首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Two closely related crystal forms of dimeric cytochrome c5 from Azotobacter rinelandii have been grown. The crystals belong to space groups (C2 with a = 45·0, b = 38·4, c = 41·3 A? and β = 101 ° 0′; and C1 (a centered triclinic cell) with a = 46·0, b = 37·6, c = 49·4 A?, α = 87 ° 20′, β = 96 ° 40′ and γ = 90 ° 0′. In C2 the 24,000 molecular weight dimer lies on a Crystallographic 2-fold axis; in C1 the entire dimer occupies the asymmetric unit.  相似文献   

4.
Previous proton nuclear magnetic resonance (nmr) studies have indicated that inositol hexaphosphate (IHP) can stabilize hemoglobin (Hb) Kansas in a deoxy-like quaternary structure even when fully liganded with carbon monoxide (CO) (S. Ogawa, A. Mayer, and R. G. Shulman, 1972, Biochem. Biophys. Res. Commun., 49, 1485–1491). In the present report we have investigated both CO binding at equilibrium and the CO binding and release kinetics to determine if Hb Kansas + IHP is devoid of cooperativity, as would be suggested by the nmr studies just quoted. The equilibrium measurements show that Hb Kansas + IHP has a very low affinity for CO (P12 = 1.2 mm Hg and Keq = 5.4 × 105M?1) and almost no cooperativity (n = 1.1) at pH 7, 25 °C. The CO “on” and “off” kinetics also show no evidence for cooperativity. In addition, the equilibrium constant estimated from the kinetic rate constants (Keq = 5.2 × 105M?1 with kon = 1.03 × 105M?1 · S? and koff = 0.198 S?1) is in excellent agreement with the equilibrium constant determined directly. Thus, both kinetic and equilibrium measurements allow us to conclude that CO binding to Hb Kansas + IHP occurs without significant cooperativity.  相似文献   

5.
Properties of [3H]diazepam binding sites on rat blood platelets   总被引:8,自引:0,他引:8  
J K Wang  T Taniguchi  S Spector 《Life sciences》1980,27(20):1881-1888
Intact rat blood platelets are shown to possess benzodiazepine binding sites of the peripheral type, binding of [3H]diazepam being strongly inhibited by Ro5-4864 (Ki = 3.6 ± 0.5 nM) but only weakly inhibited by clonazepam (Ki = 35.1 ± 18.2 μM). Binding of [3H]diazepam is specific and saturable. Scatchard analysis reveals a single class of binding sites with KD = 14.7 ± 1.0 nM and Bmax = 564 ± 75 fmoles/108 platelets. The Hill coefficient is 0.94, indicating a lack of binding site heterogeneity or negative cooperativity. Binding reaches equiliibrium at 6 min, with k+1 = 2.9 × 107 M?1 min?1, and is rapidly reversible (t12 = 2.2 min with K?1 = 0.315 min?1. KD derived from the rate constants agrees with that estimated by Scatchard analysis. KD of the crude membrane fraction of platelets is also close to that of intact platelets. Binding of [3H]diazepam is linear with platelet number (between 0.25–2 × 108 platelets), is temperature sensitive with maximum binding at 0°C, and has a broad optimal pH range between pH 5–9.  相似文献   

6.
A wide range of concentrated random coil polysaccharide solutions have been assessed for textural attributes by a trained sensory panel. The only textural terms invoked to describe these model systems were ‘thickness’ and ‘stickiness’, which were shown to be highly correlated, and essentially identical numerically, using a ratio scaling technique. Viscosity (η) measurements over a wide range of shear rates (γ) for all these samples gave flow curves (log η versus log γ) of the same form. Differences in flow behaviour between samples could then be characterised completely by two parameters, the maximum viscosity at low shear rates (η0), and the shear rate (γ?0·1) at which η = solη010. A simple linear relationship was demonstrated between these two parameters and perceived thickness (T) or stickiness (S), irrespective of polysaccharide type. For Newtonian liquids, log T (or log S) varied linearly with log η. Hence the effective ‘in-mouth’ thickness of random coil polysaccharide solutions, in normal viscosity units, may be predicted directly from η0 and γ?0·1 by the simple relationship: log ηN = 1·13 log η0 + 0·45 logγ?0·1 ? 1·72 where ηN is the viscosity of a Newtonian solution which would be perceived as identical in thickness (and stickiness) to the polysaccharide solution.  相似文献   

7.
5-Nitro-2′-deoxyuridine 5′-monophosphate was found to be an active sitedirected irreversible inhibitor of thymidylate synthetase from Lactobacillus caesi. It's KI was determined as 2.9 × 10?8M from a double-reciprocal plot of velocity vs substrate concentration.  相似文献   

8.
Ellipticine and 3,5,6,8-tetramethyl-N-methyl phenanthrolinium form complexes with the dinucleoside monophosphate, 5-iodocytidylyl(3′–5′)guanosine. These crystals are isomorphous: ellipticine-iodoCpG2 crystals are monoclinic, space group P21 with a = 13.88 A?, b = 19.11 A?, c = 21.42 A?, β = 105.4; TMP-iodoCpG crystals are monoclinic, space group P21, with a = 13.99 A?, b = 19.12 A?, c = 21.31 A?, β = 104.9 °. Both structures have been solved to atomic resolution by Patterson and Fourier methods, and refined by full matrix least-squares.The asymmetric unit in the ellipticine-iodoCpG structure contains two ellipticine molecules, two iodoCpG molecules, 20 water molecules and 2 methanol molecules, a total of 144 atoms, whereas, in the tetramethyl-N-methyl phenanthrolinium-iodoCpG complex, the asymmetric unit contains two TMP molecules, two iodoCpG molecules, 17 water molecules and 2 methanol molecules, a total of 141 atoms. In both structures, the two iodoCpG molecules are hydrogenbonded together by guanine-cytosine Watson-Crick base-pairing. Adjacent base-pairs within this paired iodoCpG structure are separated by about 6.7 Å; this separation results from intercalative binding by one ellipticine (or TMP) molecule and stacking by the other ellipticine (or TMP) molecule above or below the base-pairs. Base-pairs within the paired nucleotide units are related by a twist of 10 to 12 °. The magnitude of this angular twist is related to conformational changes in the sugar-phosphate chains that accompany drug intercalation. These changes partly reflect the mixed sugar puckering pattern observed: C3′ endo (3′–5′) C2′ endo (i.e. both iodocytidine residues have C3′ endo conformations, whereas both guanosine residues have C2′ endo conformations), and additional small but systematic changes in torsional angles that involve the phosphodiester linkages and the C4′C5′ bond.The stereochemistry observed in these model drug-nucleic acid intercalative complexes is almost identical to that observed in the ethidium-iodoUpA and -iodoCpG complexes determined previously (Tsai et al., 1975a,b,1977; Jain et al., 1977). This stereochemistry is also very similar to that observed in the 9-aminoacridine-iodoCpG and acridine orange-iodoCpG complexes described in the preceding papers (Sakore et al., 1979 Reddy et al., 1979). We have already proposed this stereochemistry to provide a unified understanding of a large number of intercalative drug-DNA (and RNA) interactions (Sobell et al., 1977a,b), and discuss this aspect of our work further in this paper.  相似文献   

9.
The structural changes accompanying the recently described sub-transition of hydrated dipalmitoylphosphatidylcholine (Chen, S.C., Sturtevant, J.M. and Gaffney, B.J. (1980) Proc. Natl. Acad. Sci. USA 77, 5060–5063) have been defined using X-ray diffraction methods. Following prolonged storage at ?4°C the usual Lβ′ gel form of hydrated dipalmitoylphosphatidylcholine (DPPC) is converted into a more ordered stable ‘crystal’ form. The bilayer periodicity is 59.1 Å and the most striking feature is the presence of a number of X-ray reflections in the wide angle region. The most prominent of these are a sharp reflection at 14.4A??1 and a broader reflection at 13.9A??1. This diffraction pattern is indicative of more ordered molecular and hydrocarbon chain packing modes in this low temperature ‘crystal’ bilayer form. At the sub-transition (Trmsub = 15–20°C) an increase in the bilayer periodicity occurs (d=63.6 A?) and a strong reflection at approx. 14.2A??1 with a shoulder at approx. 14.1A??1 is observed. This diffraction pattern is identical to that of the bilayer gel (Lβ′) form of hydrated DPPC. Thus, the sub-transition corresponds to a bilayer ‘crystal’ → bilayer Lβ′ gel structural rearrangement accompanied by a decrease in the lateral hydrocarbon chain interactions. Differential scanning calorimetry and X-ray diffraction show that on further heating the usual structural changes Lβ′ → Pβ′ and Pβ′ → Lα occur at the pre- and main transitions, at approx. 35°C and 41°C, respectively.  相似文献   

10.
The reaction of almond β-glucosidase with p-nitrophenyl-β-D-glucoside has been investigated over the temperature range +25° to ?45° using 50% aqueous dimethyl sulfoxide (DMSO) as solvent. At temperatures below those at which turnover occurs a “burst” of p-nitrophenol proportional to the enzyme concentration is observed. Such a “burst” suggests the existence of a glucosyl-enzyme intermediate whose breakdown is rate-limiting, and provides a method for measuring the active-site normality. At pH 5.9, 25°, the presence of 50% DMSO causes an increase in Km from 1.7×10?3M (0%) to 1.7×10?2M, whereas Vmax is unchanged. The DMSO thus apparently acts as a competitive inhibitor with Ki = 0.7M. The Arrhenius plot for turnover is linear over the accessible temperature range with Ea = 23.0 ± 2.0 kcal/mole.  相似文献   

11.
(1) Treatment of (Na+ + K+)-ATPase from rabbit kidney outer medulla with the γ-35S labeled thio-analogue of ATP in the presence of Na+ + Mg2+ and the absence of K+ leads to thiophosphorylation of the enzyme. The Km value for [γ-S]ATP is 2.2 μM and for Na+ 4.2 mM at 22°C. Thiophosphorylation is a sigmoidal function of the Na+ concentration, yielding a Hill coefficient nH = 2.6. (2) The thio-analogue (Km = 35 μM) can also support overall (Na+ + K+)-ATPase activity, but Vmax at 37°C is only 1.3 γmol · (mg protein)? · h?1 or 0.09% of the specific activity for ATP (Km = 0.43 mM). (3) The thiophosphoenzyme intermediate, like the natural phosphoenzyme, is sensitive to hydroxylamine, indicating that it also is an acylphosphate. However, the thiophosphoenzyme, unlike the phosphoenzyme, is acid labile at temperatures as low as 0°C. The acid-denatured thiophosphoenzyme has optimal stability at pH 5–6. (4) The thiophosphorylation capacity of the enzyme is equal to its phosphorylation capacity, indicating the same number of sites. Phosphorylation by ATP excludes thiophosphorylation, suggesting that the two substrates compete for the same phosphorylation site. (5) The (apparent) rate constants of thiophosphorylation (0.4 s?1 vs. 180 s?1), spontaneous dethiophosphorylation (0.04 s?1 vs. 0.5 s?1) and K+-stimulated dethiophosphorylation (0.54 s?1 vs. 230 s?1) are much lower than those for the corresponding reactions based on ATP. (6) In contrast to the phosphoenzyme, the thiophosphoenzyme is ADP-sensitive (with an apparent rate constant in ADP-induced dethiophosphorylation of 0.35 s?1, KmADP = 48 μM at 0.1 mM ATP) and is relatively K+-insensitve. The Km for K+ in dethiophosphorylation is 0.9 mM and in dephosphorylation 0.09 mM. The thiophosphoenzyme appears to be for 75–90% in the ADP-sensitive E1-conformation.  相似文献   

12.
Binding of the chromogenic ligand p-nitrophenyl α-d-mannopyranoside to concanavalin A was studied in a stopped-flow spectrometer. Formation of the protein-ligand complex could be represented as a simple one-step process. No kinetic evidence could be obtained for a ligand-induced change in the conformation of concanavalin A, although the existence of such a conformational change was not excluded. The entire change in absorbance produced on ligand binding occurred in the monophasic process monitored in the stopped-flow spectrometer. The value of the apparent second-order rate constant (ka) for complex formation (ka = 54,000 s?1m? at 25 °C, pH 5.0, Γ/2 0.5) was independent of the protein concentration when the protein was in the range of 233–831 μm in combining sites and in excess of the ligand. The apparent first-order rate constant (k?a) for dissociation of the complex was obtained from the rate constant for the decomposition of the complex upon the addition of excess methyl α-d-mannopyranoside (k?a = 6.2 s?1 at 25 °C, pH 5.0, Γ/2 0.5). The ratio ka?a (0.9 × 104m?1) was in reasonable agreement with value of 1.1 ± 0.1 × 104m?1 determined for the equilibrium constant for complex formation by ultraviolet difference spectrometry. Plots of ln(kaT) and ln(kaT) vs 1T were linear (T is temperature) and were used to evaluate activation parameters. The enthalpies of activation for formation and dissociation of the complex are 9.5 ± 0.3 and 16.8 ± 0.2 kcal/mol, respectively. The unitary entropies of activation for formation and dissociation of the complex are 2.8 ± 1.1 and 1.3 ± 0.7 entropy units, respectively. These entropy changes are much less than those usually associated with substantial changes in the conformation of proteins.  相似文献   

13.
Kinetic properties of rat hepatic prolactin receptors   总被引:1,自引:0,他引:1  
Binding of 125I-labelled ovine prolactin to female rat liver membranes underequilibrium conditions showed an apparent Kd of 200 pM, and a Hill coefficient of 1.0. The association rate was second order, with a rate constant K1, of 2.1 × 107, 1.4 × 107, 1.2 × 107 and 4 × 106 M?1. min?1 at 37, 30, 24 and 4° respectively. At 24° there were two components to the dissociation; a faster phase with K?1=1.26 × 10?2. min?1 (T12=55 minutes) and a slower phase with K?1=1.103 × 10?3. min?1. The apparent Kd (from K?1K1) was 1.05 nM for the faster phase and 87.5 pM for the slower phase. These data suggest that there is a conformational change following hormone binding which results in an increased receptor affinity, which effectively prevents release of bound hormone.  相似文献   

14.
Acridine orange and proflavine form complexes with the dinucleoside monophosphate, 5-iodocytidylyl(3′–5′)guanosine. The acridine orange-iodoCpG2 crystals are monoclinic, space group P21, with unit cell dimensions a = 14.36 A?, b = 19.64 A?, c = 20.67 A?, β = 102.5 °. The proflavine-iodoCpG crystals are monoclinic, space group C2, with unit cell dimensions a = 32.14 A?, b = 22.23 A?, c = 18.42 A?, β = 123.3 °. Both structures have been solved to atomic resolution by Patterson and Fourier methods, and refined by full matrix least-squares.Acridine orange forms an intercalative structure with iodoCpG in much the same manner as ethidium, ellipticine and 3,5,6,8-tetramethyl-N-methyl phenanthrolinium (Jain et al., 1977, Jain et al., 1979), except that the acridine nucleus lies asymmetrically in the intercalation site. This asymmetric intercalation is accompanied by a sliding of base-pairs upon the acridine nucleus and is similar to that observed with the 9-aminoacridine-iodoCpG asymmetric intercalative binding mode described in the previous papers (Sakore et al., 1977, Sakore et al., 1979). Basepairs above and below the drug are separated by about 6.8 Å and are twisted about 10 °; this reflects the mixed sugar puckering pattern observed in the sugar-phospate chains: C3′ endo (3′–5′) C2′ endo (i.e. each cytidine residue has a C3′ endo sugar comformation, while each guanosine residue has a C2′ endo sugar conformation), alterations in glycosidic torsional angles and other small but significant conformational changes in the sugar-phosphate backbone.Proflavine, on the other hand, demonstrates symmetric intercalation with iodoCpG. Hydrogen bonds connect amino groups on proflavine with phosphate oxygen atoms on the dinucleotide. In contrast to the acridine orange structure, base-pairs above and below the intercalative proflavine molecule are twisted about 36 °. The altered magnitude of this angular twist reflects the sugar puckering pattern that is observed: C3′ endo (3′–5′) C3′ endo. Since proflavine is known to unwind DNA in much the same manner as ethidium and acridine orange (Waring, 1970), one cannot use the information from this model system to understand how proflavine binds to DNA (it is possible, for example, that hydrogen bonding observed between proflavine and iodoCpG alters the intercalative geometry in this model system).Instead, we propose a model for proflavine-DNA binding in which proflavine lies asymmetrically in the intercalation site (characterized by the C3′ endo (3′–5′) C2′ endo mixed sugar puckering pattern) and forms only one hydrogen bond to a neighboring phosphate oxygen atom. Our model for proflavine-DNA binding, therefore, is very similar to our acridine orange-DNA binding model. We will describe these models in detail in this paper.  相似文献   

15.
The reaction of β-galactosidase (E. coli K12) with o-nitrophenyl-β-D-galactoside has been investigated over the temperature range +25° to ?30° using 50% aqueous dimethyl sulfoxide as solvent. At temperatures below ?10° turnover becomes very slow and a burst of o-nitrophenol is observed. Such a burst indicates the existence of a galactosyl-enzyme intermediate whose breakdown is rate-limiting and provides a means of determining the active site normality. The Arrhenius plot for turnover is linear in the ?25 to +25° range with Ea = 26 ± 3 kcal/mole. The presence of the 50% DMSO had no effect on Km but caused a small decrease in Kcat.  相似文献   

16.
The crystal structures of a triclinic form (HPA1) and a monoclinic form (HPA2) of hexadecyl-2-deoxyglycerophosphoric acid monohydrate were determined by single crystal analysis. The unit cell dimensions for HPA1 are a = 4.75, b = 5.72, c = 44.36 A? and α = 91.0, β = 101.5, γ = 100.5° (P1) and for HPA2, a = 4.75, b = 5.72, c = 88.72 A? and γ = 100.8° (P21). In both structures the molecules are fully extended and pack tail-to-tail in bilayers with tilting (47°) hydrocarbon chains. In HPA2, however, the chain tilt alternatingly changes direction in adjacent bilayers, giving rise to a doubled unit cell which spans two bilayers. The dihydrogen phosphate groups interact by hydrogen bonds and are arranged in rows. Laterally between these phosphate rows the water molecules are accommodated producing a compact two-dimensional network of hydrogen bonds. The packing cross-section in the layer plane of the dihydrogen phosphate monohydrate group is 26.7 Å2 in both structures. The hydrocarbon chains pack according to the triclinic (T|) chain packing mode. In HPA2, however, the chain packing is somewhat less compact with accounts for a 2% increase in the molecular volume. In both structures the ether oxygen is accommodated into the hydrocarbon matrix without distortion of the chain packing.  相似文献   

17.
A complex between EcoRI restriction endonuclease and cognate DNA fragment, 5′-G-A-A-T-T-C C-T-T-A-A-G-5′, has been crystallized. The space group is P4212 with a = b = 183.2A?, c = 49.7A?, α = β = γ = 90 °. The unit cell contains four enzyme monomers plus two duplex DNA fragments in an asymmetric unit. High quality crystals of the enzyme alone have also been obtained.  相似文献   

18.
Acid dissociation constants of aqueous cyclohexaamylose (6-Cy) and cycloheptaamylose (7-Cy) have been determined at 10–47 and 25–55°C, respectively, by pH potentiometry. Standard enthalpies and entropies of dissociation derived from the temperature dependences of these pKa's are ΔH0 = 8.4 ± 0.3 kcal mol?1, ΔS0 = ?28. ± 1 cal mol?10K?1 for 6-Cy and ΔH0 = 10.0 ± 0.1 kcal mol?1, ΔS0 = ?22.4 ±0.3 cal mol?10K?1 for 7-Cy. Intrinsic 13C nmr resonance displacements of anionic 6- and 7-Cy were measured at 30°C in 5% D2O (vv). These results indicate that the dissociation of 6- and 7-Cy involves both C2 and C3 20-hydroxyl groups. The thermodynamic and nmr parameters are discussed in terms of interglucosyl hydrogen bonding.  相似文献   

19.
Precise oxygen equilibrium curves for carp hemoglobin were determined at 15 °C in bis-Tris buffer, and in phosphate buffer in the presence and absence of P6-inositol, and at various temperatures in phosphate buffer. Parameters of the Koshland, Némethy and Filmer (1966) (KNF) simple, sequential models (square and tetrahedral) were estimated by non-linear least-square fit of the experimental data to Hill plots. Non-, negative and positive co-operativity can be fitted by the KNF models. Considering equilibrium arguments, K2ABKBB, the KNF parameter governing the co-operativity of the system, predicts a symmetry conserved mode of action in regions of high, positive co-operativity, and a symmetry non-conserved mode of action in regions of low, non- or negative co-operativity. The simple, sequential, square KNF model fits better the Hill plots than does the simple, sequential, tetrahedral KNF model. From the effect of temperature on carp hemoglobin in phosphate buffer, the heats and entropies of the subunit interaction parameter, K2ABKBB, and of the oxygenation parameters, KBBKxBKtAB and K32BBKxBKtAB, for the square and tetrahedral models, respectively, were calculated and show the square model to account well for previously published data on the carp hemoglobin molecule. This study indicates that the KNF model, in its simplest form, is capable of explaining many of the functional properties of cooperative systems, as opposed to the Monod, Wyman and Changeux (1965) model which seems only to be a special case of the KNF model in regions of high, positive co-operativity.  相似文献   

20.
The association constant, KA, for myosin subfragment-1 binding to actin was measured as a function of ionic strength [KCl, LiCl, and tetramethylammonium chloride (TMAC)]and temperature by the method of time-resolved fluorescence depolarization. The following thermodynamic values were obtained from solutions of 0.20 × 10?6m S-1, 1.00 × 10?6m actin in 0.15 m KCl, pH 7.0, at 25 °C: ΔG ° = ?39 ± 1 kJ M?1, ΔH0 = 44 ± 2 kJ M?1 and ΔS0 = 0.28 ± 0.01 kJ M?10K?1. For measurements in KCl (0.05 to 0.60 m), In Ka = ?8.36 (KCl)12. Thus, the binding is endothermic and strongly inhibited by high ionic strength. When KCl was replaced by LiCl or TMAC the ionic effects on the binding were cation specific. The nature of actin-(S-1) binding in the rigor state is discussed in terms of these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号