer data, features a triply bridging chloride ion linking three equivalent [HgSC(CH3)2CH(NH3)COO]+ units [Hg-Cl = 2.37(1) Å, Hg-Cl-Hg′ = 98.5(9)°]. The carboxylate groups of a pair of adjacent penicillamine ligands are strongly linked via a symmetrical O?H?O hydrogen bond of length 2.24(8) Å, and neighboring pyramidal trinuclear [μ3-Cl){HgSC(CH3)2CH(NH3)-COO}3]2+ moieties are further connected by symmetrical chloride bridges [Hg-Cl = 3.06(2) Å; HgClHg′' = 79.6(7)°] to form a three-dimensional network. The voids in the lattice are filled by hydronium ions and novel planar cyclic hydrogen-bonded (H2O·Cl?)3 rings of edge O-H?Cl = 2.46(4) Å.  相似文献   

9.
Nickel(II) complexes with the compartmental Schiff bases derived from 2,6-diformyl-4-chlorophenol and 1,5-diamino-3-thiapentane (H2L1) or 3,3′-diamino-N-methyl-dipropylamine (H2L2) were synthesized, and the crystal structures of [Ni(L1)- (py)2] and [Ni(L2)(dmf)]·H20 were determined by X-ray crystallography.Ni(L1)(py)2 is monoclinic, space group C2/c, with a= 18.457(6), b = 11.116(7), c= 16.098(6) Å, and β = 115.79(5)°; Dc = 1.49 g cm−3 for Z = 4. The structure was refined to the final R of 6.9%. The molecule has C2 symmetry. The nickel atom is six-coordinated octahedral. Selected bond lengths are: NiO 2.04(1) Å, NiN (L1) 2.08(1) Å, NiN(py) 2.17(1) Å.[Ni(L2)(dmf)]·H2O is monoclinic, space group P21/n, with a = 17.329(6), b = 13.322(7), c = 12.476(7) Å and β = 95.43(5)°; Dc = 1.45 g cm−3 for Z = 4. The structure was refined to the final R of 5.1%. The nickel atom is bonded in the octahedral geometry to the bianionic pentadentate ligand L2 and to one molecule of dimethylformamide. Selected bond lengths are: NiO (charged) 2.063(3) Å (mean value), NiO (neutral) 2.120(3) Å, NiN (planar) 2.050(3) Å (mean value), NiN (tetrahedral) 2.177(3) Å.  相似文献   

10.
《Inorganica chimica acta》1986,115(2):147-151
In the presence of Fe3+, template condensation of the fluorinated keto-alcohol CH3C(O)CH2C- (CF3)2OH with the triamine CH3C(CH2NH2)3 leads to two products: a fully condensed, imino-alkoxy, iron(III) complex, Fe{CH3C[CH2NC(CH3)CH2C(CF3)2O]3}, and a partially condensed iron(III) complex, O{FeCH3C[CH2NC(CH3)CH2C(CF3)2O]2(CH2NH2)}2, in which two six-coordinate iron(III) centers are linked by an oxide ion. A complete crystal and molecular structure determination of the latter has been made.Crystals are monoclinic, space group C2/c, a= 13.886(4); b=23.206(5); c=15.241(4) Å; β= 106.55(2)°; V=4708 Å3; Z=4. Least-squares refinement on F of 322 variables using 2627 observations converged at a conventional agreement factor of 3.8%. The Fe to bridging oxide distance is 1.811(1) Å, the FeFe distance 3.468 Å, and the FeOFe angle 146.6(2)°. A comparison is made between this structure and those of natural hemerythrin systems.  相似文献   

11.
The crystal and molecular structure of nitrosyltris-(trimethylphosphine)nickel(O) hexafluorophosphate, {Ni(NO)(PMe3)3}PF6, has been determined from three dimensional single crystal X-ray analysis. The compound crystallizes in the orthorhombic space group Pnma with Z = 4 and a unit cell of dimensions: a = 16.253(3), b = 10.536(1) and c = 12.228(2) Å. The structure was solved by conventional heavy atom techniques and refined by least-squares methods to R1 = 0.036 and R2 = 0.048 respectively for 1085. independent reflections. The coordination geometry around the nickel is a slightly distorted tetrahedron with an average PNiP angle of 105.63° and PNiN angle 113.03°. The nickel nitrosyl group is slightly bent with an NiNO angle of 175.4(5)°. The bending occurs in the ClPlNiNO plane toward Pl. The structure is compared with other tetrahedral {MNO}10 phosphine complexes and the MNO bonding is discussed.  相似文献   

12.
《Inorganica chimica acta》1988,146(1):123-127
The compounds of general formula [Ln(DMF)3- (H2O)6](CF3SO3)3 (Ln = LaEu, Tb, Dy) were synthesized and characterized by microanalysis, conductance measurements, IR absorption (Nd3+) and emission (Eu3+) spectra. The crystal structure of the neodymium compound was determined by X-ray diffraction techniques. The compound crystallizes in the triclinic system, space group P1, a = 8.589(4), b = 11.222(2), c = 12.271(2) Å, α = 56.83(2), β = 62.13(2), γ = 75.14(2)°, V = 875.2 Å3, M = 918.4, Z = 1, Dc = 1.73 g cm−3, λ(Mo Kα) = 0.71073 Å, μ = 1.65 mm−1, F(000) = 456, R = 0.056, Rw = 0.057, for 2979 independent reflections with I > 3σ(I). Nd3+ is coordinated to the oxygen atoms of six independent water molecules at a mean distance NdO = 2.52(1) Å, and to the oxygen atoms of three independent DMF groups at a mean distance NdO = 2.40(2) Å. The coordination polyhedron is a tricapped trigonal prism of point symmetry C3v.  相似文献   

13.
2-Deoxy-β-d-arabino-hexopyranose, C6H12O5, is orthorhombic, P212121, with cell dimensions at ?150° [20°], a = 6.484(2) [6.510(3)], b = 10.364(2) [10.427(4)], c = 11.134(3) [11.153(5)] Å, V = 748.2 [757.1] Å3, Z = 4, Dx = 1.457 [1.440], and Dm = [1.455] g.cm?3. The intensities of 1269 reflections were measured by using MoKα radiation. The structure was solved by direct methods, and refined by full-matrix least-squares, with anisotropic, thermal parameters for the carbon and oxygen atoms, and isotropic parameters for the hydrogen atoms. The pyranose has the 4C1(d) conformation, with puckering parameters Q = 0.563 Å, θ = 3.9°, and ? = 350.3°. The departure from ideality is very small, and less than that in β-d-glucopyranose, Q = 0.584 Å and θ = 6.9°. The β-glycosidic, CO bond is short, 1.383(4) Å, and the OCOH torsion angle is ?87°, consistent with the anomeric effect. The hydrogen-bonding scheme consists of infinite chains, with side chains terminating at a ring-oxygen atom.  相似文献   

14.
The title compound belongs to space group P21/c, a = 10.884 Å, b = 9.187 Å, c = 14.458 Å, β = 131.02°, Z = 4. The structure was refined on 1355 nonzero reflections to an R factor of 0.059. The crystal contains discrete [CH3Hg(theophyllinate)] molecules in which the proton initially bound to N7 is replaced by the CH3Hg+ ion. The water molecule forms hydrogen bonds with both carbonyl oxygens, whereas an intermolecular contact of 2.98 Å is established between mercury and N9. The intramolecular Hg?O6 distance of 3.18 Å is consistent with the absence of significant Hg?carbonyl bonding interactions in the present structure.  相似文献   

15.
Di-μ-azido-bis[azido(2-aminopyridine)aquo]dicopper(II), [Cu(2-ampy)(N3)2(H2O)]2, was synthesized and characterized by X-ray crystallography. The crystals are triclinic, space group P1, with a = 7.142(1), b = 7.812(1), c = 9.727(1) Å, a = 96.52(1), β = 95.52(1), γ = 113.47(1)°, and Z = 1. The structure was refined to RF = 0.030 for 1960 observed MoKα diffractometer data. The dimeric molecule, which possesses a crystallographic inversion center, contains both terminal and μ(1)-bridging azido groups. Each copper(II) atom is further coordinated by a 2-aminopyridine ligand (via its ring N atom) and a water molecule to give a distorted square pyramid, with the metal atom raised by 0.17 Å above the N4 basal plane [CuN (ring) = 2.001(2), CuN (azide) = 1.962(3)–2.018(2) Å] towards the apical aquo ligand [CuO = 2.371(2) Å]. Each water molecule forms an intramolecular O?HN (amine) acceptor hydrogen bond, and is linked by two OH?N (terminal azide) intermolecular donor hydrogen bonds to adjacent dimeric complexes to yield a layer structure parallel to (001). Infrared and electronic spectral data are presented and discussed.  相似文献   

16.
Two compounds of empirical formula MCl3- (THF)3, M = V and Cr, have been characterized by single crystal X-ray studies. The VCl3(THF)3 molecule, which has a mer octahedral stereochemistry, crystallizes in the monoclinic space group P21/c with a= 8.847(2),b= 12.861(5),c= 15.134(3) Å, β = 91.94(2)°, V = 1721(1) Å3 and Z = 4. The V-Ci(1) and V-CI(2) distances have a mean value of 2.330 [3] Å while V-CI(3) = 2.297(2) Å, The VO(1) and VO(2) distances have a mean value of 2.061[8] Å while V-O(3) = 2.102(3) Å cis ClVCl angles average 92.0[5]° and cis OVO angles average 86.2[2]° . The isostmctural complex, CrCl3(THF)3, has a crystal structure made up of discrete octahedral mer-CrCl3(THF)3 molecules with the following unit cell dimensions (space group P21/c): a = 8.715(1), b= 12.786(3), c = 15.122(3) Å, β = 92.15(1)°, V = 1684(1) Å3 and Z = 4. The CrCl(1) and CrCl(2) distances have a mean value of 2.310131 Å while CrCl(3) = 2.283(2) Å. The CrO(1) and CrO(2) distances have a mean value of 2.0101171 Å while CrO(3) = 2.077(4) Å. cis ClCrCl angles average 90.9[4]° and cis OCrO angles average 86.1 [2]°. The structures of these two octahedral complexes and those previously reported for ScCl3(THF)3 and TiCl3(THF)3 are compared and certain general trends are discussed.  相似文献   

17.
The crystal and molecular structures of ThCl4(depa)3 (1) (depa = N,N-diethylpropionamide) and Th(NCS)4(dmpa)4 (2) (dmpa = N,N-dimethylpropionamide) have been determined from three-dimensional X-ray diffraction data. The compounds crystallize in space group P21/n (1) and P21/a (2), with a = 18.107(5), b = 10.347(3), c = 17.867(5) Å, β = 108.5(1)°, Z = 4 (1) and a = 22.759(6), b = 13.763(4), c = 11.910(3) Å, β = 91.4(1)° and Z = 4 (2). Full matrix least-squares refinement of both structures gave for (1) with 3126 intensity data R = 0.046 and Rw 0.046 and for (2) with 3480 intensity data R = 0.050, Rw 0.054. The different steric constraints imposed by the ligand give rise to different coordination numbers. In (1) the coordination polyhedron about the seven co-ordinate thorium atom is a pentagonal bipyramid with two chlorine atoms in the axial positions, an unusual geometry for Th(IV) species. The average bonding distances are ThO = 2.340(9), ThCleq = 2.754(3) and ThClax = 2.692(3) Å.In (2) the less hindering dmpa ligand favours the presence of four of them in the metal coordination sphere in a distorted square antiprismatic coordination geometry. ThO and ThN average 2.37(1) and 2.49(2) Å respectively.  相似文献   

18.
《Inorganica chimica acta》1987,128(2):161-167
The complexes (Bu4N)[TcO(O2C6H4)2] (1) and Na[TcO(OCH2CH2O)2] (2) have been prepared by reacting TcOCl4- with respective diols in methanol. Compound 2 was identified by its elemental analysis and field desorption mass spectrum. Crystals of compound 1 are monoclinic, C2/c, with cell dimensions a = 10.393(3), b = 13.835(3), c = 20.643(5) Å, β = 101.74(3)° and four formula units in the unit cell. The crystal structure was determined by standard methods and refined to R1 = 0.0694, R2 = 0.0613, on the basis of 2887 independent reflections. The data were collected with use of Mo Kα radiation and a Syntex P21 diffractometer. The anion of 1 is square pyramidal with a short TcO(oxo) bond (1.648(5) Å). TcO distances to the diolate groups are longer (1.956(3), 1.958(3) Å). The technetium atom lies 0.7014(4) Å out of the plane of the four diolate oxygen atoms. Compound 2 is hydrolytically unstable in pure water, but can be stabilized by the addition of a several-fold molar excess of ethylene glycol. Compound 1 decomposes minimally in pure water after 24 h. These complexes are shown to be good structural models for 99mTc-radiopharmaceuticals containing purely oxygen-donor ligands. Comparison of the physical properties of the structurally characterized members of the series of complexes with core structures TcOSxO(4-x) (x = O, 2, 4) shows a shift to low energy in the frequency of the terminal oxygen-technetium band in the IR correlated with increasing softness of the basal plane donor atom set.  相似文献   

19.
The compound VOCl2·2(3-Etpy)·H2O (Etpy = ethylpyridine) was prepared by slow hydrolysis of the toluene suspension obtained from the reaction of VCl4 with 3-ethylpyridine The crystal was found to be monoclinic C2/c, Z = 4, ϱ(calc.) = 1.426 × 103 kg m−3, a = 13.281(5), b = 13.989(7), c = 9.277(8) Å, V = 1723(2) Å3 β = 90.53(5)°.Final full matrix least-square refinement with anisotropic thermal parameters for all non-hydrogen atoms gave R = 0.039, Rw = 0.042, Rg = 0.053. The vanadium atom is hexacoordinate with the pyridine ligands in mutually trans positions in the plane containing the Cl atoms. The O vanadyl atom is in an axial position trans to the coordinated H2O molecule, and the OVO line is a binary axis for the molecule.  相似文献   

20.
《Inorganica chimica acta》1987,129(2):273-276
The pentadentate ligand 2,6-diacetylpyridinedisemicarbazone, DAPSC, reacts with Th(NO3)4 in ethanolwater mixture and a di-μ-hydroxo Th(IV) dimer is formed. The compound [Th2(OH)2(DAPSC)2(NO3)2(H2O)2](NO3)4·4H2O (I) is monoclinic, space group P21/n with a = 10.705(1), b = 19.008(2), c = 11.782(1) Å, β = 107.82(2)°, V = 2282(1) Å3 and Z = 2. Detailed X-ray structural analysis showed that each thorium atom in the complex is coordinated to one pentadentate DAPSC ligand, which is subjected to a considerable distortion, one bidentate nitrate group, one water ligand and two bridging hydroxo groups. The coordination number is ten and the best presentation of the polyhedron is that of a distorted bicapped square antiprism. The ThTh separation is 4.0181(6) Å and the average ThO(H) bridge is 2.366 Å. The structure was refined using 3185 reflections to an R value of 5.0%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号