首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 461 毫秒
1.
Native human adult hemoglobin (Hb A) has mostly normal orientation of heme, whereas recombinant Hb A (rHb A) expressed in E. coli contains both normal and reversed orientations of heme. Hb A with the normal heme exhibits positive circular dichroism (CD) bands at both the Soret and 260‐nm regions, while rHb A with the reversed heme shows a negative Soret and decreased 260‐nm CD bands. In order to examine involvement of the proximal histidine (His F8) of either α or β subunits in determining the heme orientation, we prepared two cavity mutant Hbs, rHb(αH87G) and rHb(βH92G), with substitution of glycine for His F8 in the presence of imidazole. CD spectra of both cavity mutant Hbs did not show a negative Soret band, but instead exhibited positive bands with strong intensity at the both Soret and 260‐nm regions, suggesting that the reversed heme scarcely exists in the cavity mutant Hbs. We confirmed by 1H NMR and resonance Raman (RR) spectroscopies that the cavity mutant Hbs have mainly the normal heme orientation in both the mutated and native subunits. These results indicate that the heme Fe‐His F8 linkage in both α and β subunits influences the heme orientation, and that the heme orientation of one type of subunit is related to the heme orientation of the complementary subunits to be the same. The present study showed that CD and RR spectroscopies also provided powerful tools for the examination of the heme rotational disorder of Hb A, in addition to the usual 1H NMR technique. Chirality 28:585–592, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

2.
Three recombinant mutant hemoglobins (rHbs) of human normal adult hemoglobin (Hb A), rHb (alphaT67V), rHb (betaS72A), and rHb (alphaT67V, betaS72A), have been constructed to test the role of the tertiary intra-subunit H-bonds between alpha67T and alpha14W and between beta72S and beta15W in the cooperative oxygenation of Hb A. Oxygen-binding studies in 0.1 M sodium phosphate buffer at 29 degrees C show that rHb (alphaT67V), rHb (betaS72A), and rHb (alphaT67V, betaS72A) exhibit oxygen-binding properties similar to those of Hb A. The binding of oxygen to these rHbs is highly cooperative, with a Hill coefficient of approximately 2.8, compared to approximately 3.1 for Hb A. Proton nuclear magnetic resonance (NMR) studies show that rHb (alphaT67V), rHb (betaS72A), rHb (alphaT67V, betaS72A), and Hb A have similar quaternary structures in the alpha(1)beta(2) subunit interfaces. In particular, the inter-subunit H-bonds between alpha42Tyr and beta99Asp and between beta37Trp and alpha94Asp are maintained in the mutants in the deoxy form. There are slight perturbations in the distal heme pocket region of the alpha- and beta-chains in the mutants. A comparison of the exchangeable 1H resonances of Hb A with those of these three rHbs suggests that alpha67T and beta72S are H-bonded to alpha14W and beta15W, respectively, in the CO and deoxy forms of Hb A. The absence of significant free energy changes for the oxygenation process of these three rHbs compared to those of Hb A, even though the inter-helical H-bonds are abolished, indicates that these two sets of H-bonds are of comparable strength in the ligated and unligated forms of Hb A. Thus, the mutations at alphaT67V and betaS72A do not affect the overall energetics of the oxygenation process. The preserved cooperativity in the binding of oxygen to these three mutants also implies that there are multiple interactions involved in the oxygenation process of Hb A.  相似文献   

3.
Four recombinant mutants of human fetal hemoglobin [Hb F (alpha2gamma2)] with amino acid substitutions at the position 43 of the gamma-chain, rHb (gammaD43L), rHb (gammaD43E), rHb (gammaD43W), and rHb (gammaD43R), have been expressed in our Escherichia coli expression system and used to investigate their inhibitory effect on the polymerization of deoxygenated sickle cell hemoglobin (Hb S). Oxygen-binding studies show that rHb (gammaD43E), rHb (gammaD43W), and rHb (gammaD43R) exhibit higher oxygen affinity than human normal adult hemoglobin (Hb A), Hb F, or rHb (gammaD43L), and all four rHbs are cooperative in binding O2. Proton nuclear magnetic resonance (NMR) studies of these four rHbs indicate that the quaternary and tertiary structures around the heme pockets are similar to those of Hb F in both deoxy (T) and liganded (R) states. Solution light-scattering experiments indicate that these mutants remain mostly tetrameric in the liganded (R) state. In equimolar mixtures of Hb S and each of the four rHb mutants (gammaD43L, gammaD43E, gammaD43R, and gammaD43W), the solubility (Csat) of each of the pairs of Hbs is higher than that of a similar mixture of Hb S and Hb A, as measured by dextran-Csat experiments. Furthermore, the Csat values for Hb S/rHb (gammaD43L), Hb S/rHb (gammaD43E), and Hb S/rHb (gammaD43R) mixtures are substantially higher than that for Hb S/Hb F. The results suggest that these three mutants of Hb F are more effective than Hb F in inhibiting the polymerization of deoxy-Hb S in equimolar mixtures.  相似文献   

4.
Cheng Y  Shen TJ  Simplaceanu V  Ho C 《Biochemistry》2002,41(39):11901-11913
To investigate the roles of beta93 cysteine in human normal adult hemoglobin (Hb A), we have constructed four recombinant mutant hemoglobins (rHbs), rHb (betaC93G), rHb (betaC93A), rHb (betaC93M), and rHb (betaC93L), and have prepared two chemically modified Hb As, Hb A-IAA and Hb A-NEM, in which the sulfhydryl group at beta93Cys is modified by sulfhydryl reagents, iodoacetamide (IAA) and N-ethylmaleimide (NEM), respectively. These variants at the beta93 position show higher oxygen affinity, lower cooperativity, and reduced Bohr effect relative to Hb A. The response of some of these Hb variants to allosteric effectors, 2,3-bisphosphoglycerate (2,3-BPG) and inositol hexaphosphate (IHP), is decreased relative to that of Hb A. The proton nuclear magnetic resonance (NMR) spectra of these Hb variants show that there is a marked influence on the proximal heme pocket of the beta-chain, whereas the environment of the proximal heme pocket of the alpha-chain remains unchanged as compared to Hb A, suggesting that higher oxygen affinity is likely to be determined by the heme pocket of the beta-chain rather than by that of the alpha-chain. This is further supported by NO titration of these Hbs in the deoxy form. For Hb A, NO binds preferentially to the heme of the alpha-chain relative to that of the beta-chain. In contrast, the feature of preferential binding to the heme of the alpha-chain becomes weaker and even disappears for Hb variants with modifications at beta93Cys. The effects of IHP on these Hbs in the NO form are different from those on HbNO A, as characterized by (1)H NMR spectra of the T-state markers, the exchangeable resonances at 14 and 11 ppm, reflecting that these Hb variants have more stability in the R-state relative to Hb A, especially rHb (betaC93L) and Hb A-NEM in the NO form. The changes of the C2 proton resonances of the surface histidyl residues in these Hb variants in both the deoxy and CO forms, compared with those of Hb A, indicate that a mutation or chemical modification at beta93Cys can result in conformational changes involving several surface histidyl residues, e.g., beta146His and beta2His. The results obtained here offer strong evidence to show that the salt bridge between beta146His and beta94Asp and the binding pocket of allosteric effectors can be affected as the result of modifications at beta93Cys, which result in the destabilization of the T-state and a reduced response of these Hbs to allosteric effectors. We further propose that the impaired alkaline Bohr effect can be attributed to the effect on the contributions of several surface histidyl residues which are altered because of the environmental changes caused by mutations and chemical modifications at beta93Cys.  相似文献   

5.
Three recombinant mutant hemoglobins (rHbs) of human normal adult hemoglobin (Hb A), rHb (αT67V), rHb (βS72A), and rHb (αT67V, βS72A), have been constructed to test the role of the tertiary intra-subunit H-bonds between α67T and α14W and between β72S and β15W in the cooperative oxygenation of Hb A. Oxygen-binding studies in 0.1 M sodium phosphate buffer at 29 °C show that rHb (αT67V), rHb (βS72A), and rHb (αT67V, βS72A) exhibit oxygen-binding properties similar to those of Hb A. The binding of oxygen to these rHbs is highly cooperative, with a Hill coefficient of approximately 2.8, compared to approximately 3.1 for Hb A. Proton nuclear magnetic resonance (NMR) studies show that rHb (αT67V), rHb (βS72A), rHb (αT67V, βS72A), and Hb A have similar quaternary structures in the α1β2 subunit interfaces. In particular, the inter-subunit H-bonds between α42Tyr and β99Asp and between β37Trp and α94Asp are maintained in the mutants in the deoxy form. There are slight perturbations in the distal heme pocket region of the α- and β-chains in the mutants. A comparison of the exchangeable 1H resonances of Hb A with those of these three rHbs suggests that α67T and β72S are H-bonded to α14W and β15W, respectively, in the CO and deoxy forms of Hb A. The absence of significant free energy changes for the oxygenation process of these three rHbs compared to those of Hb A, even though the inter-helical H-bonds are abolished, indicates that these two sets of H-bonds are of comparable strength in the ligated and unligated forms of Hb A. Thus, the mutations at αT67V and βS72A do not affect the overall energetics of the oxygenation process. The preserved cooperativity in the binding of oxygen to these three mutants also implies that there are multiple interactions involved in the oxygenation process of Hb A.  相似文献   

6.
This study examines the structural and functional effects of amino acid substitutions in the distal side of both the alpha- and beta-chain heme pockets of human normal adult hemoglobin (Hb A). Using our Escherichia coli expression system, we have constructed four recombinant hemoglobins: rHb(alphaL29F), rHb(alphaL29W), rHb(betaL28F), and rHb(betaL28W). The alpha29 and beta28 residues are located in the B10 helix of the alpha- and beta-chains of Hb A, respectively. The B10 helix is significant because of its proximity to the ligand-binding site. Previous work showed the ability of the L29F mutation to inhibit oxidation. rHb(alphaL29W), rHb(betaL28F), and rHb(betaL28W) exhibit very low oxygen affinity and reduced cooperativity compared to those of Hb A, while the previously studied rHb(alphaL29F) exhibits high oxygen affinity. Proton nuclear magnetic resonance spectroscopy indicates that these mutations in the B10 helix do not significantly perturb the alpha(1)beta(1) and alpha(1)beta(2) subunit interfaces, while as expected, the tertiary structures near the heme pockets are affected. Experiments in which visible spectrophotometry was utilized reveal that rHb(alphaL29F) has equivalent or slower rates of autoxidation and azide-induced oxidation than does Hb A, while rHb(alphaL29W), rHb(betaL28F), and rHb(betaL28W) have increased rates. Bimolecular rate constants for NO-induced oxidation have been determined using a stopped-flow apparatus. These findings indicate that amino acid residues in the B10 helix of the alpha- and beta-chains can play different roles in regulating the functional properties and stability of the hemoglobin molecule. These results may provide new insights for designing a new generation of hemoglobin-based oxygen carriers.  相似文献   

7.
Tsai CH  Fang TY  Ho NT  Ho C 《Biochemistry》2000,39(45):13719-13729
Using our Escherichia coli expression system, we have constructed rHb (beta N108Q), a new recombinant hemoglobin (rHb), with the amino acid substitution located in the alpha(1)beta(1) subunit interface and in the central cavity of the Hb molecule. rHb (beta N108Q) exhibits low oxygen affinity, high cooperativity, enhanced Bohr effect, and slower rate of autoxidation of the heme iron atoms from the Fe(2+) to the Fe(3+) state than other low-oxygen-affinity rHbs developed in our laboratory, e.g., rHb (alpha V96W) and rHb (alpha V96W, beta N108K). It has been reported by Olson and co-workers [Carver et al. (1992) J. Biol. Chem. 267, 14443-14450; Brantley et al. (1993) J. Biol. Chem. 268, 6995-7010] that the substitution of phenylalanine for leucine at position 29 of myoglobin can inhibit autoxidation in myoglobin and at position 29 of the alpha-chain of hemoglobin can lower NO reaction in both the deoxy and the oxy forms of human normal adult hemoglobin. Hence, we have further introduced this mutation, alpha L29F, into beta N108Q. rHb (alpha L29F, beta N108Q) is stabilized against auto- and NO-induced oxidation as compared to rHb (beta N108Q), but exhibits lower oxygen affinity at pH below 7.4 and good cooperativity as compared to Hb A. Proton nuclear magnetic resonance (NMR) studies show that rHb (beta N108Q) has similar tertiary structure around the heme pockets and quaternary structure in the alpha(1)beta(1) and alpha(1)beta(2) subunit interfaces as compared to those of Hb A. The tertiary structure of rHb (alpha L29F, beta N108Q) as measured by (1)H NMR, especially the alpha-chain heme pocket region (both proximal and distal histidyl residues), is different from that of CO- and deoxy-Hb A, due to the amino acid substitution at alpha L29F. (1)H NMR studies also demonstrate that rHb (beta N108Q) can switch from the R quaternary structure to the T quaternary structure without changing ligation state upon adding an allosteric effector, inositol hexaphosphate, and reducing the temperature. On the basis of its low oxygen affinity, high cooperativity, and stability against autoxidation, rHb (beta N108Q) is considered a potential candidate for the Hb-based oxygen carrier in a blood substitute system.  相似文献   

8.
Jin Y  Sakurai H  Nagai Y  Nagai M 《Biopolymers》2004,74(1-2):60-63
The deoxy-form of human adult hemoglobin (Hb A) exhibits a distinct negative CD band at 287 nm that disappears in the oxy-form. It has been suggested that the negative CD band is due to the environmental alteration of Tyr-alpha 42 or Trp-beta 37 at the alpha(1)beta(2) contact upon deoxygenation. To evaluate the contributions of the aromatic residues at the alpha(1)beta(2) contact and the penultimate tyrosine residues of the alpha and beta subunits (alpha 140 and beta 145) to the negative CD band, three recombinant (r) Hbs (rHb Ser-alpha 42, rHb His-beta 37, and rHb Thr-beta 145) were produced in Escherichia coli, and we compared the near-uv CD spectra of these three rHbs and Hb Rouen (Tyr-alpha 140-->His) with the spectra of Hb A under the condition in which all mutant Hbs were able to undergo the T-->R transition (Hill's n > 2.0). The contributions of Tyr-alpha 42, Trp-beta 37, Tyr-alpha 140, and Tyr-beta 145 to the negative CD band were estimated from changes in the ellipticity of the negative CD band at 287 nm to be 4, 18, 32, and 27%, respectively. These results indicate that environmental alteration of the penultimate tyrosine residues caused by the formation of salt bridges upon the R-->T transition is primarily responsible for the negative CD band.  相似文献   

9.
The E11 valine in the distal heme pocket of either the α- or β-subunit of human adult hemoglobin (Hb A) was replaced by leucine, isoleucine, or phenylalanine. Recombinant proteins were expressed in Escherichia coli and purified for structural and functional studies. 1H NMR spectra were obtained for the CO and deoxy forms of Hb A and the mutants. The mutations did not disturb the α1β2 interface in either form, whereas the H-bond between αHis-103 and βGln-131 in the α1β1 interfaces of the deoxy α-subunit mutants was weakened. Localized structural changes in the mutated heme pocket were detected for the CO form of recombinant Hb (rHb) (αV62F), rHb (βV67I), and rHb (βV67F) compared with Hb A. In the deoxy form the proximal histidyl residue in the β-subunit of rHb (βV67F) has been altered. Furthermore, the interactions between the porphyrin ring and heme pocket residues have been perturbed in rHb (αV62I), rHb (αV62F), and rHb (βV67F). Functionally, the oxygen binding affinity (P50), cooperativity (n50), and the alkaline Bohr Effect of the three α-subunit mutants and rHb (βV67L) are similar to those of Hb A. rHb (βV67I) and rHb (βV67F) exhibit low and high oxygen affinity, respectively. rHb (βV67F) has P50 values lower that those reported for rHb (αL29F), a B10 mutant studied previously in our laboratory (Wiltrout, M. E., Giovannelli, J. L., Simplaceanu, V., Lukin, J. A., Ho, N. T., and Ho, C. (2005) Biochemistry 44, 7207–7217). These E11 mutations do not slow down the autoxidation and azide-induced oxidation rates of the recombinant proteins. Results from this study provide new insights into the roles of E11 mutants in the structure-function relationship in hemoglobin.  相似文献   

10.
Barrick D  Ho NT  Simplaceanu V  Ho C 《Biochemistry》2001,40(13):3780-3795
The linkage between the proximal histidines and the proximal polypeptide in normal adult human hemoglobin (Hb A) has been proposed to play a major role in transmitting allosteric effects between oxygen binding sites [Perutz, M. F. (1970) Nature 228, 726-734]. Here we present circular dichroism (CD), (1)H NMR, analytical ultracentrifugation, and stopped-flow kinetic data to better define the quaternary structure of hemoglobins in which the linkage between the proximal histidines and the polypeptide backbone has been broken [Barrick et al. Nat. Struct. Biol. 4, 78-83 (1997)] and to characterize the distal ligand binding properties of these proximally detached Hbs. CD spectroscopy indicates that rHb (alphaH87G) and rHb (alphaH87G/betaH92G) retain at least partial T-quaternary structure with distal ligand bound, whereas rHb (betaH92G) does not, consistent with (1)H NMR spectra. Analytical ultracentrifugation reveals significant tetramer dissociation in rHb (betaH92G) to be the likely cause of loss of T-state markers. These quaternary structure studies indicate that in distally liganded Hb, the T-state is compatible with proximal linkages in the beta- but not the alpha-chains. (1)H NMR titrations of rHb (alphaH87G) with n-butyl isocyanide demonstrate the alpha-chains to be of high affinity as compared with the beta-chains. Comparing ligand association and dissociation rates between the rHb (alphaH87G) variant with the T- and R-states of wild-type Hb A indicates that at the alpha-chains, carbon monoxide affinity is modulated entirely by the proximal linkage, rather than from distal interactions. Some residual allosteric interactions may remain operative at the beta-chains of rHb (alphaH87G).  相似文献   

11.
M Nagai  S Nagatomo  Y Nagai  K Ohkubo  K Imai  T Kitagawa 《Biochemistry》2012,51(30):5932-5941
The aromatic residues such as tryptophan (Trp) and tyrosine (Tyr) in human adult hemoglobin (Hb A) are known to contribute to near-UV circular dichroism (CD) and UV resonance Raman (RR) spectral changes upon the R → T quaternary structure transition. In Hb A, there are three Trp residues per αβ dimer: at α14, β15, and β37. To evaluate their individual contributions to the R → T spectral changes, we produced three mutant hemoglobins in E. coli; rHb (α14Trp→Leu), rHb (β15Trp→Leu), and rHb (β37Trp→His). Near-UV CD and UVRR spectra of these mutant Hbs were compared with those of Hb A under solvent conditions where mutant rHbs exhibited significant cooperativity in oxygen binding. Near-UV CD and UVRR spectra for individual Trp residues were extracted by the difference calculations between Hb A and the mutants. α14 and β15Trp exhibited negative CD bands in both oxy- and deoxy-Hb A, whereas β37Trp showed positive CD bands in oxy-Hb A but decreased intensity in deoxy-form. These differences in CD spectra among the three Trp residues in Hb A were ascribed to surrounding hydrophobicity by examining the spectral changes of a model compound of Trp, N-acetyl-l-Trp ethyl ester, in various solvents. Intensity enhancement of Trp UVRR bands upon the R → T transition was ascribed mostly to the hydrogen-bond formation of β37Trp in deoxy-Hb A because similar UVRR spectral changes were detected with N-acetyl-l-Trp ethyl ester upon addition of a hydrogen-bond acceptor.  相似文献   

12.
In order to decrease significantly the oxygen affinity of human hemoglobin, we have associated the mutation betaF41Y with another point mutation also known to decrease the oxygen affinity of Hb. We have synthesized a recombinant Hb (rHb) with two mutations in the beta chains: rHb betaF41Y,K66T. In the absence of 2, 3-diphosphoglycerate, additive effects of the mutations are evident, since the doubly mutated Hb exhibits a larger decrease in oxygen affinity than for the individual single mutations. In the presence of 2,3-diphosphoglycerate, the second mutation did not significantly increase the P(50) value relative to the single mutations. However, the kinetics of CO binding still indicate combined effects on the allosteric equilibrium, as evidenced by more of the slow bimolecular phase characteristic of binding to the deoxy conformation. Dimer-tetramer equilibrium studies indicate an increase in stability of the mutants relative to rHb A; the double mutant rHb betaF41Y, K66T at pH 7.5 showed a K(4,2) value of 0.26 microM. Despite the lower oxygen affinity, the single mutant betaF41Y and double mutant betaF41Y,K66T show only a moderate increase of 20% in the autoxidation rate. These mutations are thus of interest in developing a Hb-based blood substitute.  相似文献   

13.
Circular dichroism (CD) and optical rotatory dispersion (ORD) spectra of several liganded derivatives of the monomer and polymer hemoglobin components of the marine annelid, Glycera dibranchiata were measured over the wavelength range 650--195 nm. The differences observed between the monomer and polymer components for the heme dichroic bands in the visible, Soret and ultraviolet wavelength regions seem to result from changes in the heme environment, geometry and coordination state of the central heme iron in these proteins. Within the Soret region, the liganded derivatives of the monomer hemoglobin exhibit predominantly negative circular dichroic bands. The heme band at 260 nm is also absent for the monomer hemoglobin. The ORD and CD spectra in the far-ultraviolet, peptide absorbing region suggest also differences in the alpha-helix content of the monomer and polymer hemoglobins. The values for the single-chain G. dibranchiata hemoglobin are in the expected range (about 70% alpha-helix) as predicted by the X-ray structure of this protein. The lower estimates of the alpha-helix content for the polymer hemoglobin (approx. 50%), may reflect the differences in amino acid composition, primary structure and polypeptide chain foldings. Changes in oxidation state and ligand binding appears to have no pronounced effect on the helicity of either the monomer or polymer hemoglobins. The removal of the heme moiety from the monomer hemoglobin did result in a major decrease in its helix content similar to the loss of heme from myoglobin.  相似文献   

14.
Optical spectra have been taken in the Soret band (440-400 nm) under different oxygen partial pressures for hemoglobin (Hb) A0 at pH 7.0, 15 degrees C, 2-3 mM heme, 30 mM inositol hexaphosphate, 0.1 Hepes and 0.1 M NaCl. Application of the matrix method of singular value decomposition (SVD) to the difference spectra for different oxygen pressures shows the presence of at least two distinct optical transitions. From this result one concludes that the optical response to oxygen binding is nonlinear in the Soret band. The degree of nonlinearity has been determined by fitting the data at different wavelengths to the four-step reaction Adair equation with the inclusion of optical parameters that describe the intermediate oxygenated species. It is found that the data are well-represented by two optical parameters at each wavelengths, one which represents the optical change for the addition of the first and second oxygen molecules and the other which corresponds to the change for the addition of the third and fourth oxygen molecules. The ratio of these optical parameters depends only moderately upon wavelength with an average value of 0.8 over the Soret band. Thus, there is an approx. 20% smaller optical response for the first two ligated species than that for the last two ligated species. The overall Adair equilibrium constants are evaluated as follows: beta 1 = 0.081 +/- 0.003 Torr-1, beta 2 = 2.53 x 10(-3) +/- 2.4 x 10(-4) Torr-2, beta 3 = 1.25 x 10(-5) +/- 1.0 x 10(-6) Torr-3, beta 4 = 1.77 x 10(-6) +/- 1.5 x 10(-7) Torr-4.  相似文献   

15.
The unliganded tetrameric Hb S has axial and lateral contacts with neighbors and can polymerize in solution. Novel recombinants of Hb S with single amino acid substitutions at the putative axial (recombinant Hb (rHb) (βE6V/αH20R) and rHb (βE6V/αH20Q)) or lateral (rHb (βE6V/αH50Q)) or double amino acid substitutions at both the putative axial and lateral (rHb (βE6V/αH20R/αH50Q) and rHb (βE6V/αH20Q/αH50Q)) contact sites were expressed in Escherichia coli and purified for structural and functional studies. The 1H NMR spectra of the CO and deoxy forms of these mutants indicate that substitutions at either αHis-20 or αHis-50 do not change the subunit interfaces or the heme pockets of the proteins. The double mutants show only slight structural alteration in the β-heme pockets. All mutants have similar cooperativity (n50), alkaline Bohr effect, and autoxidation rate as Hb S. The oxygen binding affinity (P50) of the single mutants is comparable with that of Hb S. The double mutants bind oxygen with slightly higher affinity than Hb S under the acidic conditions. In high salt, rHb (βE6V/αH20R) is the only mutant that has a shorter delay time of polymerization and forms polymers more readily than Hb S with a dextran-Csat value of 1.86 ± 0.20 g/dl. Hb S, rHb (βE6V/αH20Q), rHb (βE6V/αH50Q), rHb (βE6V/αH20R/αH50Q), and rHb (βE6V/αH20Q/αH50Q) have dextran-Csat values of 2.95 ± 0.10, 3.04 ± 0.17, 11.78 ± 0.59, 7.11 ± 0.66, and 10.89 ± 0.83 g/dl, respectively. rHb (βE6V/αH20Q/αH50Q) is even more stable than Hb S under elevated temperature (60 °C).  相似文献   

16.
This study is aimed at investigating the molecular basis of environmental adaptation of woolly mammoth hemoglobin (Hb) to the harsh thermal conditions of the Pleistocene ice ages. To this end, we have carried out a comparative biochemical-biophysical characterization of the structural and functional properties of recombinant hemoglobins (rHb) from woolly mammoth (rHb WM) and Asian elephant (rHb AE) in relation to human hemoglobins Hb A and Hb A(2) (a minor component of human blood). We have obtained oxygen equilibrium curves and calculated O(2) affinities, Bohr effects, and the apparent heat of oxygenation (ΔH) in the presence and absence of allosteric effectors [inorganic phosphate and inositol hexaphosphate (IHP)]. Here, we show that the four Hbs exhibit distinct structural properties and respond differently to allosteric effectors. In addition, the apparent heat of oxygenation (ΔH) for rHb WM is less negative than that of rHb AE, especially in phosphate buffer and the presence of IHP, suggesting that the oxygen affinity of mammoth blood was also less sensitive to temperature change. Finally, (1)H NMR spectroscopy data indicates that both α(1)(β/δ)(1) and α(1)(β/δ)(2) interfaces in rHb WM and rHb AE are perturbed, whereas only the α(1)δ(1) interface in Hb A(2) is perturbed compared to that in Hb A. The distinct structural and functional features of rHb WM presumably facilitated woolly mammoth survival in the Arctic environment.  相似文献   

17.
Fang TY  Simplaceanu V  Tsai CH  Ho NT  Ho C 《Biochemistry》2000,39(45):13708-13718
Site-directed mutagenesis has been used to construct three recombinant mutant hemoglobins (rHbs), rHb(beta L105W), rHb(alpha D94A/betaL105W), and rHb(alpha D94A). rHb(beta L105W) is designed to form a new hydrogen bond from beta 105Trp to alpha 94Asp in the alpha(1)beta(2) subunit interface to lower the oxygen binding affinity by stabilizing the deoxy quaternary structure. We have found that rHb(beta L105W) does indeed possess a very low oxygen affinity and maintains normal cooperativity (P(50) = 28.2 mmHg, n(max) = 2.6 in 0.1 M sodium phosphate at pH 7.4) compared to those of Hb A (P(50) = 9.9 mmHg, n(max) = 3.2 at pH 7.4). rHb(alpha D94A/beta L105W) and rHb(alpha D94A) are expressed to provide evidence that rHb(betaL 105W) does form a new H-bond from beta 105Trp to alpha 94Asp in the alpha(1)beta(2) subunit interface of the deoxy quaternary structure. Our multinuclear, multidimensional nuclear magnetic resonance (NMR) studies on (15)N-labeled rHb(beta L105W) have identified the indole nitrogen-attached (1)H resonance of beta 105Trp for rHb(beta L105W). (1)H NMR studies on Hb A and mutant rHbs have been used to investigate the structural basis for the low O(2) affinity of rHb(beta L105W). Our NMR results provide evidence that rHb(beta L105W) forms a new H-bond from beta 105Trp to alpha 94Asp in the alpha(1)beta(2) subunit interface of the deoxy quaternary structure. The NMR results also show that these three rHbs can switch from the R quaternary structure to the T quaternary structure in their ligated state upon addition of an allosteric effector, inositol hexaphosphate. We propose that the low O(2) affinity of rHb(beta L105W) is due to the formation of a new H-bond between alpha 105Trp and alpha 94Asp in the deoxy quaternary structure.  相似文献   

18.
The commercial feasibility of recombinant human Hb (rHb) as an O(2) delivery pharmaceutical is limited by the production yield of holoprotein in E. coli. Currently the production of rHb is not cost effective for use as a source in the development of third and fourth generation Hb-based oxygen carriers (HBOCs). The major problems appear to be aggregation and degradation of apoglobin at the nominal expression temperatures, 28-37 degrees C, and the limited amount of free heme that is available for holohemoglobin assembly. One approach to solve the first problem is to inhibit apoglobin precipitation by a comparative mutagenesis strategy to improve apoglobin stability. alpha Gly15 to Ala and beta Gly16 to Ala mutations have been constructed to increase the stability of the alpha helices of both subunits of HbA, based on comparison with the sequences of the more stable sperm whale hemoglobin subunits. Fetal hemoglobin is also known to be more stable than human HbA, and sequence comparisons between human beta and gamma (fetal Hb) chains indicate several substitutions that stabilize the alpha1beta1 interface, one of which, beta His116 to Ile, increases resistance to denaturation and enhances expression in E. coli. These favorable effects of enhanced globin stability can be augmented by co-expression of bacterial membrane heme transport systems to increase the rate and extent of heme uptake through the bacterial cell membranes. The combination of increased apoglobin stability and active heme transport appear to enhance holohemoglobin production to levels that may make rHb a plausible starting material for all extracellular Hb-based oxygen carriers.  相似文献   

19.
Apohemoglobin (apoHb) is a dimeric globular protein with two vacant heme-binding pockets that can bind heme or other hydrophobic ligands. Purification of apoHb is based on partial hemoglobin (Hb) unfolding to facilitate heme extraction into an organic solvent. However, current production methods are time consuming, difficult to scale up, and use highly flammable and toxic solvents. In this study, a novel and scalable apoHb production method was developed using an acidified ethanol solution to extract the hydrophobic heme ligand into solution and tangential flow filtration to separate heme from the resultant apoprotein. Total protein and active protein yields were >95% and ~75%, respectively, with <1% residual heme in apoHb preparations and >99% purity from sodium dodecyl sulfate–polyacrylamide gel electrophoresis analysis. Virtually no loss of apoHb activity was detected at 4°C, −80°C, and in lyophilized form during long term storage. Structurally, size exclusion chromatography (SEC) and circular dichroism indicated that apoHb was dimeric with a ~25% reduction of helical content compared to Hb. Furthermore, mass spectroscopy and reverse-phase chromatography indicated that the mass of the α and β subunits were virtually identical to the theoretical mass of these subunits in Hb and had no detectable oxidative modifications upon heme removal from Hb. SEC confirmed that apoHb bound to haptoglobin at a similar ratio to that of native Hb. Finally, reconstituted Hb (rHb) was processed via a hemichrome removal method to isolate functional rHb for biophysical characterization in which the O2 equilibrium curve, O2 dissociation, and CO association kinetics of rHb were virtually identical to native Hb. Overall, this study describes a novel and improved method to produce apoHb, as well as presents a comprehensive biochemical analysis of apoHb and rHb.  相似文献   

20.
Circular dichroic (CD) spectra of soybean leghemoglobin, and some of its liganded derivatives were measured over the wavelength range of 650 to 200 nm. The heme-related circular dichroic bands in the visible, Soret and ultraviolet wavelength regions exhibit Cotton effects characteristic of each of the compounds examined. The positions of the dichroic bands vary with ligand substitutions and the oxidation state of the iron. All leghemoglobin derivatives, except the apoprotein, exhibit negative circular dichroic bands in the region of Soret absorption. In this region the optical activity of compounds with high-spin moments is greater than that of compounds with low or intermediate spin moments. The ellipticity of the heme band at about 260 nm is also altered by ligand binding and spin state. The dichroic spectra in the far-ultraviolet region indicated a high extent of alpha-helical structure (about 70%) in the native leghemoglobin and its liganded derivatives. The helicality of the apoprotein seems to diminish suggesting a decrease caused by the removal of the heme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号