首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The structure of mucosal triacylglycerols was studied in rat intestinal mucosa in vivo during the absorption of a low molecular weight fraction of butter oil and of the corresponding free fatty acids of medium and long chain length. The mucosal lipids were isolated by solvent extraction and the acylglycerol structures were determined by combined AgNO3- thin-layer chromatography and gas-liquid chromatography techniques and stereospecific analysis. Evidence was obtained for a rapid biosynthesis of triacylglycerols from diacylglycerols arising from the operation of both the monoacylglycerol and the phosphatidic acid biosynthetic pathways. Both sn-1,2- and sn-2,3-diacylglycerols appeared to be converted to triacylglycerols at significant rates, but a preferential utilization of sn-1,2-diacylglycerols could not be excluded. Endogenous dilution varied from a miniumum of 5% during triacylglycerol biosynthesis from monoacylglycerols to 15% during their synthesis from free fatty acids, and was characterized by a preferential placement of the endogenous acids in the sn-3 and 2 positions of the triacylglycerol molecules. Exogenous myristic acid was preferentially associated with the sn-3 position, and stearic acid became preferentially bound to the sn-1 position. The complexity of the triacylglycerol end products prevented an exact estimate of the contribution of the phosphatidic acid pathway, but the acylglycerol structures were compatible with a minimum of 20% of total triacylglycerol yield at all times.  相似文献   

2.
The biosynthesis of diacylglycerols was studied in rat intestinal mucosa during in vivo absorption of a low molecular weight fraction fraction of butter oil and of the corresponding medium and long chain fatty acids. The experimental fat solutions were given by stomach tube to the animals after a 24-h fast and mucosal scraping were collected 3 h later. The lipids were isolated and the acylclycerols determined by combined thin-layer chromatography gas-liquid chromatography techniques and stereospecific analyses. Free fatty acid feeding led mainly to sn-1,2-diacyl-glycerols, which contained exogenous and endogenous fatty acids. During triacylglycerol feeding, both sn-1,2-and sn-2,3-diacylglycerols were recovered in significant amounts from the intestinal mucosa. The composition of the sn-2,3-diacylglycerols corresponded to that with exogenous fatty acids but the sn-1,2-diacylglycerols clearly contained both exogenous and endogenous fatty acids. In all cases it was possible to isolate endogenous sn-1,2-diacylglycerols made up largely of species with linoleic and arachidonic acids in the 2 position and palmitic and stearic acids in the 1 position, which apparently were not converted to triacylglycerols. The in vivo reacylation of 2-monoacylglycerols via both sn-1,2- and sn-2,3-diacylglycerols is in agreement with similar findings in vitro with everted sacs of rat intestinal mucosa.  相似文献   

3.
Zhang  Cheng  Li  Xuanwei  Liu  Liu  Gao  Lijuan  Ou  Shiyi  Luo  Jianming  Peng  Xichun 《Applied microbiology and biotechnology》2018,102(21):9303-9316

The specialty of gastroenterology will be affected profoundly by the ability to modify the gastrointestinal microbiota through the use of antibiotics. This study investigated the in vivo effect of roxithromycin on gut bacteria and gene expression of colonic epithelial cells (CECs) using microbial 16S rDNA and colonic epithelial cell RNA sequencing, respectively. The results showed that roxithromycin distinctly lowered the microbial diversity in both the small intestine and cecum and altered the compositions of bacteria at both the phylum and genus levels, including the reduction of some bacteria beneficial to the hosts’ health. Eight decreased and 8 increased genera in the small intestine and 17 decreased and 4 increased genera of bacteria in the cecum were most affected by roxithromycin consumption. This consumption further altered the CECs’ expression of multiple genes. Thirty-one genes, which were significantly enriched in seven KEGG pathways and related to immune response, wound healing, and fibrosis, were significantly affected. Roxithromycin ingestion in healthy hosts, therefore, might lead to some undesirable consequences via affecting hosts’ gut microbiota and CECs. Our work offers a more comprehensive understanding of the impact of consuming roxithromycin on human health.

  相似文献   

4.
5.
AIMS: Bacteriophage vectors have potential as gene transfer and vaccine delivery vectors because of their low cost, safety and physical stability. However, little is known concerning phage-mediated gene transfer in mammalian hosts. We therefore performed experiments to examine phage-mediated gene transfer in vivo. METHODS AND RESULTS: Mice were inoculated with recombinant lambda phage containing a mammalian expression cassette encoding firefly luciferase (luc). Efficient, dose-dependent in vivo luc expression was detected, which peaked within 24 h of delivery and declined to undetectable levels within a week. Display of an integrin-binding peptide increased cellular internalization of phage in vitro and enhanced phage-mediated gene transfer in vivo. Finally, in vivo depletion of phagocytic cells using clodronate liposomes had only a minor effect on the efficiency of phage-mediated gene transfer. CONCLUSIONS: Unmodified lambda phage particles are capable of transducing mammalian cells in vivo, and may be taken up -- at least in part -- by nonphagocytic mechanisms. Surface modifications that enhance phage uptake result in more efficient in vivo gene transfer. SIGNIFICANCE AND IMPACT OF THE STUDY: These experiments shed light on the mechanisms involved in phage-mediated gene transfer in vivo, and suggest new approaches that may enhance the efficiency of this process.  相似文献   

6.
7.
In vivo and in vitro inhibition of JE gene expression by glucocorticoids   总被引:3,自引:0,他引:3  
Glucocorticoids are potent anti-inflammatory agents which affect cell growth and migration in a wide variety of systems and have profound effects on monocytes, decreasing their circulating number as well as inhibiting their accumulation at sites of inflammation and injury. Although the mechanisms by which glucocorticoids regulate gene induction have been established, the mechanisms by which they inhibit inflammation or cell growth and migration have yet to been determined. JE is one of the most abundant genes induced by platelet-derived growth factor (PDGF) in vitro and is also induced in vivo in response to ischemia or injury. JE encodes a low molecular weight glycoprotein that functions in part as a monocyte chemotactic factor and thus may be important in recruiting monocytes to sites of tissue injury and/or inflammation. We report that glucocorticoids block the induction of JE mRNA by serum or PDGF in cultured vascular smooth muscle cells. The effect of glucocorticoids appears largely due to destabilization of JE mRNA and has specificity for JE, in that other "early" PDGF-inducible genes are not inhibited by glucocorticoids. The effect of glucocorticoids also occurs in vivo: methyl prednisolone blocks the constitutive expression and inhibits the ischemia-induced elevation of JE mRNA levels in rat kidneys. The inhibition of JE mRNA accumulation by glucocorticoids may be related to the anti-inflammatory effects of these agents and defines JE as a member of what may be a group of PDGF-inducible genes that are responsive to corticosteroids.  相似文献   

8.
9.
Polyphenols from tea and other beverages such as red wine have been regarded with interest as possible chemopreventive agents against cancer. Here we report that red wine polyphenols (50 mg/kg) administered with the diet to F344 rats for 16 weeks inhibited colon carcinogenesis induced by azoxymethane (AOM, 7.4 mg/kg, total dose 74 mg/kg) or dimethylhydrazine (DMH, 30 mg/kg, total dose, 300 mg/kg). Polyphenol-treated animals had a consistently lower tumour yield compared to controls. In polyphenol-treated rats, the main bacterial strains in the faeces at sacrifice were Bacteroides, Lactobacillus and Bifidobacterium spp., whereas microorganisms predominantly identified in control-fed rats were Bacteroides, Clostridium and Propionibacterium spp. Wine polyphenols (57 mg/kg for 10 days, by gavage), administered to rats not treated with carcinogens, produced a significant decrease in the basal level of DNA oxidative damage of the colon mucosa as measured with the comet assay (average pyrimidine oxidation was reduced by 62% and purine oxidation by 57%, p<0.05). To further explore the molecular effects of wine polyphenols we used the microarray technology to study gene expression profiles: rats were treated with 50 mg/kg wine polyphenols for 14 days, mixed in the diet. Global expression analysis of 5707 genes revealed an extensive down-regulation of genes involved in a wide range of physiological functions, such as metabolism, transport, signal transduction and intercellular signalling. By analysing metabolic pathways with the GenMAPP software program we observed that two major regulatory pathways were down-regulated in the colon mucosa of polyphenols-treated rats: inflammatory response and steroid metabolism. We also found a down-regulation of many genes regulating cell surface antigens, metabolic enzymes and cellular response to oxidative stress. In conclusion, reduction of oxidative damage, modulation of colonic flora and variation in gene expression may all concur in the modulation of intestinal function and carcinogenesis by wine polyphenols.  相似文献   

10.
In vivo expression of the Bacillus subtilis spoVE gene.   总被引:5,自引:4,他引:1       下载免费PDF全文
  相似文献   

11.
In vivo expression of the Lactobacillus brevis S-layer gene.   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

12.
We have identified the viral mRNAs present in cells in which protein synthesis has been stringently inhibited prior to infection with adenovirus type 2. These species presumably represent the subset of viral mRNAs that are “immediate early” products, requiring only host cell genes for their expression, and they do not include any of the conventionally recognized early mRNAs. Treatment of cells with 100 μM anisomycin inhibits 99.6% of protein synthesis and substantially depresses (by 20–200 fold) the levels of the conventional early mRNAs from regions E1 A, E1B, E2, E3 and E4. Also depressed are species encoding an 87K protein (11.6–31.5 map units) and a 13.6K protein (encoded a short distance to the right of 21.5 map units). The only mRNAs not depressed by this treatment are an mRNA for a 13.5K protein encoded between 17.0 and 21.5 map units, and the mRNA for the late 52,55K protein encoded between 29 and 34 map units, which is also present in small amounts at early times. Further proof that production of the mRNA for the immediate early 13.5K protein is independent of EIA gene function is provided by the observation that it can be detected in cells infected with the EIA deletion mutant d1312.  相似文献   

13.
14.
Bacteria are remarkably adaptable organisms that are able to survive and multiply in diverse and sometimes hostile environments. Adaptability is determined by the complement of genetic information available to an organism and by the mechanisms that control gene expression. In general, gene products conferring a growth or survival advantage in a particular situation are expressed, while unnecessary or deleterious functions are not. Expression of virulence gene products that allow pathogenic bacteria to multiply on and within host cells and tissues are no exception to this rule. Being of little or no use to the bacterium except during specific stages of the infectious cycle, these accessory factors are nearly always subject to tight and coordinate regulation. As a result of recent advances, we are beginning to appreciate the complexities of the interactions between bacteria and their hosts. The ability to probe virulence gene regulation in vivo has broadened our perspectives on pathogenesis.  相似文献   

15.
16.
In vivo kinetics of mucosal uptake of luminal 59Fe2+ by tied segments of normal mouse duodenum are characterised by a Km of approx. 100 μM and a Vmax of approx. 9 pmol/min per mg wet weight of intestine. These values were determined at pH 7.25 in the presence of excess sodium ascorbate. Studies with luminal Fe2+ concentrations of 100 μM reveal: (1) uptake is relatively independent of ascorbate: Fe ratio and luminal pH and (2) uptake is potently inhibited by 1 mM Co2+ or Mn2+ and large luminal NaCl concentrations but not by Ca2+. 3 days of hypoxia (0.5 atmospheres) yields no significant increase in subsequent total mucosal uptake by in vivo tied segments while uptake is significantly reduced by semi-starvation. Quantitative comparison of in vivo mucosal uptake with subsequent determination of isolated brush-border membrane 59Fe2+ transport in individual mice reveals a positive correlation (P < 0.01) between the two parameters. These results, in conjunction with studies of isolated mouse duodenal brush-border membrane (Simpson, R.J. and Peters, T.J. (1985) Biochim. Biophys. Acta, 814, 381–388 and (1986) Biochim. Biophys. Acta 856, 109–114) suggest that the Fe2+ transport properties of isolated brush-border membrane are quantitatively adequate to explain in vivo mucosal uptake in normal and hypoxic mice at Fe2+ concentrations up to 100 μM.  相似文献   

17.
18.
19.
Intestinal gene regulation involves mechanisms that direct temporal expression along the vertical and horizontal axes of the alimentary tract. Sucrase-isomaltase (SI), the product of an enterocyte-specific gene, exhibits a complex pattern of expression. Generation of transgenic mice with a mutated SI transgene showed involvement of an overlapping CDP (CCAAT displacement protein)-GATA element in colonic repression of SI throughout postnatal intestinal development. We define this element as CRESIP (colon-repressive element of the SI promoter). Cux/CDP interacts with SI and represses SI promoter activity in a CRESIP-dependent manner. Cux/CDP homozygous mutant mice displayed increased expression of SI mRNA during early postnatal development. Our results demonstrate that an intestinal gene can be repressed in the distal gut and identify Cux/CDP as a regulator of this repression during development.  相似文献   

20.
Pulmonary hemorrhage is an increasing cause of death of leptospirosis patients. Bacterial collagenase has been shown to be involved in lung hemorrhage induced by various infectious agents. According to Leptospira whole genome study, colA, a gene suggested to code for bacterial collagenase has been identified. We investigated colA gene expression in lung tissues of Leptospira infected hamsters. Golden Syrian Hamsters were injected intraperitoneally with Leptospira interrogans serovar Pyrogenes. The hamsters were sacrificed on days 3, 5 and 7 post-infection and lung tissues were collected for histological examination and RNA extraction. Lung pathologies including atelectasis and hemorrhage were observed. Expression of colA gene in lung tissues was demonstrated by both RT-PCR and real time PCR. In addition, ColA protein was cloned and the purified protein could react with sera from leptospirosis patients. Leptospira ColA protein may play a role in Leptospira survival or pathogenesis in vivo. Its reaction with leptospirosis sera suggests that this protein is immunogenic and could be another candidate for vaccine development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号