首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
M Morii  N Ishimura  N Takeguchi 《Biochemistry》1984,23(26):6816-6821
The particle size of hog gastric vesicles which contain H,K-ATPase was measured by using the method of quasi-elastic light scattering. The size of control vesicles is homogeneous as judged from its low polydispersity index. When the vesicles were treated with copper(II) o-phenanthroline (CuP), intervesicular S-S cross-linking occurred as determined by the aggregated vesicle size. The aggregation to divesicle size occurred very quickly, within 30 s, and the extent of aggregation did not depend on the extent of inactivation if the inactivation was not more than about 30%. Blocking of SH groups by 5,5'-dithiobis(2-nitrobenzoic acid) in the presence of Mg2+ prevented CuP-induced vesicular aggregation but not inactivation, indicating that S-S cross-linking rather than enzyme inactivation is the primary cause of vesicular aggregation. The presence of Mg2+ was required for the occurrence of aggregation. Nucleotides such as ADP (K0.5 = 5 microM) and 5'-adenylyl imidodiphosphate (K0.5 = 50 microM) inhibited the aggregation induced by 50 microM CuP plus 2 mM Mg2+ in a dose-dependent manner. Furthermore, K+ antagonized the effects of nucleotides. The extent of aggregation increased as the pH decreased in the pH range 6.1-7.4. Virtually no cross-linking occurred at alkaline pH (e.g., pH 8-9). These data show that vesicular aggregation can be assumed to reflect the conformational state of the responsible SH group in the native enzyme.  相似文献   

2.
Hog gastric vesicles showed Cl- conductance when treated with Cu2+-o-phenanthroline, an S-S cross-linking reagent. An IgG monoclonal antibody caused dose-dependent inhibition of Cl- conductance that had been induced by S-S cross-linking. The antibody did not cause intervesicular aggregation, as determined by measurement of vesicle size. These results show that Cl- conductance, the stimulation and inhibition of which are regulated reversibly by S-S----2SH transformation, is due to native, physiological channels. The antibody also dose dependently inhibited the activities of H,K-ATPase and p-nitrophenyl phosphatase in gastric vesicles, but did not inhibit Na,K-ATPase obtained from dog kidney. Immunoblotting with the antibody of vesicle proteins solubilized in sodium dodecyl sulfate-polyacrylamide gel showed that the antibody binds to a 95-kDa subunit of H,K-ATPase and its dimeric 180-kDa polypeptide. The antibody-binding sites of H,K-ATPase activity and the Cl- channel for the inhibition were present on the external (cytosolic) surface of the transmembraneous ATPase. A gastric antisecretory compound, 2-methyl-8-(phenylmethoxy)imidazo[1,2 alpha] pyridine-3-acetonitrile (SCH 28080), competitively bound to the high affinity site of K+ on the internal (luminal) surface of H,K-ATPase, and its half-maximal inhibitory concentration for H,K-ATPase activity in tight vesicles was 0.2 microM in the presence of valinomycin. SCH 28080 also dose dependently inhibited opening of Cl- channels by S-S cross-linking, the regulatory site being present on the cytosolic side and more internally than the antibody binding site. The half-inhibitory concentration of SCH 28080 was 0.3 microM. The present results with the antibody and SCH 28080 indicate that the Cl- channel is part of the function of H,K-ATPase.  相似文献   

3.
A novel potassium channel was characterized in the droplet membrane of Chara gymnophylla. This channel has a conductance of about 90 pS (in symmetrical 0.15 M KCl), which is lower compared to the 170-pS K+ channel predominant in this preparation. In contrast to the large conductance K+ channel, the novel channel opened with a delay at depolarization and closed at hyperpolarization and did not require cytosolic Ca2+ for its opening. It also showed comparatively weak selectivity for K+ over other monovalent cations, although its cation to anion selectivity was high. Externally or internally applied Cs+ blocked the channel in a voltage-dependent manner, similarly to the 170-pS channel. The sensitivity of the 90-pS channel to external tetraethylammonium chloride (half-blocking concentration approximately 1.5 mM) was 20-fold higher compared to the large conductance channel. With respect to its voltage-gating kinetics, the 90-pS channel was identified as a "slow delayed rectifier."  相似文献   

4.
The patch-clamp technique was used to investigate ionic channels in the apical membrane of rabbit proximal tubule cells in primary culture. Cell-attached recordings revealed the presence of a highly selective K+ channel with a conductance of 130 pS. The channel activity was increased with membrane depolarization. Experiments performed on excised patches showed that the channel activity depended on the free Ca2+ concentration on the cytoplasmic face of the membrane and that decreasing the cytoplasmic pH from 7.2 to 6.0 also decreased the channel activity. In symmetrical 140 mM KCl solutions the channel conductance was 200 pS. The channel was blocked by barium, tetraethylammonium and Leiurus quinquestriatus scorpion venom (from which charybdotoxin is extracted) when applied to the extracellular face of the channel. Barium and quinidine also blocked the channel when applied to the cytoplasmic face of the membrane. Another K+ channel with a conductance of 42 pS in symmetrical KCl solutions was also observed in excised patches. The channel was blocked by barium and apamin, but not by tetraethylammonium applied to the extracellular face of the membrane. Using the whole-cell recording configuration we determined a K+ conductance of 4.96 nS per cell that was blocked by 65% when 10 mM tetraethylammonium was applied to the bathing medium.  相似文献   

5.
An S-S cross-linking reagent, Cu2+-o-phenanthroline, increased the 36Cl-/Cl- exchange rate across the hog gastric vesicle membrane, which contains H,K-ATPase, but did not affect the 86Rb+/Rb+ exchange rate. The results show that closed Cl- conductance can be opened by S-S cross-linking. Gastric vesicles with opened Cl- conductance could take up H+ upon addition of MgATP without prolonged preincubation in a solution containing K+. Preincubation of gastric vesicles with picoprazole, which is a specific inhibitor of H,K-ATPase and binds to 100-kDa polypeptides of the enzyme, dose dependently inhibited opening of the Cl- conductance by Cu2+-o-phenanthroline, indicating that the Cl- conductance is part of the function of the H,K-ATPase. The effect of picoprazole was greater at alkaline pH than at acidic pH. Another H,K-ATPase inhibitor, 2-[2-(3,5-dimethyl-4-methoxy)-pyridylmethylsulfinyl] (5-methoxycarbonyl-6-methyl)-benzimidazole (H compound), had a similar but stronger effect on the Cl- conductance than that of picoprazole. A pungent ingredient of curry, allylisothiocyanate, caused similar pH-dependent inhibition to that of picoprazole. However, another substituted benzimidazole, omeprazole, did not inhibit Cl- conductance. Substituted benzimidazoles, such as picoprazole, H compound, and omeprazole, inhibited the H,K-ATPase activity progressively with a decrease in pH of the medium. This pH dependence was the reverse of that in inhibition of Cl- conductance, suggesting that the inhibitory site of Cl- conductance is different from that of the H,K-ATPase activity and that the conformational states of the two sites change in different ways with change in pH of the medium.  相似文献   

6.
Incorporation of BK Ca2+-activated K+ channels into planar bilayers composed of negatively charged phospholipids such as phosphatidylserine (PS) or phosphatidylinositol (PI) results in a large enhancement of unitary conductance (gch) in comparison to BK channels in bilayers formed from the neutral zwitterionic lipid, phospatidylethanolamine (PE). Enhancement of gch by PS or PI is inversely dependent on KCl concentration, decreasing from 70% at 10 mM KCl to 8% at 1,000 mM KCl. This effect was explained previously by a surface charge hypothesis (Moczydlowski, E., O. Alvarez, C. Vergara, and R. Latorre. 1985. J. Membr. Biol. 83:273-282), which attributed the conductance enhancement to an increase in local K+ concentration near the entryways of the channel. To test this hypothesis, we measured the kinetics of block by external and internal Ba2+, a divalent cation that is expected to respond strongly to changes in surface electrostatics. We observed little or no effect of PS on discrete blocking kinetics by external and internal Ba2+ at 100 mM KCl and only a small enhancement of discrete and fast block by external Ba2+ in PS-containing membranes at 20 mM KCl. Model calculations of effective surface potential sensed by the K+ conduction and Ba2+-blocking reactions using the Gouy-Chapman-Stern theory of lipid surface charge do not lend support to a simple electrostatic mechanism that predicts valence-dependent increase of local cation concentration. The results imply that the conduction pore of the BK channel is electrostatically insulated from the lipid surface, presumably by a lateral distance of separation (>20 A) from the lipid head groups. The lack of effect of PS on apparent association and dissociation rates of Ba2+ suggest that lipid modulation of K+ conductance is preferentially coupled through conformational changes of the selectivity filter region that determine the high K+ flux rate of this channel relative to other cations. We discuss possible mechanisms for the effect of anionic lipids in the context of specific molecular interactions of phospholipids documented for the KcsA bacterial potassium channel and general membrane physical properties proposed to regulate membrane protein conformation via energetics of bilayer stress.  相似文献   

7.
The dependence of active transport of H+ on the presence of anions in synaptic vesicle membranes from rat brain was studied. The H+ transport was measured by monitoring the acidification of the vesicles with a permeant weak base-acridine orange. The fluorescence changes in the latter were proportional to the magnitude of artificially imposed pH gradients (delta pH). The ATP-dependent generation of delta pH was completely dependent on the presence of a permeant anion, was maximal at 150 mM Cl- and was inhibited, when the medium osmolarity was further increased by sucrose or KCl. At 150 mM only Br-, similar to Cl-, behaved as permeant anions, whereas I- was effective only at low (5-20 mM) concentrations. The anions--SCN-, ClO4-, HSO3- and I-(10-20 mM) as well as 4-acetamido-4'-isothiocyanatostilbene-2.2'-disulfonate (K0.5 = 14 microM) blocked the ATP-dependent generation of delta pH observed in the presence of Cl-, while other anions tested (F-, phosphate, bicarbonate, some organic anions) were virtually without effect and did not support the H+ transport. The dependence of the rate and extent of H+ accumulation on Cl- concentration was sigmoidal with a Hill coefficient of 2.8 and a Km value of 85-90 mM. The effects of anions point to the presence in the membrane of synaptic vesicles of an anion (chloride) channel whose conductance can regulate the H+ transport by switching it from an electrogenic to an electroneutral (coupled entry of H+ and Cl-) mode of operation.  相似文献   

8.
R Paliwal  G Costa  J J Diwan 《Biochemistry》1992,31(8):2223-2229
Patch clamp analysis of membranes reconstituted with a fraction isolated from detergent-solubilized mitochondrial membranes by affinity chromatography on immobilized quinine earlier indicated the presence of two classes of ion channels, of about 40- and 140-pS conductance in medium including 150 mM KCl. Now a 57-kDa constituent of the quinine-affinity column eluate has been identified as the 40-pS channel. Protein fractions derived from the quinine-affinity column eluate by preparative isoelectric focusing with a Rotofor cell have been reconstituted into phospholipid vesicle membranes by detergent dialysis, and vesicles have been enlarged for patch clamping by dehydration and rehydration. Voltage clamp analysis has been carried out on excised patches bathed symmetrically in buffered medium containing 150 mM KCl and 100 microM CaCl2. Patches of membrane incorporating the 57-kDa protein exhibit 40-pS conductance transitions. The magnitude of conductance transitions is similar when Na+ replaces K+ in the bathing medium, indicating little selectivity of the 40-pS channel for K+ relative to Na+. Another fraction derived from the quinine-affinity column eluate is found to contain the larger channel, now estimated to have an average conductance of about 130 pS. Patches of control membrane prepared in the same way but without protein exhibit no channel activity.  相似文献   

9.
Activation of Ca2+-dependent K+ conductance has long been postulated to contribute to the cyclical pauses in glucose-induced electrical activity of pancreatic islet B cells. Here we have examined the gating, permeation and blockade by cations of a large-conductance, Ca2+-activated K+ channel in these cells. This channel shares many features with BK (or maxi-K+) Ca2+-activated K+ channels in other cells. (1) Its 'permeability' selectivity sequence is PT1+: PK+: PRb+: PNH4+: PNa+, Li+, Cs+ = 1.3:1.0:0.5:0.17: less than 0.05. Permeant, as well as impermeant, cations reduce channel conductance. (2) Its conductance saturates at 325-350 pS with bath KCl greater than 400 mM (144 mM KCl pipette). (3) It shows asymmetric blockade by tetraethylammonium ion (TEA) and Na+. (4) It is sensitive to Ca2+i over the range 5 nM-100 microM; over the range 50-200 nM, channel activity varies as [Ca2+ free]1-2. (5) It is sensitive to internal pH over the range 6.85-7.35, but the decrease in channel activity seen with reduced pHi may be partially compensated by the increase in free Ca2+ concentration which occurs on acidification of buffered Ca2+/EGTA solutions.  相似文献   

10.
Mg-ATP dependent electrogenic proton transport, monitored with fluorescent acridine orange, 9-aminoacridine, and oxonol V, was investigated in a fraction enriched with potassium transporting goblet cell apical membranes of Manduca sexta larval midgut. Proton transport and the ATPase activity from the goblet cell apical membrane exhibited similar substrate specificity and inhibitor sensitivity. ATP and GTP were far better substrates than UTP, CTP, ADP, and AMP. Azide and vanadate did not inhibit proton transport, whereas 100 microM N,N'-dicyclohexylcarbodiimide and 30 microM N-ethylmaleimide were inhibitors. The pH gradient generated by ATP and limiting its hydrolysis was 2-3 pH units. Unlike the ATPase activity, proton transport was not stimulated by KCl. In the presence of 20 mM KCl, a proton gradient could not be developed or was dissipated. Monovalent cations counteracted the proton gradient in an order of efficacy like that for stimulation of the membrane-bound ATPase activity: K+ = Rb+ much greater than Li+ greater than Na+ greater than choline (chloride salts). Like proton transport, the generation of an ATP dependent and azide- and vanadate-insensitive membrane potential (vesicle interior positive) was prevented largely by 100 microM N,N'-dicyclohexylcarbodiimide and 30 microM N-ethylmaleimide. Unlike proton transport, the membrane potential was not affected by 20 mM KCl. In the presence of 150 mM choline chloride, the generation of a membrane potential was suppressed, whereas the pH gradient increased 40%, indicating an anion conductance in the vesicle membrane. Altogether, the results led to the following new hypothesis of electrogenic potassium transport in the lepidopteran midgut. A vacuolar-type electrogenic ATPase pumps protons across the apical membrane of the goblet cell, thus energizing electroneutral proton/potassium antiport. The result is a net active and electrogenic potassium flux.  相似文献   

11.
The present study concerns the involvement of the ceramide produced through sphingomyelinase (SMase)-mediated catalysis in airway anion secretion of Calu-3 cells. Short-circuit current (Isc) measurement revealed that isoproterenol (ISO, 0.1 microM)-induced anion secretion was prevented by pretreatment with SMase (0.3 U/ml, for 30 min) from the basolateral but not the apical side, although basal and 1-ethyl-2-benzimidazolinone (1-EBIO, a Ca2+-activated K+ channel opener)-induced Isc were unaffected. The effects of SMase were reproduced in responses to forskolin (20 microM) or 8-bromo-cAMP (2 mM). C2-ceramide, a cell-permeable analog, also repressed the 8-bromo-cAMP-induced responses. Nystatin permeabilization studies confirmed that the SMase- and C2-ceramide-induced repressions were due to hindrance of augmentation of cystic fibrosis transmembrane conductance regulator (CFTR)-mediated conductance across the apical membrane. Further, SMase failed to influence K+ conductance across the basolateral membrane. These results suggest that the ceramide originating from basolateral sphingomyelin acts on activated CFTR from the cytosolic side, hindering anion secretion.  相似文献   

12.
Single K+ channels were studied using the patch-clamp method. A potential-dependent K+ channel of large conductance (about 100 pS at 100 mM of KCl on both membrane sides) was detected. Some properties of the channel (current-voltage relations, kinetic parameters, etc.) are presented. The channel was found to have about 16 resolvable quantized conductance substates. The data are confirmed by spontaneous channel degradation, i.e., spontaneous splitting of the channel conductance into independent conductance oligomers. Some properties of the conductance oligomers of different order are described. The degree of potential dependency of the conductance oligomer parameters is a function of potential dependency. The data obtained are in agreement with a hypothesis that the channels studied are clusters (aggregates) of elementary channel subunits.  相似文献   

13.
Since secretion of electrolytes may be regulated by membrane potential difference, ion channels were studied using patchclamp technique. We have identified, in cell-attached configuration, inward-rectifying channels: the zero-current potential corresponded to the K+ equilibrium potential calculated from intracellular K+ activity. Using inside-out configuration and symmetric 145 mM KCl salines, i/V curve was linear, channel conductance was about 170 pS and the reversal potential 0 mV. The channels were selective for K+ over Na+, N-methylglucamine and anions and were activated by membrane depolarization.  相似文献   

14.
We have investigated the basic properties of a predominantly anion-selective channel derived from highly purified human platelet surface membrane. Single channels have been reconstituted into planar phospholipid bilayers by fusion of membrane vesicles and recorded under voltage-clamp conditions. The channel is found to have the following properties: (i) Channel activity occurs in bursts of openings separated by long closed periods. (ii) The current-voltage relationship is nonlinear. Channel current is seen to rectify, with less current flowing at positive than at negative voltages. Rectification may be due to asymmetric block by HEPES/Tris buffers. In 450 mM KCl, 5 mM HEPES/Tris, pH 7.2, the single channel conductance at -40 mV is approximately 160 pS and at +40 mV is approximately 90 pS. (iii) The conductance-concentration relationship follows a simple saturation curve. Half maximal conductance is achieved at a concentration of approximately 1000 mM KCl, and the curve saturates at a conductance of approximately 500 pS. (iv) Reversal potentials interpreted in terms of the Goldman-Hodgkin-Katz equation indicate a Cl: K permeability ratio of 4:1. (v) The channel accepts all of the halides as well as a number of other anions. The following sequence of relative anion permeabilities (in the presence of K+) is obtained: F- less than acetate- less than gluconate- less than Cl- less than Br- less than I- less than NO3- less tha SCN-.(vi) Cations as large as TEA+ are permeant. (vii) Current through the channel is blocked in the presence of DIDS, SITS and ATP, but not by Zn2+.  相似文献   

15.
The effects of glucose, diazoxide, K+, and tolbutamide on the activity of K+ channels, membrane potential, and cytoplasmic free Ca2+ concentration were investigated in beta-cells from the Uppsala colony of obese hyperglycemic mice. With [K+]e = [K+]i = 146 mM, it was demonstrated that the dominating channel at the resting potential is a K+ channel with a single-channel conductance of about 65 picosiemens and a reversal potential of about +70 mV (pipette potential). This channel is characterized by complex kinetics with openings grouped in bursts. The channel was completely inhibited by 20 mM glucose in intact cells or by intracellularly applied Mg-ATP (1 mM). The number of active channels was markedly reduced already by 5 mM glucose. However, the single channel current of the channels remaining active was unaffected, indicating no major depolarization. To evoke a substantial depolarization of the membrane and thereby action potentials, a total block in channel activity was necessary. This could be achieved either by increasing the concentration of glucose to 20 mM or by combining 5 mM glucose with 100 microM tolbutamide. In both cases, the effect was counteracted by the hyperglycemic sulfonamide diazoxide. The effects on single channel activity were paralleled by changes in membrane potential and cytoplasmic free Ca2+ concentration, also when the latter measurements were performed at room temperature. The transient increase in the number of active channels and the resulting hyperpolarization observed after raising the glucose concentration to 20 mM probably reflected a drop in cytoplasmic ATP concentration. It is suggested that ATP works as a key regulator of the beta-cell membrane potential and thereby the opening of voltage-activated Ca2+ channels.  相似文献   

16.
In basolateral membrane vesicles (BLMV) isolated from rat parotid glands, the initial rate of ATP-dependent Ca2+ transport, in the presence of KCl, was approx. 2-fold higher than that obtained with mannitol, sucrose or N-methyl-D-glucamine (NMDG)-gluconate. Only NH4+, Rb+, or Br- could effectively substitute for K+ or Cl-, respectively. This KCl activation was concentration dependent, with maximal response by 50 mM KCl. An inwardly directed KCl gradient up to 50 mM KCl had no effect on Ca2+ transport, while equilibration of the vesicles with KCl (greater than 100 mM) increased transport 15-20%. In presence of Cl-, 86Rb+ uptake was 2.5-fold greater than in the presence of gluconate. 0.5 mM furosemide inhibited 86Rb+ flux by approx. 60% in a Cl- medium and by approx. 20% in a gluconate medium. Furosemide also inhibited KCl activation of Ca2+ transport with half maximal inhibition either at 0.4 mM or 0.05 mM, depending on whether 45Ca2+ transport was measured with KCl (150 mM) equilibrium or KCl (150 mM) gradient. In a mannitol containing assay medium, potassium gluconate loaded vesicles had a higher (approx. 25%) rate of Ca2+ transport than mannitol loaded vesicles. Addition of valinomycin (5 microM) to potassium gluconate loaded vesicles further stimulated (approx. 30%) the Ca2+ transport rate. These results suggest that during ATP dependent Ca2+ transport in parotid BLMV, K+ can be recycled by the concerted activities of a K+ and Cl- coupled flux and a K+ conductance.  相似文献   

17.
Ion channels were incorporated into planar lipid bilayers following fusion of vesicles from the membrane of an insulin-secreting beta-cell line, HIT T15. The channel was completely blocked by 0.5 mM ATP. The channel retained the same ATP-dependence, voltage-sensitivity and single channel conductance as the ATP-regulated K+ channel that found in isolated membrane patches.  相似文献   

18.
Using the patch-clamp technique, we have identified large-conductance (maxi) K+ channels in the apical membrane of Necturus gallbladder epithelium, and in dissociated gallbladder epithelial cells. These channels are more than tenfold selective for K+ over Na+, and exhibit unitary conductance of approximately 200 pS in symmetric 100 mM KCl. They are activated by elevation of internal Ca2+ levels and membrane depolarization. The properties of these channels could account for the previously observed voltage and Ca2+ sensitivities of the macroscopic apical membrane conductance (Ga). Ga was determined as a function of apical membrane voltage, using intracellular microelectrode techniques. Its value was 180 microS/cm2 at the control membrane voltage of -68 mV, and increased steeply with membrane depolarization, reaching 650 microS/cm2 at -25 mV. We have related maxi K+ channel properties and Ga quantitatively, relying on the premise that at any apical membrane voltage Ga comprises a leakage conductance and a conductance due to maxi K+ channels. Comparison between Ga and maxi K+ channels reveals that the latter are present at a surface density of 0.09/microns 2, are open approximately 15% of the time under control conditions, and account for 17% of control Ga. Depolarizing the apical membrane voltage leads to a steep increase in channel steady-state open probability. When correlated with patch-clamp studies examining the Ca2+ and voltage dependencies of single maxi K+ channels, results from intracellular microelectrode experiments indicate that maxi K+ channel activity in situ is higher than predicted from the measured apical membrane voltage and estimated bulk cytosolic Ca2+ activity. Mechanisms that could account for this finding are proposed.  相似文献   

19.
Studies on K+ permeability of rat gastric microsomes   总被引:2,自引:0,他引:2  
A population of gastric membrane vesicles of high K+ permeability and of lower density than endoplasmic tubulovesicles containing (H+-K+)-ATPase was detected in gastric mucosal microsomes from the rat fasted overnight. The K+-transport activity as measured with 86RbCl uptake had a Km for Rb+ of 0.58 +/- 0.11 mM and a Vmax of 13.7 +/- 1.9 nmol/min X mg of protein. The 86Rb uptake was reduced by 40% upon substituting Cl- with SO2-4 and inhibited noncompetitively by ATP and vanadate with a Ki of 3 and 30 microM, respectively; vanadate also inhibited rat gastric (H+-K+)-ATPase but with a Ki of 0.03 microM. Carbachol or histamine stimulation decreased the population of the K+-permeable light membrane vesicles, at the same time increased K+-transport activity in the heavy, presumably apical membranes of gastric parietal cells, and enabled the heavy microsomes to accumulate H+ ions in the presence of ATP and KCl without valinomycin. The secretagogue-induced shift of K+ permeability was blocked by cimetidine, a H2-receptor antagonist. Four characteristics of the K+ permeability as measured with 86RbCl were common in the resting light and the carbachol-stimulated heavy microsomes; (a) Km for +Rb, (b) anion sensitivity (Cl- greater than SO2-4), (c) potency of various divalent cations (Hg2+, Cu2+, Cd2+, and Zn2+) to inhibit Rb+ uptake, and (d) inhibitory effect of ATP, although the nucleotide sensitivity was latent in the stimulated heavy microsomes. The Vmax for 86RbCl uptake was about 10 times greater in the resting light than the stimulated heavy microsomes. These observations led us to propose that secretagogue stimulation induces the insertion of not only the tubulovesicles containing (H+-K+)-ATPase, but also the light membrane vesicles containing KCl transporter into the heavy apical membranes of gastric parietal cells.  相似文献   

20.
The "hypothetical protein" AQ_1862 was isolated from the membrane fraction of Aquifex aeolicus and identified as the major porin. In experiments with one conducting unit (molecule) a conductance of 1.4 nS was observed in 0.1 M KCl at pH 7.5. This stable (basic) conductance was superimposed by conductance fluctuations of approximately 0.25 nS. Because both events were always observed simultaneously, it is suggested that they are caused by the same molecular entity. Nonetheless they show very different properties. The basic conductance is anion selective at neutral pH with a conductance sequence Cl- approximately Br- approximately NO3->F->gluconate approximately acetate approximately propionate and does not saturate up to 0.5 M KCl. At alkaline pH and in the presence of large anions, it becomes unselective and the conductance saturates at low concentrations (Km approximately 20 mM). In contrast the fluctuating component is mainly cation selective with a conductance sequence K+ approximately Rb+>NH4+>Na+ approximately Li+ approximately Cs+. It saturates at low salt concentrations (Km approximately 15 mM) and is not affected by pH. In view of the diverging properties of both conductance components, it seems appropriate to assume that AQ_1862 has two different conducting pathways rather than one with two different open states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号