首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of various conditions of nitrogen and carbon nutrition on the biosynthesis of proteolytic enzymes in a selected culture of Aspergillus awamori 21/96 were studied. This strain was shown to produce proteolytic enzymes constitutively. In the presence of mineral sources of nitrogen, the synthesis of the enzymes under study was not induced by proteinaceous substrates. Optimum conditions of the enzyme biosynthesis were achieved with casein as a source of nitrogen and starch or dulcitol as a source of carbon (which increased the production of the enzymes by 1.7 and 8 times, respectively). When the cells were grown on starch, their specific activity exceeded control levels by 18 times.  相似文献   

2.
The dynamics of the consumption of major carbon and nitrogen sources and the biosynthesis of hydrolytic enzymes were studied in Bacillus mesentericus grown on semisynthetic media. Conditions were chosen that provide the obtaining of the culture liquid with predominantly proteolytic or amylolytic activity. The replacement of maltose with native starch resulted in more intensive accumulation of the biomass and hydrolytic enzymes, and in more rapid (by 3-5 hr) transformation from the logarithmic to the stationary growth phase.  相似文献   

3.
The production of the enzymes of Candida albicans cell-wall lytic system by S. thermodiastaticus was found to be affected by some growth conditions and nutritional factors. The highest lytic activity was obtained after 18 h of incubation at pH 5.5 and an incubation temperature of 50 degrees C. The carbon source influenced the production of the enzymes of the yeast cell wall lytic system. Maximum lytic activity was obtained when Candida albicans cell-wall (1 g/100 ml) was used as the sole carbon source. NaNO3 at 0.1 g/100 ml level was the best nitrogen source for the biosynthesis of the enzymes of the yeast lytic system. From all phosphor sources, microelements, and growth factors tested, KH2PO4 (1 g/l), ZnSO4 (1 mg/l) and Tween 80 (0.1%), respectively were found to favour highest enzymes production of the lytic system. The Candida albicans cell-wall lytic system produced by S. thermodiastaticus mainly contained chitinolytic and proteolytic activities.  相似文献   

4.
The influence of different factors on the biosynthesis of extracellular proteolytic complexes by strains-producers Bacillus circulans 693, Bacillus sp. 27 and Yarrowia lipolytica 2061 at submerged cultivation has been investigated. It has been shown that ammonium hydrocarbonate and gelatin with glucose were optimum carbon and nitrogen sources for synthesis of proteolytic activity of B. circulans strain 693, gelatin with arabinose--for Bacillus sp. 27, gelatin and glycine with sorbose--for Y. lipolytica 2061. It has been established that the cultivation of producers on optimal sources of carbon and nitrogen increased protease activity of cultural liquid of B. circulans 693 3.8 times, Bacillus sp. 27--2.7 times, Y. lipolytica 2061--3.4 times. It has been found that the usage of different protein substrates in cultural medium permitted to obtain the proteolytic enzymes with various specificity with respect to globular and fibrillar proteins.  相似文献   

5.
绿僵菌产海藻糖水解酶培养条件研究   总被引:2,自引:0,他引:2  
丝状真菌绿僵菌能产生一系列二糖水解酶,其中包括海藻糖水解酶。这些酶在绿僵菌对昆虫的致病过程中起着重要的作用。本文研究了不同碳源、氮源对金龟子绿僵菌Metarhizium anisopliae var. acridum菌株CQMa102产生与分解昆虫血淋巴中海藻糖等二糖相关的海藻糖水解酶活性的影响。结果表明:分别以葡萄糖、麦芽糖、蔗糖、山梨醇和可溶性淀粉为碳源,金龟子绿僵菌均可产生海藻糖水解酶,但最佳碳源是可溶性淀粉,因为由其诱导产生的海藻糖水解酶具有最高的总活性和比活性以及更多的同工酶,山梨醇次之。硝态氮(NaNO3)作为唯一氮源时,几乎检测不出海藻糖水解酶活性,而铵态氮((NH4)2SO4)或NaNO3和有机氮(蛋白胨和酵母浸膏)混合氮源作氮源时,海藻糖水解酶活性都很高。在绿僵菌菌丝提取液和滤液的海藻糖水解酶活性比较中发现:CQMa102在多数碳源的培养基中产生的海藻糖水解酶主要分泌到培养基中,仅有少数结合在细胞壁上。  相似文献   

6.
玉米淀粉生物合成及其遗传操纵   总被引:6,自引:0,他引:6  
张红伟  谭振波  陈荣军  李建生  陈刚 《遗传》2003,25(4):455-460
淀粉是许多植物重要的储藏物质。淀粉突变体以及转基因植物中淀粉变异的特点使我们对淀粉生物合成的过程有了较深入的了解,许多研究的结果揭示了玉米淀粉的生物合成涉及4类酶--ADPG焦磷酸化酶、淀粉合成酶、淀粉分支酶和去分支酶。随着编码这些酶的基因的克隆,利用转基因技术对淀粉合成过程进行遗传操纵业已成为可能,并且在提高淀粉产量以及不同特性淀粉品质的种质资源创新等方面展示出巨大的潜力。 Abstract:Starch is the most important source of calories and a vital storage component in plants.The characterization and production of starch variants from mutation and with transgenic technology has improved our understanding of the synthesis of starch granule.In starch biosynthesis in plants,four enzymes,including ADP-glucose pyrophosphorylase,starch synthase,starch branching enzyme and starch debranching enzyme,are widely accepted from an enormous amount of research aimed primarily at enzyme characterization.As many genes encoding the enzymes and their multiple isoforms in starch biosynthesis pathway have been isolated,genetic manipulation of the starch biosynthesis pathway shows to be a practical way by which starch quantity is increased and starch with novel properties can be created.  相似文献   

7.
Short term experiments were conducted with vegetative soybean plants (Glycine max L. Merr. `Ransom' or `Arksoy') to determine whether sourcesink manipulations, which rapidly changed the `demand' for sucrose and partitioning of photosynthetically fixed carbon into starch, were associated with alterations in activities of sucrose-P synthase and/or cytoplasmic fructose-1,6-bisphosphatase in leaf extracts. When demand for sucrose from a particular source leaf was increased by defoliation of other source leaves, starch accumulation was restricted and activities of both enzymes were markedly enhanced. When demand for sucrose from source leaves was limited by excision, starch accumulation in the detached leaves was increased while activity of sucrose-P synthase declined sharply. The consistent responsiveness of sucrose-P synthase activity to changes in demand for sucrose supports the contention that regulation of sucrose-P synthase is an integral component of the system which controls sucrose biosynthesis and partitioning of carbon between starch and sucrose biosynthesis in the light.  相似文献   

8.
9.
The production of extracellular 1,3-, 1,6-beta-glucanases and chitinase was studied during submerged cultivation of a Trichoderma viride strain 3/78 on various carbon sources: glycerol, glucose, lactose, sucrose, laminaran, starch, pustulan, chitin, and Agaricus bisporus fruit bodies. The synthesis of these enzymes and cellulase was studied also under the conditions of depression at low concentrations (10(-2) and 10(-3)M) of the first five aforementioned carbon sources as well as cellobiose, gentiobiose, N-acetyl-beta-D-glucosamine and 0.1% chitooligosaccharides and A. bisporus cell walls. The experiments were conducted with the washed mycelium of this strain grown for 2 days in a medium with glycerol as a carbon source. The results indicated that 1,3- and 1,6-beta-glucanases of the strain were of the constitutive nature and were repressed by such carbon sources as glycerol and glucose. Chitinase and cellulase were shown to be inducible enzymes. Chitinase was induced by N-acetyl-beta-D-glucosamine, chitooligosaccharides and A. bisporus cell walls as well as by lactose when the fungus was grown on this carbon source. Cellulase biosynthesis was induced by lactose, cellobiose and gentiobiose.  相似文献   

10.
Osmotically permeabilized potato (Solanum tuberosum L.) tuber slices were used to study the biosynthesis of starch under semi in vivo conditions. Criteria to distinguish the various enzymes involved in starch biosynthesis were developed based on the characteristics of the enzymes in in vitro experiments. Branching enzyme activity was inhibited at pH 8.5 or higher, while the starch synthases functioned optimally between pH 8.8 and 9.1. Unprimed soluble starch synthase activity was only apparent in the presence of sodium citrate (0.4 molar or higher). Granulebound and primed soluble starch synthase were active in the absence of sodium citrate. Primed soluble starch synthase activity was susceptible to inhibition by 10 millimolar zinc sulfate, while granule-bound starch synthase activity was not. The incorporation of the Glc moiety of ADP-Glc into starch in tissue slices by the various starch synthases was consistent with in vitro data with respect to the affinity of the enzymes for substrate, the pH profile, the stimulation by citrate, and the inhibition by zinc sulfate. These data were used to determine the activity of each of the starch synthases in tissue slices: granule-bound and soluble starch synthase transferred 37 and 55 picomoles ADP-Glc per hour per milligram fresh weight into starch of permeabilized tissue slices at 30°C and pH 9.1. In the presence of 0.5 molar sodium citrate, at least 40 picomoles ADP-Glc per hour per milligram fresh weight as transferred into starch by unprimed soluble starch synthase activity.  相似文献   

11.
In traditional cereal-based industrial processes, component separation is often incomplete resulting in a residue of mixed macromolecules including largely starch, protein, phytic acid and many others. The development of a viable cereal-based biorefinery would involve effective bioconversion of cereal components for the production of a nutrient-complete fermentation feedstock. Simultaneous starch and protein hydrolysis represents an effective approach to the production of platform chemicals from wheat. Solid state fermentations of wheat pieces and waste bread by Aspergillus oryzae and Aspergillus awamori have been combined in this study to enhance starch and protein hydrolysis. Kinetic studies confirmed that the proteolytic enzymes from A. oryzae introduced no negative effect on the stability of the amylolytic enzymes from A. awamori under the optimal conditions for starch hydrolysis. When applied to hydrolyse wheat flour, the enzyme solution from A. awamori converted nearly all of the starch into glucose and 23% of the total nitrogen (TN) into free amino nitrogen (FAN). Under the same reaction conditions the enzyme solution from A. oryzae hydrolysed 38% of the protein but only 18.5% of the starch. A mixture of the two enzyme solutions hydrolysed 34.1% of the protein, a 1.5-fold increase from that achieved by the enzyme solution from A. awamori, while maintaining a near completion of starch hydrolysis.  相似文献   

12.
The activity of the glycolysis enzymes, i.e. aldolase and pyruvate decarboxylase and the enzymes of the pentose cycle, i.e. transketolase were investigated in the process of cultivation of an active strain and inactive mutant of Act. rimosus under conditions favourable for oxytetracycline biosynthesis on starch medium and under unfavourable conditions on glucose medium. It was shown that the aldolase and transketolase activity in the inactive mutant was higher on the starch medium as compared to the active strain, while the activity of pyruvate dekarboxylase was lower. The above difference between the both strains was preserved on the glucose medium and the activity of aldolase and transketolase in both strains increased, while the activity of pyruvate dekarboxylase remained at the same level.  相似文献   

13.
Seedlings of barley ( Hordeum vulgare L. cv. Agneta) were grown hydroponically under continuous light, constant temperature and relative humidity. During the first two weeks, the relative growth rate (RGR) was kept at 25% by limiting only the supply of nitrogen. The cultures were then transferred to nitrogen-free media and the amounts of fructan, starch, sucrose, glucose and fructose in sink and source leaves were measured at 0, 12, 24, 48, 72, 120 and 156 h. The activities of two key enzymes in fructan metabolism, sucrose:sucrose fructosyltransferase (SST), fructan exohydrolase (FEH), as well as acid invertase were also measured in the two types of leaves.
The fructan and starch levels in both sink and source leaves increased during nitrogen deficiency. The highest increase in starch was 200% of the control while for fmctans a 700% increase was recorded. The activity of SST increased parallel to fructan accumulation in sink leaves. However the FEH activity was constant and not affected by nitrogen deficiency. The invertase activity both in sink and source leaves was reduced by nitrogen deficiency. More fructans as well as sucrose and fructose accumulated in source leaves compared to sink leaves both before and after nitrogen starvation. The results show that fructan is the major carbohydrate reserve accumulating under nitrogen deficiency both in sink and source leaves in barley plants. The induction of fructan accumulation in sink leaves caused by nitrogen deficiency is intimately connected with the regulation of SST  相似文献   

14.
The biosynthesis of proteinases with various substrate specificities was studied in Bacillus firmus 44b and Bacillus oligonitrophilus 21p as influenced by the growth conditions and growth phases of the bacteria. The period of the maximum synthesis of plasmin-like enzymes was observed 6 h later than the period of the maximum growth rate period of B. firmus 44b, and 3 h as compared to the growth rate of B. oligonitrophilus 21p. The periods of the maximum accumulation of activating enzymes were delayed 9 and 12 h, respectively, as compared to the rapid growth periods of these two bacteria. Catabolite repression of proteinase synthesis and stimulation of the latter with substrate proteins were insignificant. The production of both plasmin-like and plasminogen-activating enzymes was most sensitive to repression by nitrogen deficiency. The production of plasminogen-activating proteinases was less dependent on the carbon source than the production of plasmin-like enzymes.  相似文献   

15.
In order to investigate the nutritional conditions of cephamycin biosynthesis independently of the biomass growth process, the nutrient limited-resting cell system was used. A replacement medium eliminating cell multiplication was developed. The presence of Mg2+, carbon source and nitrogen source was necessary for cephamycin production by resting cells of Streptomyces lactamdurans L 2/6. Maximum antibiotic production was obtained when maltose, saccharose, and fructose were used as carbon source, and L-asparagine as nitrogen source. An inhibitory effect on the process was exerted by the calcium ions. There was no visible inhibition of cephamycin biosynthesis by inorganic phosphate ions in concentration up to 100 mM.  相似文献   

16.
Mansour FA  Mohamedin AH 《Microbios》2001,105(411):87-101
The production of lytic enzyme by Streptomyces thermodiastaticus was found to be affected by some growth conditions and nutritional factors. The highest enzyme production was obtained after 18 h of incubation at pH 5.5 and at 50 degrees C. The carbon source influenced the lytic enzyme production. A higher enzyme yield was obtained when Candida albicans cell wall (1 g/100 ml) was used as the sole carbon source. NaNO3 at 0.1 g/100 ml was the best nitrogen source for enzyme production. From all phosphorous sources, microelements, and growth factors tested, KH2PO4 (1 g/l), ZnSO4 (1 mg/I) and Tween 80 (0.1%), respectively, were found to favour the highest production of lytic enzymes by S. thermodiastaticus. The lytic enzymes mainly produced chitinolytic and proteolytic activities.  相似文献   

17.
The ability to synthesize antibiotics and exoproteases was studied in 13 species belonging to the Actinomadura genus. The antibiotic and proteolytic activities were found only in A. fulvescens INA-3321 and A. citrea INA-1849. Glycerol was shown to be the best carbon source for the growth and biosynthetic activity of A. fulvescens. A. citrea had a wider spectrum of carbon sources used for the growth and a higher proteolytic and antibiotic activity. A. citrea exerted the maximal biosynthetic activity and the best growth in a medium with starch and xylose. The effect of different nitrogen sources on the growth and biosynthetic activity of A. citrea was also studied.  相似文献   

18.
Phaseolus mungo seeds were allowed to germinate in the dark, and time-course changes in contents of protein fractions, starch, soluble α-amino nitrogen and reducing sugars and in hydrolytic enzyme activities in cotyledons were investigated. In cotyledons of germinated seeds, marked increases in proteolytic (caseolytic, globulytic and gelatin-hydrolyzing) activities and amylolytic activity occurred with concurrent mobilization of storage proteins and starch. Removal of axis organs from seeds at very early stages of germination caused the deteriorated breakdown of storage components and decreased development of proteolytic enzymes in the cotyledons, but this treatment did not significantly affect the appearance of amylolytic activity. The experimental results are discussed in comparison with the hydrolytic enzyme activities of germinating seeds of other leguminous species.  相似文献   

19.
Production of hydrolytic enzymes by a phytopathogenic fungus Fusarium culmorum was investigated. The proteolytic activity was observed when the fungus was grown in the medium containing starch or soybean meal as a carbon source. The amylolytic and lipolytic activities were not found. Response surface modeling was applied to shake-flask culture of the fungus to determine the optimum concentration of carbon source and optimal culture time for growth and protease production. The results indicated that the maximum yield of protease production corresponded to the concentration of soybean meal of 1.4?g/ml and culture time of 4.5?days. The fungus growth depends on the concentration of carbon source in the medium whereas the enzyme production was also influenced by the culture time and interaction between these two variables.  相似文献   

20.
作物籽粒淀粉结构的形成与相关酶关系的研究进展   总被引:3,自引:0,他引:3  
本文综述了前人关于作物籽粒淀粉结构形成以及相关酶的分子生物学研究进展,分析讨论了淀粉结构的形成与酶活性之间的关系,酶对淀粉结构形成的调控机理,为进一步开展作物籽粒淀粉品质改良研究提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号