首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-beta-Alanyl-5-S-glutathionyl-3,4-dihydroxyphenylalanine (5-S-GAD), an insect-derived antibacterial peptide, generates hydrogen peroxide (H(2)O(2)) that exerts antitumour activity. We have investigated the precise mechanism of H(2)O(2) production from 5-S-GAD by autoxidation aiming to understand its action toward tumour cells. Using the electron spin resonance (ESR) technique, we detected a strong signal due to radical formation from 5-S-GAD. Surprisingly, the ESR signal of the radical derived from 5-S-GAD appeared after incubation for 30 min at 37 degrees C in the buffer at pH 7.4; the signal was persistently detected for 10 h in the absence of catalytic metal ions. The computer simulation of the observed ESR spectrum together with the theoretical calculation of the spin density of the radical species indicates that an o-semiquinone radical anion was formed from 5-S-GAD. We demonstrated that H(2)O(2) is produced via the formation of superoxide anion O2(.-) by the electron-transfer reduction of molecular oxygen by the 5-S-GAD anion, which is in equilibrium with 5-S-GAD in the aqueous solution. The radical formation and the subsequent H(2)O(2) production were inhibited by superoxide dismutase (SOD), when the antitumour activity of 5-S-GAD was inhibited by SOD. Thus, the formation of the o-semiquinone radical anion would be necessary for the antitumour activity of 5-S-GAD as an intermediate in the production of cytotoxic H(2)O(2).  相似文献   

2.
The primary purpose of this research is to investigate whether exposure to polychlorinated biphenyls (PCBs), i.e. PCB153 and PCB126, is associated with induction of reactive oxygen species (ROS), poly(ADP-ribose) polymerase-1 (PARP-1) activation, and cell death in human T47D and MDA-MB-231 breast cancer cells. Results indicated that PCB153 and PCB126 induced concentration- and time-dependent increases in cytotoxic response and ROS formation in both T47D and MDA-MB-231 cells. At non-cytotoxic concentrations both PCB153 and PCB126 induced decreases in intracellular NAD(P)H and NAD+ in T47D and MDA-MB-231 cells where T47D cells were more resistant to PCB-induced reduction in intracellular NAD(P)H than MDA-MB-231 cells. Further investigation indicated that three specific PARP inhibitors completely blocked PCB-induced decreases in intracellular NAD(P)H in both T47D and MDA-MB-231 cells. These results imply that decreases in intracellular NAD(P)H in PCB-treated cells may be, in part, due to depletion of intracellular NAD+ pool mediated by PARP-1 activation through formation of DNA strand breaks. Overall, the extent of cytotoxic response, ROS formation, and PARP-1 activation generated in T47D and MDA-MB-231 cells was greater for PCB153 than for PCB126. In addition, the cytotoxicity induced by PCB153 and PCB126 in both T47D and MDA-MB-231 cells was completely blocked by co-treatment of catalase, dimethylsulfoxide, cupper (I)-/iron (II)-specific chelators, and CYP1A/2B inhibitors. This evidence suggests the involvement of ROS, Cu(I), Fe(II), and CYP1A/2B enzymes in mediating the induction of cell death by PCB153 and PCB126. Further, antagonism was observed between PCB126 and PCB153 for effects on cytotoxic response and ROS formation in T47D and MDA-MB-231 cells. Antagonism was also observed between PCB153 and PCB126 in the induction of NAD(P)H depletion at lower concentration (<10 microM) in T47D cells, but not in MDA-MB-231 cells. In conclusions, results from our investigation suggest that ROS formation induced by PCBs is a significant determinant factor in mediating the DNA damage and cell death in human breast cancer cells. The data also suggests that the status of estrogen receptor alpha may play a role in modulating the PCB-induced oxidative DNA damage and cell death in human breast cancer cells.  相似文献   

3.
Loss of estrogen receptor α (ERα) expression and gain of TWIST (TWIST1) expression in breast tumors correlate with increased disease recurrence and metastasis and poor disease-free survival. However, the molecular and functional regulatory relationship between TWIST and ERα are unclear. In this study, we found TWIST was associated with a chromatin region in intron 7 of the human ESR1 gene coding for ERα. This association of TWIST efficiently recruited the nucleosome remodeling and deacetylase (NuRD) repressor complex to this region, which subsequently decreased histone H3K9 acetylation, increased histone H3K9 methylation and repressed ESR1 expression in breast cancer cells. In agreement with these molecular events, TWIST expression was inversely correlated with ERα expression in both breast cancer cell lines and human breast ductal carcinomas. Forced expression of TWIST in TWIST-negative and ERα-positive breast cancer cells such as T47D and MCF-7 cells reduced ERα expression, while knockdown of TWIST in TWIST-positive and ERα-negative breast cancer cells such as MDA-MB-435 and 4T1 cells increased ERα expression. Furthermore, inhibition of histone deacetylase (HDAC) activity including the one in NuRD complex significantly increased ERα expression in MDA-MB-435 and 4T1 cells. HDAC inhibition together with TWIST knockdown did not further increase ERα expression in 4T1 and MDA-MB-435 cells. These results demonstrate that TWIST/NuRD represses ERα expression in breast cancer cells. Therefore, TWIST may serve as a potential molecular target for converting ERα-negative breast cancers to ERα-positive breast cancers, allowing these cancers to restore their sensitivity to endocrine therapy with selective ERα antagonists such as tamoxifen and raloxifene.  相似文献   

4.
2DG causes cytotoxicity in cancer cells by disrupting thiol metabolism while Doxorubicin (DOX) induces cytotoxicity in tumor cells by generating reactive oxygen species (ROS). Here we examined the combined cytotoxic action of 2DG and DOX in rapidly dividing T47D breast cancer cells vs. slowly growing MCF-7 breast cancer cells. T47D cells exposed to the combination of 2DG/DOX significantly decreased cell survival compared to controls, while 2DG/DOX had no effect on MCF-7 cells. 2DG/DOX also disrupted the oxidant status of T47D treated cells, decreased intracellular total glutathione and increased glutathione disulfide (%GSSG) compared to MCF-7 cells. Lipid peroxidation increased in T47D cells treated with 2DG and/or DOX, but not in MCF-7 cells. T47D cells were significantly protected by NAC, indicating that the combined treatment exerts its action by increasing ROS production and disrupting antioxidant stores. When we inhibited glutathione synthesis with BSO, T47D cells became more sensitive to 2DG/DOX-induced cytotoxicity, but NAC significantly reversed this cytotoxic effect. Finally, 2DG/DOX, and BSO significantly increased the %GSSG in T47D cells, an effect which was also reversed by NAC. Our results suggest that exposure of rapidly dividing breast cancer cells to 2DG/DOX enhances cytotoxicity via oxidative stress and via disruptions to thiol metabolism.  相似文献   

5.
Cytotoxic activity of some marine brown algae against cancer cell lines   总被引:1,自引:0,他引:1  
The aim of this study was to investigate the in vitro cytotoxic activity of total extract of MeOH (70%) and partition fractions of hexan, chloroform (CHCL3), ethylacetate (EtOAc) and MeOH-H2O of brown algae species (Sargassum swartzii, Cystoseira myrica, Colpomenia sinuosa) found in the Persian Gulf against in different cell lines including HT-29, Caco-2, T47D, MDA-MB468 and NIH 3T3 cell lines by MTT and AnnexinV-PI assay. The hexan fraction of S. swartzii and C. myrica showed selective cytotoxicity against proliferation of Caco-2 cells (IC50 < 100 μg/ml) T47D cell line (IC50<100 μg/ml), respectively. S. swartzii and C. myrica were also observed for increasing apoptosis in Caco-2 and T47D cells. Total extract and fractions of C. sinuosa did not show any significant cytotoxicity against the studied cell lines. MDA-MB468 cells were more sensitive to C. myrica than was T47D (IC50 99.9 ± 8.11 vs. 56.50' ± 0.88). This reflects an estrogen receptor independent mechanism for cytotoxicity of the extract. The IC50 of the hexan fraction of C. myrica on T47D parent cells was lower than it was on T47D-TR cells (IC50 99.9 ± 8.11 vs. 143.15 ± 7.80). This finding suggests a role for the MDR-1 in the development of possible future tolerance to the extract.  相似文献   

6.
In the present study we used human breast cancer cell lines to assess the influence of ceramide and glucosylceramide (GC) on expression of MDR1, the multidrug resistance gene that codes for P-glycoprotein (P-gp), because GC has been shown to be a substrate for P-gp. Acute exposure (72 h) to C8-ceramide (5 microg/ml culture medium), a cell-permeable ceramide, increased MDR1 mRNA levels by 3- and 5-fold in T47D and in MDA-MB-435 cells, respectively. Acute exposure of MCF-7 and MDA-MB-231 cells to C8-GC (10 microg/ml culture medium), a cell-permeable analog of GC, increased MDR1 expression by 2- and 4- fold, respectively. Chronic exposure of MDA-MB-231 cells to C8-ceramide for extended periods enhanced MDR1 mRNA levels 45- and 390-fold at passages 12 and 22, respectively, and also elicited expression of P-gp. High-passage C8-ceramide-grown MDA-MB-231 (MDA-MB-231/C8cer) cells were more resistant to doxorubicin and paclitaxel. Incubation with [1-(14)C]C6-ceramide showed that cells converted short-chain ceramide into GC, lactosylceramide, and sphingomyelin. When challenged with 5 mug/ml [1-(14)C]C6-ceramide, MDA-MB-231, MDA-MB-435, MCF-7, and T47D cells took up 31, 17, 21, and 13%, respectively, and converted 82, 58, 62, and 58% of that to short-chain GC. Exposing cells to the GCS inhibitor, ethylenedioxy-P4, a substituted analog of 1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol, prevented ceramide's enhancement of MDR1 expression. These experiments show that high levels of ceramide and GC enhance expression of the multidrug resistance phenotype in cancer cells. Therefore, ceramide's role as a messenger of cytotoxic response might be linked to the multidrug resistance pathway.  相似文献   

7.
Highly tumor selective near-infrared (NIR) pH-activatable probe was developed by conjugating pH-sensitive cyanine dye to a cyclic arginine-glycine-aspartic acid (cRGD) peptide targeting α(v)β(3) integrin (ABIR), a protein that is highly overexpressed in endothelial cells during tumor angiogenesis. The NIR pH-sensitive dye used to construct the probe exhibits high spectral sensitivity with pH changes. It has negligible fluorescence above pH 6 but becomes highly fluorescent below pH 5, with a pK(a) of 4.7. This probe is ideal for imaging acidic cell organelles such as tumor lysosomes or late endosomes. Cell microscopy data demonstrate that binding of the cRGD probe to ABIR facilitated the endocytosis-mediated lysosomal accumulation and subsequent fluorescence enhancement of the NIR pH-activatable dye in tumor cells (MDA-MB-435 and 4T1/luc). A similar fluorescence enhancement mechanism was observed in vivo, where the tumors were evident within 4 h post injection. Moreover, lung metastases were also visualized in an orthotopic tumor mouse model using this probe, which was further confirmed by histologic analysis. These results demonstrate the potential of using the new integrin-targeted pH-sensitive probe for the detection of primary and metastatic cancer.  相似文献   

8.
Cytochrome P450 2E1 (CYP2E1) is an effective producer of reactive oxygen species such as superoxide radical and hydrogen peroxide, which may contribute to the development of alcohol liver disease or cytotoxicity. To investigate the protective role of catalase against CYP2E1-dependent cytotoxicity, E47 cells, a transfected HepG2 cell line overexpressing CYP2E1, were infected with adenoviral vectors containing human catalase cDNA (AdCat) and catalase cDNA with a mitochondrial leader sequence (AdmCat). Forty-eight hours after infection with AdCat or AdmCat at a multiplicity of infection of 100, intracellular catalase protein was increased >2-fold compared with uninfected E47 cells and E47 cells infected with empty adenoviral vector (AdNull) as determined by Western blotting and catalase activity measurements. Overexpression of catalase in the cytosol (AdCat) and in mitochondria (AdmCat) was confirmed by confocal microscopy. Cell death caused by arachidonic acid plus iron was considerably suppressed in both AdCat- and AdmCat-infected E47 cells as determined by assays of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide absorbance, lactate dehydrogenase release, and morphology changes. AdCat- and AdmCat-infected cells were also more resistant to the loss of mitochondrial membrane potential and to the increase in lipid peroxidation induced by arachidonic acid and iron. This study indicates that catalase in the cytosol and catalase in mitochondria are capable of protecting HepG2 cells expressing CYP2E1 against cytotoxicity induced by oxidants that promote lipid peroxidation and suggests the possibility that such agents may be useful in protecting against the development of alcohol liver injury.  相似文献   

9.
Four estrogen receptor-positive (ER+) [MCF-7, T47D, ZR75 and BT474] and 3 ER- [Hs578T, MDA-MB-468 and MDA-MB-231] human breast cancer cell lines were examined for expression of the IGFBP-5 and IGFBP-6 genes. Northern blot analysis revealed that all cell lines, except MDA-MB-231, expressed IGFBP-5 mRNA. IGFBP-6 mRNA, however, was expressed only by the ER- cell lines. Western immunoblotting indicated that the previously unidentified 31-kDa and 32-kDa IGF binding species secreted by these cell lines are IGFBP-5. The levels of IGFBP-4 and IGFBP-5 were increased in MCF-7 cells by estradiol and IGF-I, respectively, indicating that these BPs may contribute to the growth stimulatory response to these mitogens.  相似文献   

10.
Quinidine inhibits proliferation and promotes cellular differentiation in human breast tumor epithelial cells. Previously we showed quinidine arrested MCF-7 cells in G(1) phase of the cell cycle and led to a G(1) to G(0) transition followed by apoptotic cell death. The present experiments demonstrated that MCF-7, MCF-7ras, T47D, MDA-MB-231, and MDA-MB-435 cells transiently differentiate before undergoing apoptosis in response to quinidine. The cells accumulated lipid droplets, and the cytokeratin 18 cytoskeleton was reorganized. Hyperacetylated histone H4 appeared within 2 h of the addition of quinidine to the medium, and levels were maximal by 24 h. Quinidine-treated MCF-7 cells showed elevated p21(WAF1), hypophosphorylation and suppression of retinoblastoma protein, and down-regulation of cyclin D1, similar to the cell cycle response observed with cells induced to differentiate by histone deacetylase inhibitors, trichostatin A, and trapoxin. Quinidine did not show evidence for direct inhibition of histone deacetylase enzymatic activity in vitro. HDAC1 was undetectable in MCF-7 cells 30 min after addition of quinidine to the growth medium. The proteasome inhibitors MG-132 and lactacystin completely protected HDAC1 from the action of quinidine. We conclude that quinidine is a breast tumor cell differentiating agent that causes the loss of HDAC1 via a proteasomal sensitive mechanism.  相似文献   

11.
Claudins and occludin constitute the major transmembrane proteins of tight junctions (TJs). We have previously identified the human homologue of the murine Cldn1, CLDN1 (SEMP1) that is expressed in normal, mammary gland-derived epithelial cells but is absent in most human breast cancer cell lines. To investigate the potential functions of CLDN1 protein in tumor and normal epithelial cells, we developed an I-NGFR retroviral vector and monoclonal anti-CLDN1 antibody. In subconfluent and confluent breast cancer cells, MDA-MB-435 and MDA-MB-361, endogenous CLDN1 expression was not detected by an anti-CLDN1 monoclonal antibody by Western blot analysis or quantitative RT-PCR. When CLDN1-negative breast cancer cell lines were transduced with a CLDN1 retrovirus the cells express CLDN1 mRNA constitutively as shown by quantitative RT-PCR. Immunofluorescence analyses of the CLDN1 retroviral transduced breast tumor cells using monoclonal antibodies against CLDN1 reveals a subcellular distribution at cell-cell contact sites similar to the CLDN1 homing pattern in T47-D cells, which express endogenous CLDN1. This cell-cell contact co-localization of CLDN1 was evident in CLDN1-transduced breast tumor cells which fail to express occludin protein (MDA-MB-361 and MDA-MB-435) and express relatively little ZO-1 protein (MDA-MB-435), suggesting that other proteins may be responsible for targeting of CLDN1 to cell-cell contact sites. The re-expression of CLDN1 decreases the paracellular flux of 3 and 40 kDa dextran despite the absence of occludin in the MDA-MB-361 tumor cells. Our findings indicate that in CLDN1-negative breast tumor cells, the basal protein partner requirements for physiological homing of the CLDN1 protein are intact, and that CLDN1 gene transfer and protein expression itself might be sufficient to exert a TJ-mediate gate function in metastatic tumor cells even in the absence of other TJ-associated proteins, such as occludin.  相似文献   

12.
Peritoneal cells from congeneic resistant mice infected with BCG displayed differential cytotoxicity toward tumor cells destroying more allogeneic tumor cells than syngeneic tumor cells. This observation was made regardless of the tumor cells used or the effector cell source. The responsible effector cell remained in a doubly adherent population, was sensitive to carrageenan and silica, insensitive to anti-thymocyte sera, and is probably a macrophage. Activated macrophages were capable of reacting against tumor cells as well as histoincompatible embryonic cells. These observations may indicate that macrophages are capable of discriminating cell surface components linked to the major histocompatibility complex.  相似文献   

13.
Bone morphogenetic protein-6 (BMP-6) is closely correlated with tumor differentiation and skeletal metastasis. Our previous research found that BMP-6 gene expression can be activated dose-dependently by estrogen in estrogen receptor positive (ER+) breast cancer cell line MCF-7, but not in ER negative (ER) cell line MDA-MB-231. This experiment is designed to investigate the epigenetic regulatory mechanism of the BMP-6 gene expression in breast cancer cell lines MDA-MB-231, MCF-7 and T47D with regard to the methylation status in the 5′ flanking region of the human BMP-6 gene. The endogenous level of BMP-6 mRNA in ER cell line MDA-MB-231 was relatively lower than that in ER+ MCF-7 and T47D cell lines. After the treatment with 5-aza-2′-deoxycytidine (5-aza-dC, especially in the concentration of 10 μM), the BMP-6 mRNA expression in MDA-MB-231 was obviously up-regulated. However, 5-aza-dC treatment failed to regulate the expression of BMP-6 in MCF-7 and T47D cells. Using enzyme restriction PCR (MSRE-PCR), as well as bisulfite sequencing (BSG), methylation of human BMP-6 gene promoter was detected in MDA-MB-231; while in MCF-7 and T47D, BMP-6 gene promoter remained demethylated status. In 33 breast tumor specimens, promoter methylation of BMP-6 was detected by methylation-specific PCR, hypermethylation of BMP-6 was observed in ER negative cases (16 of 16 cases (100%)), while obviously lower methylation frequency were observed in ER positive cases (3 of 17 cases (18%)), indicating that BMP-6 promoter methylation status is correlated with ER status in breast cancer.  相似文献   

14.
TRA-8, a monoclonal antibody to death receptor 5 induces apoptosis in various cancer cells; however, the degree of sensitivity varies from highly sensitive to resistant. We have previously shown that resistance to TRA-8 can be reversed by using chemotherapeutic agents, but the mechanism underlying this sensitization was not fully understood. Here, we examined the combination of TRA-8 with doxorubicin or bortezomib in breast cancer cells. In TRA-8-resistant BT-474 and T47D cells, both chemotherapy agents synergistically sensitized cells to TRA-8 cytotoxicity with enhanced activation of apoptosis shown by cleavage of caspases and PARP, reduced Bid, increased proapoptotic Bcl-2 proteins, and increased mitochondrial membrane depolarization. Doxorubicin or bortezomib combined with TRA-8 also reduced Bcl-XL and X-linked inhibitors of apoptosis (XIAP) in treated cells. Furthermore, targeting these proteins with pharmacologic modulators, AT-101, BH3I-2' and AT-406, produced sensitization to TRA-8. TRA-8 combined with AT-101 or BH3I-2', inhibitors of antiapoptotic Bcl-2 proteins, produced synergistic cytotoxicity against ZR-75-1, BT-474, and T47D cells. The IAP-targeting compound, AT-406, was synergistic with TRA-8 in BT-474 cells, and to a lesser extent T47D cells. Activation of the intrinsic apoptotic pathway was a common mechanism associated with sensitization of TRA-8-resistant breast cancer cell lines. Collectively, these studies show that the Bcl-2 and IAP families of proteins are involved in TRA-8 and chemotherapy resistance via their modulation of the intrinsic apoptotic pathway. Targeting these proteins with novel agents sensitized TRA-8-resistant breast cancer cells, suggesting this approach may represent a potent therapeutic strategy in the treatment of breast cancer.  相似文献   

15.
Al-Dhaheri MH  Shah YM  Basrur V  Pind S  Rowan BG 《Steroids》2006,71(11-12):966-978
Tamoxifen is currently used as adjuvant therapy for estrogen receptor (ER) positive breast cancer patients and as a chemopreventative agent. Although ER is a predictive marker for tamoxifen response, ER status fails to predict tamoxifen response in a significant number of patients highlighting the need to identify new pathways for tamoxifen sensitivity/resistance. To identify novel proteins induced by tamoxifen in breast cancer cells sensitive to tamoxifen growth inhibition, two-dimensional (2D) gel electrophoresis was used to profile proteins in T47D breast cancer cells. Six proteins were identified that were differentially regulated by 17beta-estradiol, 4-hydroxytamoxifen and the pure antagonist acolbifene (EM-652); calreticulin, synapse associated protein 1 (SYAP1), CD2 antigen binding protein 2 (CD2BP2), nucleosome assembly protein 1 like 1 (NAP1L1), d-3-phosphoglycerate dehydrogenase (3-PHGDH) and pyridoxine 5' phosphate oxidase (PNPO). At the mRNA level, these ligands differentially regulated expression of mRNAs encoding the identified proteins in T47D and MCF7 cells but had no effect on mRNA in ERalpha-negative MDA-MB-231 breast cancer cells. These novel SERM-regulated proteins may participate in new or existing pathways for sensitivity or resistance to SERMs.  相似文献   

16.
Lack of estrogen receptor (ER) and presence of vimentin (VIM) associate with poor prognosis in human breast cancer. We have explored the relationships between ER, VIM, and invasiveness in human breast cancer cell lines. In the matrigel outgrowth assay, ER+/VIM- (MCF-7, T47D, ZR-75-1), and ER-/VIM- (MDA-MB-468, SK-Br-3) cell lines were uninvasive, while ER-/VIM+ (BT549, MDA-MB-231, MDA-MB-435, MDA-MB-436, Hs578T) lines formed invasive, penetrating colonies. Similarly, ER-/VIM+ cell lines were significantly more invasive than either the ER+/VIM- or ER-/VIM- cell lines in the Boyden chamber chemoinvasion assay. Invasive activity in nude mice was only seen with ER-/VIM+ cell lines MDA-MB-231, MDA-MB-435 and MDA-MB-436. Hs578T cells (ER-/VIM+) showed hematogenous dissemination to the lungs in one of five mice, but lacked local invasion. The ER-/VIM+ MCF-7ADR subline was significantly more active than the MCF-7 cells in vitro, but resembled the wild-type MCF-7 parent in in vivo activity. Data from these cell lines suggest that human breast cancer progression results first in the loss of ER, and subsequently in VIM acquisition, the latter being associated with increased metastatic potential through enhanced invasiveness. The MCF-7ADR data provide evidence that this transition can occur in human breast cancer cells. Vimentin expression may provide useful insights into mechanisms of invasion and/or breast cancer cell progression.  相似文献   

17.
CD44, a widely expressed cell surface glycoprotein, plays a major role in cell-cell adhesion, cell-substrate interaction, lymphocyte homing, and tumor metastasis. For tumor metastasis to occur through the blood vessel and lymphatic vessel pathway, the tumor cells must first adhere to endothelial cells. Recent studies have shown that high expression of CD44 in certain types of tumors is associated with the hematogenic spread of cancer cells. However, the functional relevance of CD44 to tumor cell metastasis remains unknown. In this study, we investigated the mechanisms of CD44 cross-linking-induced adhesion and transendothelial migration of tumor cells using MDA-MB-435S breast cancer cell line. Breast cancer cells were found to express high levels of CD44. Using flow cytometric analysis and immunofluorescence staining, we demonstrated that cross-linking of CD44 resulted in a marked induction of the expression of lymphocyte function-associated antigen-1 (LFA-1) and very late antigen-4 (VLA-4) by exocytosis. These results were also observed with the Hs578T breast cancer cell line. Furthermore, LFA-1- and VLA-4-mediated adhesion and transendothelial cancer cell migration were also studied. Anti-LFA-1 mAb or anti-VLA-4 mAb alone had no effect on adhesion or transendothelial cancer cell migration, but were able to inhibit both of these functions when added together. This shows that CD44 cross-linking induces LFA-1 and VLA-4 expression in MDA-MB-435S cells and increases integrin-mediated adhesion to endothelial cells, resulting in the transendothelial migration of breast cancer cells. These observations provide direct evidence of a new function for CD44 that is involved in the induction of LFA-1 and VLA-4 expression by exocytosis in MDA-MB-435S cells. Because these induced integrins promote tumor cell migration into the target tissue, it may be possible to suppress this by pharmacological means, and thus potentially cause a reduction in invasive capability and metastasis.  相似文献   

18.

Aims

Cellular senescence is an important tumor suppression process in vivo. Tamoxifen is a well-known anti-breast cancer drug; however, its molecular function is poorly understood. Here, we examined whether tamoxifen promotes senescence in breast cancer and colon cancer cells for the first time.

Main methods

Human breast cancer MCF-7, T47D, and MDA-MB-435 and colorectal cancer HCT116 cells were treated with tamoxifen. Cellular senescence was measured by SA-β-gal staining and based on the protein expression of p53 and p21Cip1/WAF1. The production of reactive oxygen species (ROS) was determined by staining with CM-H2DCFDA and dihydroethidium (DHE). CK2 activity was assessed with a specific peptide substrate.

Key findings

Tamoxifen promoted senescence phenotype and ROS generation in MCF-7 and HCT116 cells. The ROS scavenger, N-acetyl-l-cysteine (NAC), and the NADPH oxidase inhibitor, apocynin, almost completely abolished this event. Tamoxifen inhibited the catalytic activity of CK2. Overexpression of CK2α antagonized senescence mediated by tamoxifen, indicating that tamoxifen induced senescence via a CK2-dependent pathway. A well-known CK2 inhibitor, 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB), also stimulated ROS production and senescence in MCF-7 cells. Finally, experiments using T47D (wild-type p53) and MDA-MB-435 (mutant p53) cell lines suggested that tamoxifen induces p53-independent ROS production as well as p53-dependent senescence in breast cancer cells.

Significance

These results demonstrate that tamoxifen promotes senescence through a ROS–p53–p21Cip1/WAF1 dependent pathway by inhibiting CK2 activity in breast cancer and colon cancer cells.  相似文献   

19.
BACKGROUND: In this study we investigated whether a particular branched HK polymer, H2K4b, was an effective in vivo carrier of plasmids expressing the antiangiogenic kringle 1-5 or the tumor suppressor p53. METHODS: H2K4b was synthesized on a solid-phase peptide synthesizer. Distribution, optimization and time course studies were done in tumor-bearing nude mice by systemically administering H2K4b in complex with a luciferase-expressing plasmid. We examined the amount of tumor angiogenesis in C6 with MDA-MB-435 xenografts utilizing the carmine dye. The ability of H2K4b to carry luciferase plasmids to different tissues was compared with several liposomal carriers. Medium from cells transfected with mKr1-5 was tested for its capacity to inhibit angiogenesis with an in vivo Matrigel assay. We then determined if systemically delivered H2K4b in complex with plasmid encoding mKr1-5 inhibited tumor growth; we also compared the antitumor activity of HK polyplexes containing hKr1-5, mKr1-5, and p53 plasmids. RESULTS: H2K4b carried the luciferase-expressing plasmid in order of descending efficacy to these tissues: lung, spleen, tumor, and liver. Compared to DOTAP-containing liposomes, H2K4b was a more effective carrier of a luciferase-containing plasmid to extrapulmonary tissues. We then determined that mKr1-5 in complex with H2K4b reduced MDA-MB-435 tumor growth by approximately 50% compared to the control group (P < 0.01). Similarly, H2K4b/mKr1-5 polyplexes reduced the growth of C6 xenografts. In MDA-MB-435 xenografts, p53- and Kr1-5-expressing plasmids in complex with H2K4b had comparable antitumor activity. CONCLUSION: H2K4b demonstrates potential as a carrier of plasmids encoding antiangiogenic and/or tumor suppressor proteins in a tumor-bearing mouse model.  相似文献   

20.
Tumors are heterogeneous at the cellular level where the ability to maintain tumor growth resides in discrete cell populations. Floating sphere-forming assays are broadly used to test stem cell activity in tissues, tumors and cell lines. Spheroids are originated from a small population of cells with stem cell features able to grow in suspension culture and behaving as tumorigenic in mice. We tested the ability of eleven common breast cancer cell lines representing the major breast cancer subtypes to grow as mammospheres, measuring the ability to maintain cell viability upon serial non-adherent passage. Only MCF7, T47D, BT474, MDA-MB-436 and JIMT1 were successfully propagated as long-term mammosphere cultures, measured as the increase in the number of viable cells upon serial non-adherent passages. Other cell lines tested (SKBR3, MDA-MB-231, MDA-MB-468 and MDA-MB-435) formed cell clumps that can be disaggregated mechanically, but cell viability drops dramatically on their second passage. HCC1937 and HCC1569 cells formed typical mammospheres, although they could not be propagated as long-term mammosphere cultures. All the sphere forming lines but MDA-MB-436 express E-cadherin on their surface. Knock down of E-cadherin expression in MCF-7 cells abrogated its ability to grow as mammospheres, while re-expression of E-cadherin in SKBR3 cells allow them to form mammospheres. Therefore, the mammosphere assay is suitable to reveal stem like features in breast cancer cell lines that express E-cadherin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号