首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marie Lapaille  Emilie Perez  Claire Remacle 《BBA》2010,1797(8):1533-1539
Mitochondrial F1FO ATP synthase (Complex V) catalyses ATP synthesis from ADP and inorganic phosphate using the proton-motive force generated by the substrate-driven electron transfer chain. In this work, we investigated the impact of the loss of activity of the mitochondrial enzyme in a photosynthetic organism. In this purpose, we inactivated by RNA interference the expression of the ATP2 gene, coding for the catalytic subunit β, in the green alga Chlamydomonas reinhardtii. We demonstrate that in the absence of β subunit, complex V is not assembled, respiratory rate is decreased by half and ATP synthesis coupled to the respiratory activity is fully impaired. Lack of ATP synthase also affects the morphology of mitochondria which are deprived of cristae. We also show that mutants are obligate phototrophs and that rearrangements of the photosynthetic apparatus occur in the chloroplast as a response to ATP synthase deficiency in mitochondria. Altogether, our results contribute to the understanding of the yet poorly studied bioenergetic interactions between organelles in photosynthetic organisms.  相似文献   

2.
3.
The proposal that the respiratory complexes can associate with each other in larger structures named supercomplexes (SC) is generally accepted. In the last decades most of the data about this association came from studies in yeasts, mammals and plants, and information is scarce in other lineages. Here we studied the supramolecular association of the F1FO-ATP synthase (complex V) and the respiratory complexes I, III and IV of the colorless alga Polytomella sp. with an approach that involves solubilization using mild detergents, n-dodecyl-β-D-maltoside (DDM) or digitonin, followed by separation of native protein complexes by electrophoresis (BN-PAGE), after which we identified oligomeric forms of complex V (mainly V2 and V4) and different respiratory supercomplexes (I/IV6, I/III4, I/IV). In addition, purification/reconstitution of the supercomplexes by anion exchange chromatography was also performed. The data show that these complexes have the ability to strongly associate with each other and form DDM-stable macromolecular structures. The stable V4 ATPase oligomer was observed by electron-microscopy and the association of the respiratory complexes in the so-called “respirasome” was able to perform in-vitro oxygen consumption.  相似文献   

4.
Application of electric pulses (1000 V/cm, 20 m sec duration) to macroliposomes containing pure stable H+-ATPase (F0·F1) resulted in synthesis of ATP. Microliposomes containing F0·F1 showed very little ATP synthesis under the same conditions. The amount of ATP synthesized was increased by increasing the number of electric pulses applied and decreased by addition of either an uncoupler or an energy transfer inhibitor.  相似文献   

5.
6.
7.
Blue native gel electrophoresis purification and immunoprecipitation of F0F1-ATP synthase from bovine heart mitochondria revealed that cyclophilin (CyP) D associates to the complex. Treatment of intact mitochondria with the membrane-permeable bifunctional reagent dimethyl 3,3-dithiobis-propionimidate (DTBP) cross-linked CyPD with the lateral stalk of ATP synthase, whereas no interactions with F1 sector subunits, the ATP synthase natural inhibitor protein IF1, and the ATP/ADP carrier were observed. The ATP synthase-CyPD interactions have functional consequences on enzyme catalysis and are modulated by phosphate (increased CyPD binding and decreased enzyme activity) and cyclosporin (Cs) A (decreased CyPD binding and increased enzyme activity). Treatment of MgATP submitochondrial particles or intact mitochondria with CsA displaced CyPD from membranes and activated both hydrolysis and synthesis of ATP sustained by the enzyme. No effect of CsA was detected in CyPD-null mitochondria, which displayed a higher specific activity of the ATP synthase than wild-type mitochondria. Modulation by CyPD binding appears to be independent of IF1, whose association to ATP synthase was not affected by CsA treatment. These findings demonstrate that CyPD association to the lateral stalk of ATP synthase modulates the activity of the complex.  相似文献   

8.
The respiratory chain in the inner mitochondrial membrane contains three large multi‐enzyme complexes that together establish the proton gradient for ATP synthesis, and assemble into a supercomplex. A 19‐Å 3D map of the 1.7‐MDa amphipol‐solubilized supercomplex I1III2IV1 from bovine heart obtained by single‐particle electron cryo‐microscopy reveals an amphipol belt replacing the membrane lipid bilayer. A precise fit of the X‐ray structures of complex I, the complex III dimer, and monomeric complex IV indicates distances of 13 nm between the ubiquinol‐binding sites of complexes I and III, and of 10–11 nm between the cytochrome c binding sites of complexes III and IV. The arrangement of respiratory chain complexes suggests two possible pathways for efficient electron transfer through the supercomplex, of which the shorter branch through the complex III monomer proximal to complex I may be preferred.  相似文献   

9.
A new assay has been developed to measure mitochondrial ATP synthesis of cultured mammalian cells. Cells in a microplate are exposed to streptolysin O to make plasma membranes permeable without damaging mitochondrial function and ATP synthesis is monitored by luciferase. Addition of inhibitors of FoF1-ATP synthase (FoF1), respiratory chain, TCA cycle and ATP/ADP translocator, as well as knockdown of β-subunit of FoF1, resulted in loss of ATP synthesis. Compared with the conventional procedures that need mitochondria fractionation and detergent, this assay is simple, sensitive and suitable for high-throughput analysis of genes and drugs that could affect mitochondrial functional integrity as represented by ATP synthesis activity.  相似文献   

10.
This study aimed at increasing the pyruvate productivity of a multi-vitamin auxotrophic yeast Torulopsis glabrata by redirecting NADH oxidation from adenosine triphosphate (ATP)-production pathway (oxidative phosphorylation pathway) to non-ATP production pathway (fermentative pathway). Two respiratory-deficient mutants, RD-17 and RD-18, were screened and selected after ethidium bromide (EtBr) mutagenesis of the parent strain T. glabrata CCTCC M202019. Compared with the parent strain, cytochrome aa 3 and b in electron transfer chain (ETC) of RD-18 and cytochrome b in RD-17 were disrupted. As a consequence, the activities of key ETC enzymes of the mutant RD-18, including F0F1-ATP synthase, complex I, complex I + III, complex II + III, and complex IV, decreased by 22.2, 41.6, 53.1, 23.6, and 84.7%, respectively. With the deficiency of cytochromes in ETC, a large amount of excessive cytosolic NADH was accumulated, which hampered the further increase of the glycolytic flux. An exogenous electron acceptor, acetaldehyde, was added to the strain RD-18 culture to oxidize the excessive NADH. Compared with the parent strain, the concentration of pyruvate and the glucose consumption rate of strain RD-18 were increased by 26.5 and 17.6%, respectively, upon addition of 2.1 mM of acetaldehyde. The strategy for increasing the glycolytic flux in T. glabrata by redirecting the NADH oxidation pathway may provide an alternative approach to enhance the glycolytic flux in yeast.  相似文献   

11.
The first component of the mitochondrial electron-transport chain is especially complex, consisting of 19 nuclear and seven mitochondrion-encoded subunits. Accordingly, a wide range of clinical manifestations are produced by the various mutations occurring in human populations. In this study, we analyze the subunit structure of complex I in fibroblasts from two patients who have distinct clinical phenotypes associated with complex I deficiency. The first patient died in the second week of life from overwhelming lactic acidosis. Severe complex I deficiency was evident in her fibroblasts, since alanine oxidation was markedly reduced whereas succinate oxidation was normal. Absence of a 20-kDa subunit was demonstrable when newly synthesized proteins were immunoprecipitated from pulse-labeled fibroblasts by anti-complex I antibody. Disordered assembly or decreased stability of the complex was suggested by deficiency of multiple subunits on Western immunoblots. The second patient exhibited a milder clinical phenotype, characterized by moderate lactic acidosis and developmental delay in childhood and by onset of seizures at 8 years of age. Oxidation studies demonstrated expression of the complex I deficiency in fibroblasts, but no subunit abnormalities were detected by immunoprecipitation or Western immunoblotting. This report demonstrates the utility of cultured fibroblasts in studying mutations affecting synthesis and assembly of complex I.  相似文献   

12.
《BBA》2020,1861(1):148091
F1FO ATP synthase, also known as complex V, is a key enzyme of mitochondrial energy metabolism that can synthesize and hydrolyze ATP. It is not known whether the ATP synthase and ATPase function are correlated with a different spatio-temporal organisation of the enzyme. In order to analyze this, we tracked and localized single ATP synthase molecules in situ using live cell microscopy. Under normal conditions, complex V was mainly restricted to cristae indicated by orthogonal trajectories along the cristae membranes. In addition confined trajectories that are quasi immobile exist. By inhibiting glycolysis with 2-DG, the activity and mobility of complex V was altered. The distinct cristae-related orthogonal trajectories of complex V were obliterated. Moreover, a mobile subpopulation of complex V was found in the inner boundary membrane. The observed changes in the ratio of dimeric/monomeric complex V, respectively less mobile/more mobile complex V and its activity changes were reversible. In IF1-KO cells, in which ATP hydrolysis is not inhibited by IF1, complex V was more mobile, while inhibition of ATP hydrolysis by BMS-199264 reduced the mobility of complex V. Taken together, these data support the existence of different subpopulations of complex V, ATP synthase and ATP hydrolase, the latter with higher mobility and probably not prevailing at the cristae edges. Obviously, complex V reacts quickly and reversibly to metabolic conditions, not only by functional, but also by spatial and structural reorganization.  相似文献   

13.
Summary The analysis of anisotropic inhibitor-induced phenomena in mitochondria revealed that two kinds of negative charges are generated near surface of the C-side of mitochondrial inner membranes in the energized state, on the redox complexes (I, III & IV) and F0, respectively, and that positively charged anisotropic inhibitors (AI+) inhibit energy transduction in oxidative phosphorylation by binding to these negative charges. Thus, AI+ have two different inhibition sites in oxidative phosphorylation, the redox complexes and F0. The membrane components generating the negative charges in energized mitochondria were examined by the technique of photoaffinity labeling with monoazide ethidium, which is an AI+. Results showed that monoazide ethidium specifically binds to two kinds of hydrophobic protein (of 8 K and 13 K daltons) of mitochondria energized with succinate, and these proteins were named chargerin I and II, respectively. Chargerin I and II, which may be components of the redox complexes and F0, seem to generate the negative charges described above, and these may be essential for H+-pumps in the redox complexes and F1 · F0. AI+ seem to inhibit ATP synthesis by binding to negatively charged sites of chargerin I and II.Based on these findings and the salient results on energy-transducing membranes obtained recently in other laboratories, a conformational model of H+-pumps and ATP synthesis in mitochondria is proposed, which is also applicable to ATP synthesis in other energy-transducing membranes and ATP-linked active transport of ions.  相似文献   

14.
The FoF1 synthase produces ATP from ADP and inorganic phosphate. The γ subunit of FoF1 ATP synthase in photosynthetic organisms, which is the rotor subunit of this enzyme, contains a characteristic β-hairpin structure. This structure is formed from an insertion sequence that has been conserved only in phototrophs. Using recombinant subcomplexes, we previously demonstrated that this region plays an essential role in the regulation of ATP hydrolysis activity, thereby functioning in controlling intracellular ATP levels in response to changes in the light environment. However, the role of this region in ATP synthesis has long remained an open question because its analysis requires the preparation of the whole FoF1 complex and a transmembrane proton-motive force. In this study, we successfully prepared proteoliposomes containing the entire FoF1 ATP synthase from a cyanobacterium, Synechocystis sp. PCC 6803, and measured ATP synthesis/hydrolysis and proton-translocating activities. The relatively simple genetic manipulation of Synechocystis enabled the biochemical investigation of the role of the β-hairpin structure of FoF1 ATP synthase and its activities. We further performed physiological analyses of Synechocystis mutant strains lacking the β-hairpin structure, which provided novel insights into the regulatory mechanisms of FoF1 ATP synthase in cyanobacteria via the phototroph-specific region of the γ subunit. Our results indicated that this structure critically contributes to ATP synthesis and suppresses ATP hydrolysis.  相似文献   

15.
H+-FOF1-ATP synthase (F-ATPase, F-type ATPase, FOF1 complex) catalyzes ATP synthesis from ADP and inorganic phosphate in eubacteria, mitochondria, chloroplasts, and some archaea. ATP synthesis is powered by the transmembrane proton transport driven by the proton motive force (PMF) generated by the respiratory or photosynthetic electron transport chains. When the PMF is decreased or absent, ATP synthase catalyzes the reverse reaction, working as an ATP-dependent proton pump. The ATPase activity of the enzyme is regulated by several mechanisms, of which the most conserved is the non-competitive inhibition by the MgADP complex (ADP-inhibition). When ADP binds to the catalytic site without phosphate, the enzyme may undergo conformational changes that lock bound ADP, resulting in enzyme inactivation. PMF can induce release of inhibitory ADP and reactivate ATP synthase; the threshold PMF value required for enzyme reactivation might exceed the PMF for ATP synthesis. Moreover, membrane energization increases the catalytic site affinity to phosphate, thereby reducing the probability of ADP binding without phosphate and preventing enzyme transition to the ADP-inhibited state. Besides phosphate, oxyanions (e.g., sulfite and bicarbonate), alcohols, lauryldimethylamine oxide, and a number of other detergents can weaken ADP-inhibition and increase ATPase activity of the enzyme. In this paper, we review the data on ADP-inhibition of ATP synthases from different organisms and discuss the in vivo role of this phenomenon and its relationship with other regulatory mechanisms, such as ATPase activity inhibition by subunit ε and nucleotide binding in the noncatalytic sites of the enzyme. It should be noted that in Escherichia coli enzyme, ADP-inhibition is relatively weak and rather enhanced than prevented by phosphate.  相似文献   

16.
Addition of ATP to chloroplasts causes a reversible 25–30% decrease in chlorophyll fluorescence. This quenching is light-dependent, uncoupler insensitive but inhibited by DCMU and electron acceptors and has a half-time of 3 minutes. Electron donors to Photosystem I can not overcome the inhibitory effect of DCMU, suggesting that light activation depends on the reduced state of plastoquinone. Fluorescence emission spectra recorded at ?196°C indicate that ATP treatment increases the amount of excitation energy transferred to Photosystem I. Examination of fluorescence induction curves indicate that ATP treatment decreases both the initial (Fo) and variable (Fv) fluorescence such that the ratio of Fv to the maximum (Fm) yield is unchanged. The initial sigmoidal phase of induction is slowed down by ATP treatment and is quenched 3-fold more than the exponential slow phase, the rate of which is unchanged. A plot of Fv against area above the induction curve was identical plus or minus ATP. Thus ATP treatment can alter quantal distribution between Photosystems II and I without altering Photosystem II-Photosystem II interaction. The effect of ATP strongly resembles in its properties the phosphorylation of the light-harvesting complex by a light activated, ATP-dependent protein kinase found in chloroplast membranes and could be the basis of physiological mechanisms which contribute to slow fluorescence quenching in vivo and regulate excitation energy distribution between Photosystem I and II. It is suggested that the sensor for this regulation is the redox state of plastoquinone.  相似文献   

17.
In this study we have investigated the mechanisms leading to mitochondrial damage in cultured neurons following sustained exposure to nitric oxide. Thus, the effects upon neuronal mitochondrial respiratory chain complex activity and reduced glutathione concentration following exposure to either the nitric oxide donor, S-nitroso-N-acetylpenicillamine, or to nitric oxide releasing astrocytes were assessed. Incubation with S-nitroso-N-acetylpenicillamine (1 mM) for 24 h decreased neuronal glutathione concentration by 57%, and this effect was accompanied by a marked decrease of complex I (43%), complex II–III (63%), and complex IV (41%) activities. Incubation of neurons with the glutathione synthesis inhibitor, l-buthionine-[S,r]-sulfoximine caused a major depletion of neuronal glutathione (93%), an effect that was accompanied by a marked loss of complex II–III (60%) and complex IV (41%) activities, although complex I activity was only mildly decreased (34%). In an attempt to approach a more physiological situation, we studied the effects upon glutathione status and mitochondrial respiratory chain activity of neurons incubated in coculture with nitric oxide releasing astrocytes. Astrocytes were activated by incubation with lipopolysaccharide/interferon-γ for 18 h, thereby inducing nitric oxide synthase and, hence, a continuous release of nitric oxide. Coincubation for 24 h of activated astrocytes with neurons caused a limited loss of complex IV activity and had no effect on the activities of complexes I or II–III. However, neurons exposed to astrocytes had a 1.7-fold fold increase in glutathione concentration compared to neurons cultured alone. Under these coculture conditions, the neuronal ATP concentration was modestly reduced (14%). This loss of ATP was prevented by the nitric oxide synthase inhibitor, NG-monomethyl-L-arginine. These results suggest that the neuronal mitochondrial respiratory chain is damaged by sustained exposure to nitric oxide and that reduced glutathione may be an important defence against such damage.  相似文献   

18.
The rod Outer Segment (OS) disc, an organelle devoid of mitochondria, is specialized in phototransduction, a process requiring a continual chemical energy supply. We have shown that OS discs express functional mitochondrial electron transport chains, FoF1‐ATP synthase and the tricarboxylic acid cycle enzymes, all mitochondrial features. Here, we focus on oxygen consumption and adenosine triphosphate (ATP) synthesis by OS discs analysing electron transport chain I‐III‐IV and II‐II‐IV pathways, supported by reduced nicotinamide adenine dinucleotide and succinate, respectively. Interestingly, respiratory capacity of discs was measurable also in the presence of 3‐hydroxy‐butyrrate, a typical metabolic substrate for the brain. Data were supported by a two‐dimensional electrophoresis analyses conducted as our previous one, but focused to those mitochondrial proteins that are involved in oxidative phosphorylation. Carbonic anhydrase was also found active in OS discs. Moreover, colocalization of Rhodopsin with respiratory complex I and ATP synthase seems a further step in the characterization of some proteins typical of the mitochondrial inner membranes that are expressed in the rod discs. The existence of oxygen utilization in the outer retina, likely supplying ATP for phototransduction, may shed light on some retinal pathologies related to oxidative stress of the outer retina. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Age-related increase of reactive oxygen species (ROS) is particularly detrimental in postmitotic tissues. Calorie restriction (CR) has been shown to exert beneficial effects, consistent with reduced ROS generation by mitochondria. Many antioxidant compounds also mimic such effects. N-acetyl cysteine (NAC) provides thiol groups to glutathione and to mitochondrial respiratory chain proteins; thus, it may counteract both ROS generation and effects. In the present study we investigated, in different rat brain areas during aging (6, 12, and 28 months), the effect of 1-year treatment with CR and dietary supplementation with NAC on the expression of subunit 39 kDa and ND-1 (mitochondrial respiratory complex I), subunit IV (complex IV), subunit α of F0F1-ATP synthase (complex V) and of adenine nucleotide translocator, isoform 1 (ANT-1). The observed age-related changes of expression were prevented by the dietary treatments. The present study provides further evidence for the critical role of mitochondria in the aging process.  相似文献   

20.
The classical view of oxidative phosphorylation is that a proton motive force (PMF) generated by the respiratory chain complexes fuels ATP synthesis via ATP synthase. Yet, under glycolytic conditions, ATP synthase in its reverse mode also can contribute to the PMF. Here, we dissected these two functions of ATP synthase and the role of its inhibitory factor 1 (IF1) under different metabolic conditions. pH profiles of mitochondrial sub‐compartments were recorded with high spatial resolution in live mammalian cells by positioning a pH sensor directly at ATP synthase’s F1 and FO subunits, complex IV and in the matrix. Our results clearly show that ATP synthase activity substantially controls the PMF and that IF1 is essential under OXPHOS conditions to prevent reverse ATP synthase activity due to an almost negligible ΔpH. In addition, we show how this changes lateral, transmembrane, and radial pH gradients in glycolytic and respiratory cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号