首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The synthesis of some new chloride and tropolonato mixed complexes of the general composition MCl4?nTropn·mL (M = UIV, ThIV; n = 1, 2, 3; m = 12, 23, 1, 2 and 3; L = DME, THF, LiCl and 18-crown-6) by the reaction of uranium and thorium tetrachlorides with M′Trop (M′ = Tl and Li) is described. The residual chloride atoms in UTropCl3·THF undergo further substitution reactions involving TlCp, while UTrop2Cl2·THF shows a different behaviour toward TlCp, since Cp3UCl as one of the main reaction products is obtained. Protolysis of Cp2U(NEt2)2 by HTrop affords a mixture of CpUTrop3 and Cp2UTrop2. Finally both UTropCl3·THF and UCl4 react directly with HTrop, the nature of the resulting products depending on the reaction solvent.  相似文献   

2.
The complexes of the type Cp2M(3-TC)Cl, Cp2M(3-TC)2, Cp2M(3-TA)Cl, Cp2M(3-TA)2, Cp2M(2-TB)Cl, Cp2M(2-TB)2 [where Cp = cyclopentadienyl, M = Zr or Ti] were synthesized by the reactions of dichlorobis(cyclopentadienyl)zirconium(IV) and dichlorobis(cyclopentadienyl)titanium(IV) with 3-thiophenecarboxylic acid (3-TCH), 3-thiopheneacetic acid (3-TAH) and 2-thiophenebutyric acid (2-TBH) respectively in different stoichiometric ratios. The new complexes were characterized by their elemental analysis, 1H NMR, IR, and electronic spectral data.  相似文献   

3.
The complexes M(NCS)4·xL (x = 2, M = U, L = Me3CCON(Pri)2(dippva); x = 3, M = Th, L = Me2CHCON(Pri)2(dipiba) and dippva, M = U, L = EtCON(Pr1)2(dippa), dipiba and dippva; x = 4, M = Th, L = MeCON(Pri)2(dipa), dippa and dipiba, M = U, L = dipa, dippa) and the solvates M(NCS)4·4dipa·CH2Cl2 (M = Th, U) have been prepared. Their i.r. and u.v.-visible (M = U only) spectra are reported. The crystal and molecular structure of U(NCS)4(dipa)4· CH2Cl2 has been determined by the heavy-atom method from X-ray diffractometer data and refined by least squares to R 0.029 for 1135 independent reflections. The crystal is tetragonal, space group P421c, with Z = 2, a = 15.663(4) and c = 10.512(3) Å. The coordination geometry about the 8-coordinate uranium atom is dodecahedral with the N atoms of the NCS groups occupying the dodecahedral A sites and the ‘dipa’ O atoms the B sites. The bonding distances of UO and UN are 2.363(8), and 2.444(11) Å respectively.  相似文献   

4.
The reactions of mono(cyclopentadienyl)titanium(IV) trichloride and bis(cyclopentadienyl)titanium(IV)/ zirconium(IV) dichloride with a new class of dithiosemicarbazone, derived by condensing piperazine dithiosemicarbazide with benzaldehyde (L1H2), 2-chlorobenzaldehyde (L2H2), 4-nitrobenzaldehyde (L3H2) or salicylaldehyde (L4H4) have been studied and different types of binuclear products, viz. [{CpTiCl2}2L], [{Cp2MCl}2L], ((L=L1, L2 or L3), [{CpTiCI}2L4] and [{Cp2M}2L4] (M=Yi or Zr), have been isolated. Tentative structures are proposed for these complexes based upon elemental analyses, electrical conductance, magnetic moment and spectral (electronic, IR, 1H and 13C NMR) data. Attempts have been made to establish a correlation between antibacterial activity and the structures of the products.  相似文献   

5.
《Inorganica chimica acta》1986,111(2):163-166
Tri- and di-organosilicon O,O-alkylenedithiophosphates, R4−nSi[S2PO2G]n (where R = Ph, Me, G = −C(CH3)2·C(CH3)2−, −CH2C(CH3)2CH2−, −CH-CH3CH2C(CH3)2−, n = 1,2) were synthesized by treatment of organosilicon(IV) chlorides with ammonium O,O-alkylenedithiophosphates in benzene. The compounds are volatile, yellow oily liquids, miscible with common organic solvents and monomeric in refluxing benzene. Like dialkyldithiophosphate derivatives of organosilicon(IV), these cyclic chain derivatives appear to be tetrahedral, the ligand behaving as unidentate.  相似文献   

6.
《Inorganica chimica acta》2006,359(8):2407-2416
The trimethyltin(IV) polymer [(Me3Sn)2(nip) · EtOH]n (1) of 5-nitroisophthalic acid (H2nip) and its three derivatives with mixed organic N-donor ligands 2,2′-bipy [(Me3Sn)2(nip) · 2H2O] · [(Me3Sn)2(nip) · H2O] · 2(2,2′-bipy) (2) 4,4′-bipy {[(Me3Sn)2(nip)]2(4,4′-bipy)}n (3) or phen [(Me3Sn)2(nip) · H2O] · (phen) (4) have been synthesized by the reaction of trimethyltin(IV) chloride and H2nip when sodium ethoxide was added in the presence of 2,2′-bipy 4,4′-bipy or phen. All complexes 14 were characterized by elemental, IR, 1H, 13C, and 119Sn NMR spectroscopy and X-ray crystallography analyses. Crystal, data collection and structure refinement parameters for complexes 1, 2, 3 and 4 are shown in Table 1, Table 2, respectively. The X-ray data showed the geometries of all the tin atoms in complexes 14 are trigonal bipyramidal. The X-ray analysis of 1 showed that the structure was a polymeric infinite chain with neighboring triorganotin centers being linked by dicarboxylate ligands and hydrogen bonds were found between adjacent chains. For 2, two different monomers were found, in one monomer, Me3Sn were coordinated to both carboxyl groups of the ligand and water molecules were coordinated to the two Sn(IV) centers. In the other monomer, water molecules were coordinated to only one Sn center. Co-crystallized2,2′-bipy was found in 2 and a 2D supermolecular structure was formed via O–H⋯O and O–H⋯N (N atoms derived from 2,2′-bipy) hydrogen bonds. In 3 however, a 2D polymeric block was formed due to the inversion center of the 4,4′-bipy. For 4, due to the O–H⋯O and O–H⋯N (N atoms derived from phen) hydrogen bonds and intermolecular Sn⋯O bonds, a 2D polymeric structure was formed.  相似文献   

7.
Reactions of SbCl5 with various covalent metal halides in MeCN have been studied as a convenient and direct route to metal hexachloroantimonate salts via Sb(V) halide abstraction. The isolation and characterization (Ir, Vis-UV, 1H NMR spectroscopic and microanalytical) of the complexes [Zn(MeCN)6][SbCl6]2, [CrCl2(MeCN)4][SbCl6], [SnCl3(MeCN)3][SbCl6], [TiCl2(MeCN)4][SbCl6]2, [Cp2M(Cl)(MeCN)x][SbCl6] M = ti, x = 1; M = Zr, Hf, x = 2, and [Cp2M(MeCN)y][SbCl6]2 M = Ti, y = 2; M = Zr, Hf, y = 3, is described. The reaction of MgCl2 with SbCl5 was carried out in EtOAC as solvent and gave [Mg(EtOAc)6][SbCl6]2. 121Sb NMR, IR and UV spectroscopic measurements provide positive identification of the SbCl6 anion.  相似文献   

8.
A simple and convenient route for synthesizing organotitanium (IV) complexes with a general formula Cp2Ti(SeR)2 or Cp2TiCl(SeR) has been developed. This synthetic route includes reduction of Cp2TiCl2 with Mg and an in situ treatment of the intermediate `Cp2Ti' with diselenides RSeSeR. Interestingly, while the route involving reaction of Cp2TiCl2, Mg and RSeSeR in a molar ratio of 1:1:1 produced Cp2Ti(SeR)2, (1-5, R=α-C10H7, o-MeC6H4, m-MeC6H4, p-ClC6H4, p-BrC6H4) in 91-97% yields, the route involving reaction of Cp2TiCl2, Mg and RSeSeR in a molar ratio of 1: 0.5: 0.5 afforded Cp2TiCl(SeR) (6-7, R=p-ClC6H4, p-BrC6H4) in 70% and 92% yields, respectively. 1-7 are new and have been characterized by elemental analysis and spectroscopy, as well as by X-ray diffraction analysis for 6 and 7. A possible pathway for production of these two types of organotitanium (IV) complexes, mainly depending upon the molar ratio of the starting materials, are briefly discussed.  相似文献   

9.
The reaction of xanthosine-5′'-monophosphate disodium salt (5′-XMPNa2) with Pt(II), Cu(II) and Mg(II) ions produced compounds of the type cis- and trans-Pt(NH3)2(XMPNa2)nCl2·xH2O, where n = 1 or 2; Pt(XMPNa2)nCl2·xH2O, where n = 1-4, x = 1,4 & 6; Cu(XMP)·6H2O and Mg(XMP)·xH2O, where x = 9 or 4. In the complexes synthesized here at neutral pH values, the nucleotide binds through the N7-atom of the purine ring system, whereas for Cu(II) and Mg(II) compounds obtained at pH = 4 a direct metal-phosphate interaction as well as Nτ bonding is proposed.  相似文献   

10.
Various new adducts of TiCl4, (PhO)2TiCl2, TiCl3 and ZrCl4 with phosphine and amine ligands are reported including, (PhO)2TiCl2·2L (or L′) (L = PMe3, PPh3; L′ = dmpe, dbpe, tmed); MCl4·L (M = Ti, Zr; L = dbpe): TiCl3·L (L = dmpe, dbpe, tmed): TiCl3·tmed·THF and ZrCl4·1.5tmed. The solution properties of some of the TiCl4 adducts are discussed, as deduced from 31P NMR spectra.  相似文献   

11.
N-substituted ethylcarbamates form with thorium nitrate the complexes Th(NO3)4·3RHNC(O)OC2H5 (where R = CH3, C2H5, C6H5(CH3)CH) and with lanthanum nitrate the complexes La(NO3)3· 2RR′NC(O)OC2H5·3H2O (where R = CH3, C2H5, C6H5(CH3)CH; R′ = H and R = CH3, C6H5; R′ = C2H5 or R = R′ = CH3). In addition the anhydrous La(NO3)3·3(C2H5)2NC(O)OC2H5 has been isolated. From the IR spectra it is deduced that the carbamates coordinate the metal through the carbonyl oxygen atom and that the nitrato groups act as chelated ligands. 1H nmr spectral data of the complexes are reported and discussed.  相似文献   

12.
Three novel macrocyclic diorganotin(IV) compounds of the type: {[R10(SnO)3(SnOH)2]HnXOm}2 · L (n=1, m=4, R=PhCH2, X=P, L=0, 1; n=0, m=4, R=PhCH2, X=S, L=4H2O, 2; n=0, m=3, R=n-Bu, X=N, L=0, 3) were synthesized by the reaction of (PhCH2)2SnCl2 with Na2HnXO4 (n=1, X=P; n=0, X=S) or (n-Bu)2SnCl2 with NaNO3. All the compounds 1, 2 and 3 are characterized by elemental, IR and X-ray diffraction analyses. X-ray data reveal that a macrocyclic structure with two centrosymmetric ladders of hydrolysis exists in the crystals of the three compounds. The geometry about each tin atom involved is trigonal bipyramidal.  相似文献   

13.
Lithioamidines {R′N(Li)C(R)NR′, I; R = CH3, R′ = C6H5, p-CH3,C6H4} react with iron(III) chloride
in monoglyme to produce navy-blue, high spin Fe{R′NC(R)NR′}3 complexes which are extremely air and moisture sensitive. The corresponding reaction when R = R′ = C6H5 produces a soluble red complex and an air-stable green complex, whereas when R = H, R′ = C6H5 and R = R′ = C6H5 and the reaction is started at ca. ?20°, red and green complexes respectively are formed. Though all the complexes are formulated Fe{R′NC(R)NR′}3, their properties reflect association through bridging amidino-groups. Iron(II) chloride reacts with I(R = CH3, R′ = p-CH3C6H4) to form two complexes, one crimson and soluble in organic solvents, and one brown and insoluble, which are fomulated [Fe{R′NC(R)NR′}2]n. The iron(III) complexes failed to react with, or were decomposed by, a variety of reducing, electrophilic and nucleophilic reagents, though blue Fe{p-CH3C6H4NC(CH3)N-p-CH3C6H4}3 reacts readily with nitric oxide to form a purple addition complex from which the N-nitroso-compound p-CH3C6H4NC(CH3)N(NO)-p-CH3C6H4 was obtained in high yield. Treatment of the corresponding brown iron(II) complex with nitric oxide gave no reaction.  相似文献   

14.
Three types of methyltin phosphonates, {[(CH3)3Sn]4(O3PPh)2}n (1), {[(CH3)3Sn]2(O3PPh) · CH3OH}n (2) and {[(CH3)2SnO3PPh]4}n (3) were synthesized by the reaction of phenylphonic acid with trimethyltin (IV) chloride and dimethyltin (IV) dichloride, respectively. Complexes 1, 2 and 3 were characterized by elemental analysis, IR, NMR (1H, 13C, 31P and 119Sn) spectroscopy, TGA and X-ray crystallography diffraction analysis. The X-ray analysis of complex 1 shows that the structure is a polymeric infinite 1D zigzag chain. In complex 2, the oxygen atom of methanol molecule is coordinated to the tin atoms, and a 2D network is generated via O–H?O hydrogen bonds. In complex 3, a novel 2D network containing 12-membered (Sn3O6P3) rings is formed.  相似文献   

15.
A number of organometallic derivatives involving 6-amino penicillinic acid (I), of the types η5-R)2M- (Cl)L?Et3NH+ (II), (η5-R)2M(Cl)L (III) and R′HgL [R = cyclopentadienyl (C5H5), indenyl (C9H7), R′ = phenyl (C6H5), p-acetoxyphenyl (p-CH3COOC6H4), o-hydroxyphenyl (o-HOC6H4), p-hydroxyphenyl (p-HOC6H4); M = Ti(IV), Zr(IV); LH = 6-amino penicillinic acid] have been synthesized and characterized. Conductance measurements indicate that while the (η5-R)2M(Cl)L?Et3NH+ complexes are 1:1 electrolytes, the remaining compounds are non-electrolytes. From IR and UV spectral studies it is concluded that the penicillin moiety is bidentate. PMR and CMR studies support the stoichiometry of the complexes. Fluorescence studies have been carried out for o- and p-HOC6H4HgL complexes and relevant photochemical parameters have been elucidated. X-ray diffraction studies have been made for the o-HOC6H4HgL complex. For the C6H5HgL, p-CH3COOC6H4HgL and p-HOC6H4HgL complexes, thermal studies (TG and DTA) have been carried out and kinetic parameters for thermal degradation have been enumerated. In addition, the fragmentation pattern of these complexes has been analysed on the basis of mass spectra. The C6H5HgL and p-CH3COOC6H4HgL complexes show positive bactericidal activities.  相似文献   

16.
The uranium(IV) complexes [U(EDTA)(H2O)2], [U(HOEDTA)]+, and [U(DTPA)]? are well-formed in the pH fange 2–3 ([DTPA]5- = diethylenetriaminepentaacetate; [HOEDTA]3-  N-(2-hydroxyethyl)ethylenediaminetriacetate). Of these, only [U(DTPA)]- is extracted from an aqueous phase at pH 2 by the perchlorate salt of the primary amine, Primene JM-T. As the aqueous phase pH was raised, extraction occurred in all three cases and hydrolysed species may be extracted from EDTA and HOEDTA solutions but [U(DTPA)]? resists hydrolysis. The addition of sulphate had a marked effect on the extraction of U(IV) from EDTA and HOEDTA through the formation of [U(EDTA)(SO4)(H2O)]2- and [U(HOEDTA)(SO4)(H2O)n]?. The equilibrium constant, log β1, for: [(U(EDTA)(H2O)2] 2 [SO4]2? ? [U(EDTA)(SO4)(H2O)]2- 2 H2O was found to be 2.43 ± 0.04 (I = 1 mol dm?3, NaClO4; pH 2.0; 20 °C) from spectrophotometric data.With tri-n-octylphosphine oxide (TOPO) electronic spectroscopy showed that the same U(IV) complex was extracted at pH 2 for Cs2UCl6, U(IV)/ HOEDTA, and U(IV)/DTPA and the aminepoly- carboxylates were aqueous phase masking agents but with [U(EDTA)(H2O)2] oxidation gave a uranyl(VI) organic phase species.Uranium(IV) is strongly extracted from aqueous solutions of HOEDTA at pH 2 or 3 by bis(2-ethyl- hexyl)phosphoric acid (HBEHP) but less so from EDTA and DTPA. Since U(IV) is completely extracted from Cs2UCl6 it could be that the amine- polycarboxylates were aqueous phase masking agents although spectral evidence did not support this.  相似文献   

17.
《Inorganica chimica acta》1987,129(1):119-121
The new bridging complexes Cp3UClClAlCl2 and Cp3UClClAlCl2·THF were synthesized by reaction of triscyclopentadienyl uranium chloride with aluminum trichloride in the presence of different solvents. The Cp3UClClAlCl2·THF complex id proposed to have a square bipyramidal structure with THF occupying the sixth position. A new inorganic cyclooctatetraene uranium complex, UCl2(S4N4), was also synthesized by uranium tetrachloride with tetrasulfur tetranitride.  相似文献   

18.
Thermodynamics of base interaction in (A)n and (A.U)n   总被引:2,自引:0,他引:2  
Using precision scanning microcalorimetry we studied (A)n and (A·U)n melting in highly diluted solutions (0.3 to 5.0 mm) with different Na+ activity. This permitted us to determine directly the thermodynamic functions of stacking interaction in (A)n and base-pairing in (A·U)n. For (A-A) stacking at (A)n melting temperature we obtained ΔH(A)nm = 12.6 kJ mol?1; ΔS(A)nm = 41 J K?1 mol?1. For A·U base-pairing at a standard temperature of 298 K and 0.1 m-Na+ we have: ΔH(A·U) = 34 kJ mol?1; ΔS(A·U) = 102 J K?1 mol?1ΔG(A·U) = ?3.5 kJ mol?1.  相似文献   

19.
The main objective of this survey is to demonstrate that by extensive assessment of variable temperature 1H NMR data obtained on paramagnetic f-element complexes in solution, not only valuable information on details of the molecular structure, but also on the electronic structure may be deduced. One of the most informative quantities to arrive at is the paramagnetic anisotropy term, χ∥ - χ⊥, of axially symmetric molecules from which, if the bulk susceptibility χ is also known, the crystal-field sensitive parameters χ∥ and χ⊥ can be derived.The majority of the examples considered belong to the widely studied type [Cp3fMLn]q (Cp = η5C5H4R); fM = Pr(III), Nd(III), Yb(III) and U(IV); n = 0, 1 and 2; q = 0 or ?1) and to the uranocene family. The survey also includes the two sub-classes of novel anionic complexes [Cp3LnL]? and [(Cp3Ln)2(μ-L)]?, respectively, and different isomers of the general composition [Cp3UXY]q (L = lanthanoid).  相似文献   

20.
By refluxing mixtures of guanine (guH) and DyCl3, ThCl4 or UCl4 in ethanol-triethyl orthoformate, solid complexes of the Dy(guH)2(gu)Cl2 and M(gu)2Cl2 (M = Th, U) types were isolated. The insolubility of the new complexes in organic media, combined with the coordination number six suggested by the spectral evidence, favors polymeric configurations. Most likely structures involve a linear, chainlike, single-bridged polymeric backbone
The Dy3+ complex is probably a linear polymer, also containing terminal unidentate guanine ligands, whilst for M = Th4+, U4+ highly polymeric structures arising from cross-linking between linear polymeric
units seems most likely. IR evidence rules out participation of the O(6) oxygen of guanine in coordination, despite the hard acid character of the metal ions under study. Guanine apparently coordinates exclusively through ring nitrogens in the new metal complexes; N(9) and N(7). N(9) are, respectively, the most likely binding sites of terminal unidentate and bridging bidentate guanine. The chloro ligands present in the complexes seem to be exclusively terminal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号