首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of inhibition of the synthesis of protein, mRNA or rRNA on the progression of the cell cycle have been analyzed in cultures of Catharanthus roseus in which cells were induced to divide in synchrony by the double phosphate starvation method. The partial inhibition of protein synthesis at the G1 phase by anisoniycio or cycloheximide caused the arrest of cells in the G1 phase or delayed the entry of cells into the S phase. When protein synthesis was partially inhibited at the S phase, cell division occurred to about the same extent as in the control. When asynchronously dividing cells were treated with cycloheximide, cells accumulated in the G1 phase, as shown by flow-cytometric analysis. The partial inhibition of mRNA synthesis by α-amanitin at the G1 phase caused the arrest of cells in the G1 phase, although partial inhibition of mRNA synthesis at the S phase had little effect on cell division. In the case of inhibition of synthesis of rRNA by actinomycin D at the G1 phase, initiation of DNA synthesis was observed, but no subsequent DNA synthesis or the division of cells occurred. However, the addition of actinomycin D during the S phase had no effect on cell division. These results suggest that specific protein(s), required for the progression of the cell cycle, are synthesized in the G1 phase, and that the mRNA(s) that encode these proteins are also synthesized at the G1 phase.  相似文献   

2.
The G2 block is a major response of cells to DNA damage and seem to be induced independently of p53 status. It is thought that the G2 block has a protective function and allows cells to repair their DNA. The molecular events involved in the formation of the G2 block therefore are of great interest. We have used pentoxifylline, a potent G2 delay abrogator, to study the expression of an essential component of the mitosis promoting complex (MPF), cyclin B1. Cyclin B1/G2 ratios are used to show that irradiation induces a decrease in cyclin B1 expression and that pentoxifylline restores cyclin B1 expression to control level. This confirms that suppression of cyclin B1 plays a role in the formation of the G2 cell cycle delay, and that elevating cyclin B1 expression is part of the mechanism of action of pentoxifylline on G2 blocked cells.  相似文献   

3.
Abstract. The transit times of Chinese hamster ovary cells through the phases of their cell cycle were measured using dual parameter flow cytometry to measure DNA content and the presence of monoclonal antibodies to bromodeoxyuridine. Up to four separate populations can be accurately measured: unlabelled cells in G2+ M; labelled cells that have not yet divided; labelled cells that have already divided; and the unlabelled cells that were originally in G1 plus the cells that were originally in G2+ M and have since divided. The fractions of cells in these populations can be easily followed in time and the usual kinetic properties can be estimated from these fractions, or combinations thereof, including the times through G1, S, G2+ M and the cycle time. We present equations for analysing this type of data and comment on which equations are most appropriate for measuring specific kinetic properties of the cells.  相似文献   

4.
Actinomycin D (0.5 μg/ml) did not prevent M stage cells from entering G1 stage, but blocked their progress from G1 to S stage. The position of the block was approximately 1.4 hr before S stage or just after the beginning of G1 stage. Actinomycin D in this concentration also significantly depressed uridine-3H uptake into G1 stage cells, but did not suppress leucine-3H uptake by M and G1 cells. This suggests that some proteins may be synthesized in M and G1 stage cells by messenger RNA left over from the previous cell cycle. However, entry of G1 cells into S stage would require synthesis of new messenger RNA near the beginning of G1 stage. Puromycin (10 μg/ml) did not prevent M cells from entering G1 stage, but blocked their progress from G1 to S stage. The site of blockage was about 0.7 hr before S stage or in the first two-third of G1 stage. This might be the site where the cells synthesize new G1 proteins necessary for entry to S stage.
Comparison of sensitivities of G1 and G2 stages to the two antibiotics reveals that the puromycin sensitivity of G1 cells was similar to that of G2 cells, but the actinomycin D sensitivity of G1 was greater than that of G2 cells.  相似文献   

5.
Abstract. We have previously found that DNA replication was affected within one cell cycle after seeding Chinese hamster ovary (CHO) cells in the presence of the polyamine biosynthesis inhibitor 2-difluoromethylornithine (DFMO). We could, however, not rule out if this was due to an effect on the G1/S transition and/or on DNA synthesis elongation. In the present paper, we use a bromodeoxyuridine-flow cytometric method to more specifically study the G1/S transition, the S phase length, and the progression of cells from S phase through G2+ M and into G1, after seeding plateau phase CHO cells at low density in the absence or presence of 5 mM DFMO. We report here that DFMO-induced polyamine depletion increased the length of the S phase within one cell cycle after seeding of CHO cells in the presence of the inhibitor. No effect on the G1/S transition was observed until 2 days after seeding, suggesting that a DFMO-induced lengthening of the G1 phase occurred later than the effect on S phase progression. These results imply that the G2+ M phase was not prolonged until 2 days after seeding CHO cells in the presence of DFMO.  相似文献   

6.
The progression of cells from G2 into mitosis is mainly controlled by formation of the cyclin B1/p34cdc2 complex. The behaviour of this complex in the irradiation-induced G2 cell cycle delay is still unclear. A prior study demonstrated that the expression of the cyclin B1 protein is reduced by irradiation, and restored to control levels by the methylxanthine drug pentoxifylline, which is a potent G2 block abrogator. The present study shows that irradiation, and 2 mM pentoxifylline affect the expression of the cyclin-dependent kinase p34cdc2 in HeLa cells. Irradiation induces p34cdc2 levels to increase and cyclin B1 levels to decrease. Addition of pentoxifylline at the G2 maximum reverses these trends. This is also evident from the cyclin B1/p34cdc2 ratios which decline after irradiation and are rapidly restored to control levels upon addition of pentoxifylline. It is concluded that cyclin B1 and p34cdc2 protein expression are important events and act in concert to control the irradiation induced G2 block. Analysis of cyclin B1 expression in whole cells and in isolated nuclei furthermore show that cyclin B1 is translocated from the nucleus into the cytoplasm when the G2 block is abrogated by pentoxifylline.  相似文献   

7.
Abstract. Differentiation of mammalian cells is accompanied by reduced rates of proliferation and an exit from the cell cycle. Human leukemic cells HL60 present a widely used model of neoplastic cell differentiation, and acquire the monocytic phenotype when exposed to analogs of vitamin D3 (VD3). The maturation process is accompanied by two blocks in the cell cycle: an arrest in the G1/G0 phase, and a recently described G2+ M block. In this study we have analyzed the traverse of the cell cycle phases of the well-differentiating HL60-G cells exposed to one of ten analogs of VD3, and compared the cell cycle effects of each compound with its potency as a differentiation-inducing agent. We found that in general there was a good correlation between the effects of these compounds on the cell cycle and on differentiation, but the best cell cycle predictor of differentiation potency was the extent of accumulation of the cells in the G2 compartment. All analogs induced a marked decrease in the mitotic index, and polynucleation of HL60 cells was produced, especially by compounds which were effective as inducers of differentiation. Time course studies showed that induction of differentiation was accompanied by a transient increase of the proportion of cells in the G2+ M compartment, but preceded the G1 to S, and the G2 compartment blocks. These studies indicate that complex changes in the cell cycle traverse accompany, but do not precede, the acquisition of the monocytic phenotype by HL60 cells.  相似文献   

8.
Abstract. The physiologically active form of vitamin D3, 1,25-dihydroxy-vitamin D3, (1,25(OH)2, D3), induces differentiation of several types of myeloid leukaemia cells. The acquisition of monocyte-like phenotype is accompanied by slower progression through the cell cycle, and G1, block has been reported to be the basis of this effect. It is shown here that human promyelocytic leukaemia HL60 cells treated with analogues of vitamin D3, which are potent inducers of monocytic differentiation, have an additional cell cycle block. Exposure to 10-7m 1,25(OH)2, D3, or 1,25-(OH)2,-16-ene-D3 resulted in monocytic differentiation and the expected G1, block evident at approximately 48 h in a rapidly differentiating variant of HL60 cells (HL60-G), and at 96 h in the more slowly differentiating HL60-240 cells. In addition, a G2,+M block was noted at approximately 72 h in HL60-G and HL60-240 cells. Exposure to vitamin D3, analogues also markedly increased the number of dikaryons, suggesting that cytokinesis was impaired more than karyokinesis. Treatment with a third analogue 25-hydroxy-16,23-diene-D3, produced little differentiation and had minimal effects on the cell cycle parameters. These findings indicate that vitamin D3, analogues regulate cell proliferation by control of the transition of G1, and G2,+M phases, reminiscent of the cdc2/CDK2 type of cell cycle control.  相似文献   

9.
Synchronization of mammalian cells by starvation-refeeding or by inhibition-release are among the most commonly used techniques for division cycle analysis. An alternative analysis—in the form of a Gedanken or thought experiment—is presented, casting doubt on the utility of this synchronization method. Arresting cell growth produces a culture where all cells contain a G1 amount of DNA. However, these cells are not arrested at a particular point in the G1-phase. Analysis of 'G1 arrested cells' suggests that, upon resumption of growth, the cells are not synchronized.  相似文献   

10.
Abstract. Multivariate analysis of the expression of cyclin proteins and DNA content has opened new possibilities for the study of the cell cycle. By virtue of their cell cycle phase specificity, the expression of cyclins may serve, in addition to DNA content, as another marker of a cell's position in the cycle, and provide information about the proliferative potential of cell populations. Several applications of the methodology based on bivariate analysis of DNA content v . expression of B, E and D type cyclins are reviewed: 1 expression of cyclins by individual cells during their progression through the cycle can be studied, using exponentially growing cells without the necessity of cell synchronization or other perturbations of the cycle; 2 cells having the same DNA content but residing in different phases of the cycle (e.g. G2 diploid v. G1 tetraploid) can be distinguished; 3 cell transition from G0 to G1 and progression through G1 (e.g. mitogen stimulated lymphocytes) can be assayed; 4 the population of proliferating cells can be distinguished from noncycling cells based on dual cell labelling with a G1 and G2 cyclin antibody; 5 cyclin restriction points can serve as additional cell cycle landmarks to map the point of action of antitumour drugs; 6 unscheduled expression of cyclins (e.g. the presence of cyclin B1 during G1 and S) can be detected in several tumour transformed cell lines, possibly indicating disregulation of the machmery of cell cycle progression. The last finding 6 is of special importance, because such disregulation may be of prognostic consequence in human tumours.  相似文献   

11.
SYNOPSIS. Tritiated thymidine and autoradiographic methods were used to investigate the cyclic DNA synthesis in the culture form of Trypanosoma mega. It was found that the mean generation time of 18.9 hours comprises four successive periods: G1, S, G2 and D. The interphase lasts through the first three. S is the phase of DNA synthesis of both the nucleus and the kinetonucleus (kinetoplast). The cell divides during D, beginning with the division of the kinetonucleus. The respective durations of G1, S, G2 and D are 8.5, 7, 2 and 1.4 hours. The close time relationship between the two DNA synthesizing bodies is considered as bringing support to the old theory of the Binucleates and the possible genetic function of the kinetonucleus is suggested.  相似文献   

12.
Abstract.   Objectives : This study is to evaluate the effect of separase depletion on cell cycle progression of irradiated and non-irradiated cells through the G2/M phases and consecutive cell survival. Materials and methods : Separase was depleted with siRNA in two human non-small cell lung carcinoma (NSCLC) cell lines. Cell cycle progression, mitotic fraction, DNA repair, apoptotic and clonogenic cell death were determined. Results : By depletion of endogenous separase with siRNA in NSCLCs, we showed that separase affects progression through the G2 phase. In non-irradiated exponentially growing cells, separase depletion led to an increased G2 accumulation from 17.2% to 29.1% in H460 and from 15.7% to 30.9% in A549 cells and a decrease in mitotic cells. Depletion of separase significantly ( P <  0.01) increased the fraction of radiation-induced G2 arrested cells 30–56 h after irradiation and led to decrease in the mitotic fraction. This was associated with increased double-strand break repair as measured by γ-H2AX foci kinetics in H460 cells and to a lesser extent in A549 cells. In addition, a decrease in the expression of mitotic linked cell death after irradiation was found. Conclusions : These results indicate that separase has additional targets involved in regulation of G2 to M progression after DNA damage. Prolonged G2 phase arrest in the absence of separase has consequences on repair of damaged DNA and cell death.  相似文献   

13.
Repeated exposure of trypanosomes in vitro or in vivo to low concentrations of the methylating agent 1,2-bis(methylsulfonyl)-1-methylhydrazine induces a series of moderately synchronous morphological and biochemical changes. Cell division halts and the long-slender bloodstream forms transform to short-stumpy forms via larger intermediate-stage cells which contain approximately double the normal G2 content of DNA. In common with naturally occurring short-stumpy trypanosomes, drug-induced short-stumpy forms do not infect rodents and when transferred to Cunningham's medium, transform to and replicate as procylics. Furthermore, these short-stumpy forms exhibit α-ketoglutarate supported motility and oxygen consumption, acquire the ability to reduce nitroblue tetrazolium (NADH diaphorase positivity) and appear to be in the G1 or G0 stage of the cell cycle based upon DNA content.  相似文献   

14.
Abstract. Exposure of Farage, a human B-cell lymphoma line, to IL-4 for 3–11 days led to inhibition of tritiated thymidine ([3H]dT) uptake by the cells. Study of the incorporation of 5-bromodeoxyuridine by Farage cells showed that IL-4 reduced significantly the number of cells in the S phase of the cell cycle and increased the proportion of cells in the G1 phase. Limiting dilution analysis of proliferation demonstrated that IL-4 decreased the frequency of clone-forming cells by 40%. IL-4 did not reduce the viability of Farage cells. On the contrary, IL-4 diminished the spontaneous death of Farage cells in culture, as determined by pulse chase analysis of cells which were labelled with [3H]dT. Moreover, the pre-treatment of Farage cells with IL-4 prevented their death induced by exposure to a high dose of staurosporine. IL-4 abrogated the staurosporine-induced arrest of cells in the G2+ M phase and replaced it by accumulation of cells in the G1 phase. IL-4 protected Farage cells from the radioactive suicide caused by the uptake of [3H]dT by dividing cells. The cytokine failed to prevent the damage to Farage cells exerted by mitomycin C, which affected cellular DNA regardless of the phase of the cell cycle. The data obtained showed that IL-4 inhibited the division of B cells by arresting their progression through the early stages of the cell cycle. This inhibition of the cell efflux from G1 phase plays an important role in the protection against cell death during further stages of the cell cycle.  相似文献   

15.
Single-celled protonemata of the fern Adiantum capillus-veneris, kept under continuous red light, grew with a very low rate of cell division, and the cell cycle was arrested in the early G1 phase. Cell division was induced by transferring the protonemata to the dark after various light treatments, and the duration of component phases in the cell cycle was determined by a continuous-labelling technique with 3H-thymidine. Blue light irradiation greatly reduced the duration of the G1 phase but did not affect that of other phases. The greater the fluence of blue light, the shorter was the duration of G1 phase was observed. In contrast, a brief exposure of red-light-grown protonemata to far-red light given immediately before the dark incubation showed no effect on the duration of G1 S and M phases but significantly extended that of the G2 phase. The effect of far-red light on the G2 phase was reversed by red light, and the effects of red and far-red light were repeatedly reversible. The progression in the M phase was shown by means of a time-lapse video system to be not at all influenced by any pre-irradiation described above.  相似文献   

16.
Abstract Stationary-phase cells of Cryptococcus neoformans displayed two morphological characteristics: virtually all the cells were unbudded even in the early stationary phase and even when grown in rich media, and average cell size increased from that of exponential-phase cells. DNA contents for small and large stationary-phase cells were determined by quantitative fluorescence microscopy after DNA staining with propidium iodide or DAPI. Small cells contained G, DNA, whereas large unbudded cells had either a G2 or G1 DNA content, indicating that Cr. neoformans can enter into the stationary phase from either the G1 or G2 period.  相似文献   

17.
During seed maturation, cells from embryonic tissues stop division at different phases of the cell cycle. In maize, neither these phases nor the effect of exogenous auxin on them are known. Disinfected whole maize ( Zea mays L. Mexican commercial hybrid H30) seeds or sectioned embryonic axes were incubated in Murashige and Skoog medium, with or without 2-(2-methyl-4-chlorophenoxy)propionic acid (MCPP), a synthetic auxin. For some in vitro experiments, radioactive [3H]-thymidine was also added. After the stated incubation period, meristems of mesocotyl, primary and seminal roots from embryonic axes were dissected, fixed, and analyzed under a microscope. The percentage of mitotic indices was recorded. In the labeling experiments, labeled and non-labeled percentage of mitotic figures (MI %) were determined. It was found that cell division is a programmed event in the meristematic tissues of maize embryonic axes. Populations of cells entering cell division were obseved during the germination process. The mesocotyl was the first tissue to divide, followed by seminal and primary roots.
Meristematic cells from dry embryos are arrested during the G2 and G1 phases of the cell cycle. MCPP has a differential effect, stimulating G2 cells to enter cell division. It is concluded that MCPP might regulate the cell cycle at specific points.  相似文献   

18.
Abstract: Rat glioma mouse neuroblastoma hybrid neurotumor cells (NG108-15), synchronized by amino acid deprivation, showed a cell-cycle-dependent peak of activity of a ganglioside N-acetylgalactosaminyl transferase 14-24 h following release from the cell cycle block (S/G2 phase). Maximal expression of two typical lysosomal hydrolases, N-acetyl-β-hexosaminidase and β-galactosidase, occurred between 18 and 21 h following release (S phase), declining to G1 phase levels during the peak of N-acetylgalactosamine (GalNAc) transferase activity. In addition, glycosyltransferase activity in G2 phase cells showed an increase in apparent Vmax (suggesting the presence of more enzyme/mg of cell protein) and apparent binding affinity for uridine diphosphate N-acetylgalactosamine (UDP-GalNAc) (32 versus 14 M) when compared to transferase activity in the G1 phase. However, the opioid peptide enkephalin [D-Ala2, o-Leu5], which inhibits ganglioside GalNAc transferase activity in unsynchronized NG108-15 cultures, was much more inhibitory in whole cells 8 h after release from the cell cycle block (G1 phase) than in cells 20 h after release (G, phase), with 50% inhibition occurring at 2 ± 10-9M and 2 ± 10-7M, respectively. These results suggest that the GalNAc transferase activity is regulated in more than one way during the cell cycle, since both Vmax and Km changes are observed, and that the cyclic AMP-dependent mechanism by which opiates reduce transferase activity is receptor mediated and cell cycle dependent.  相似文献   

19.
Experiments in mice on the fraction of haemopoietic stem cells in S-phase after irradiation indicated that a large fraction of the cells resting in G0 will enter S-phase after a very short interval of time.
After excluding alternative explanations it must be concluded that cells in G0 have completed all preparations for going into S-phase or, in other words, that the localization of these G0 cells in relation to other phases of the cell cycle must be between G1 and S-phase.  相似文献   

20.
Influence of denervation on the regeneration of Pleurodele limbs   总被引:2,自引:0,他引:2  
Abstract. A cytophotometric study of Feulgen-stained mesenchymal cell nuclei from regeneration blastemas of both innervated and denervated limbs over the 1st 7 days following the midbud stage showed a diminution of the percentage of cells in the S + G2 phases and a corresponding augmentation of the percentage of cells in the G0+ G1 phases. This change, which was temporally correlated with the redifferentiation of the innervated blastemas, was greater in denervated blastemas, even though they do not redifferentiate. From these results, it is concluded that the denervation of midbud blastemas brings about either an extension of the G1 phase or an exiting from the cell cycle to G1 (G0–1), or both phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号