首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. Whitmarsh  W.A. Cramer 《BBA》1977,460(2):280-289
The kinetics of the photoreduction of cytochrome b-559 and plastoquinone were measured using well-coupled spinach chloroplasts. High potential (i.e. hydroquinone reducible) cytochrome b-559 was oxidized with low intensity far-red light in the presence of N-methyl phenazonium methosulfate or after preillumination with high intensity light. Using long flashes of red light, the half-reduction time of cytochrome b-559 was found to be 100±10 ms, compared to 6–10 ms for the photoreduction of the plastoquinone pool. Light saturation of the photoreduction of cytochrome b-559 occurred at a light intensity less than one-third of the intensity necessary for the saturation of ferricyanide reduction under identical illumination conditions. The photoreduction of cytochrome b-559 was accelerated in the presence of dibromothymoquinone with a t12 = 25–35 ms. The addition of uncouplers, which caused a stimulatory effect on ferricyanide reduction under the same experimental conditions, resulted in a decrease in the rate of cytochrome b-559 reduction. The relatively slow photoreduction rate of cytochrome b-559 compared to the plastoquinone pool implies that electrons can be transferred efficiently from Photosystem II to plastoquinone without the involvement of cytochrome b-559 as an intermediate. These results indicate that it is unlikely that high potential cytochrome b-559 functions as an obligatory redox component in the main electron transport chain joining the two photosystems.  相似文献   

2.
A series of experiments have been conducted with isolated reaction centers of photosystem two (PS II) with the aim to elucidate the functional role of cytochrome (Cyt b 559). At pH 6.5 it was found that Cyt b 559 was reversibly photoreduced by red actinic light when Mn2+ was present as an electron donor while at pH 8.5 a photo-oxidation was observed under the same lighting conditions, which was dark reversible in the presence of hydroquinone. These pH dependent light induced changes were measured under anaerobic conditions and correlated with changes in the relative levels of high (HP) and low (LP) potential forms of the cytochrome. At pH 6.5 the cytochrome was mainly in its LP form while at pH 8.5 a significant proportion was converted to the HP form as detected by dark titrations with hydroquinone. This pH dependent difference in the levels of HP and LP Cyt b 559 was also detected when bright white light was used to monitor the level of the LP form using a novel reaction involving direct electron donation from the flavin of glucose oxidase (present in the medium and used together with glucose and catalase as an oxygen trap). The results suggest that PS II directly oxidises and reduces the HP and LP forms, respectively and that the extent of these photo-reactions is dependent on the relative levels of the two forms, which are in turn governed by the pH. This conclusion is interpreted in terms of the model presented previously (Barber J and De Las Rivas J (1993) Proc Natl Acad Sci USA 90: 10942–10946) whereby the pH induced effect is considered as a possible mechanism by which interconversion of LP and HP forms of Cyt b 559 is achieved. In agreement with this was the finding that as the extent of photo-oxidisable HPCyt b 559 increases, with increasing pH, the rate of irreversible photo-oxidation of -carotene decreases, a result expected if the HP form protects against donor side photoinhibition.Abbreviations -car -carotene - CCCP carbonylcyanide m-chloro-phenylhydrazone - Chl chlorophyll - Cyt b 559 cytochrome b 559 - HPCyt b 559 high potential form of cytochrome b 559 which is reducible by hydroquinone - LPCyt b 559 low potential form of cytochrome b 559 which is non-reducible by hydroquinone - D1 and D2 products of the psbA and psbD genes, respectively - LHC II light-harvesting chlorophyll protein complex associated with PS II - Mes 2-(N-morpholino) ethanesulphonic acid - P680 primary electron donor of PS II - Pheo pheophytin - PQ plastoquinone - PS II Photosystem II - QA first stable quinone electron acceptor of PS II - QB second stable quinone electron acceptor of PS II - RC reaction center - SDS sodium dodecyl sulphate - SiMo silicomolybdate - Tris tris(hydroxymethyl) amino methane - YZ and YD tyrosine residues 161 in D1 and D2 proteins of the PS II RC which act as secondary electron donors to P680  相似文献   

3.
U. Heber  M.R. Kirk  N.K. Boardman 《BBA》1979,546(2):292-306
The high potential cytochrome b-559 of intact spinach chloroplasts was photooxidized by red light with a high quantum efficiency and by far-red light with a very low quantum efficiency, when electron flow from water to Photosystem II was inhibited by a carbonyl cyanide phenylhydrazone (FCCP or CCCP). Dithiothreitol, which reacts with FCCP or CCCP, reversed the photooxidation of cytochrome b-559 and restored the capability of the chloroplasts to photoreduce CO2 showing that the FCCP/CCCP effects were reversible. The quantum efficiency of cytochrome b-559 photooxidation by red or far-red light in the presence of FCCP was increased by 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone which blocks oxidation of reduced plastoquinone by Photosystem I. When the inhibition of water oxidation by FCCP or CCCP was decreased by increased light intensities, previously photooxidized cytochrome b-559 was reduced. Red light was much more effective in photoreducing oxidized high potential cytochrome b-559 than far-red light. The red/far-red antagonism in the redox state of cytochrome b-559 is a consequence of the different sensitivity of the cytochrome to red and far-red light and does not indicate that the cytochrome is in the main path of electrons from water to NADP. Rather, cytochrome b-559 acts as a carrier of electrons in a cyclic path around Photosystem II. The redox state of the cytochrome was shifted to the oxidized side when electron transport from water became rate-limiting, while oxidation of water and reduction of plastoquinone resulted in its shifting to the reduced side.  相似文献   

4.
J. Whitmarsh  W.A. Cramer 《BBA》1978,501(1):83-93
Cytochrome b-559, which is normally reduced in the dark, was oxidized by preillumination in the presence of N-methyl-phenazonium methosulfate with low intensity far-red light. The average half-time for the photoreduction of oxidized cytochrome b-559 by a long actinic flash ranged from 90 to 110 ms. In the presence of 0.25 μM 3-(3,4-dichlorophenyl)-1,1-dimethylurea the half-time for the photoreduction increased to 230 ms although the extent of the absorbance increase was unchanged. Under similar conditions inhibition of electron transport by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and the increase in the chlorophyll fluorescence show that a large fraction of the Photosystem II reaction centers are blocked. These results are consistent with the concept that electrons are shared between different photosynthetic units by a common pool of plastoquinone and imply that the principle pathway for the reduction of cytochrome b-559 by Photosystem II occurs through plastoquinone. In the presence of the uncoupler gramicidin which stimulates non-cyclic electron transport, the rate of photoreduction of cytochrome b-559 is slower (t12 = 180 ms), from which it is inferred that cytochrome b-559 competes with cytochrome f for electrons out of this pool. Comparison of cytochrome b-559 photoreduction and electron transport rates using untreated and KCN-treated chloroplasts indicate that, under conditions of basal electron transport from water to ferricyanide, approximately one-fifth of the electrons from Photosystem II go through cytochrome b-559 to ferricyanide. Further support for this pathway is provided by a comparison of the effect of 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (dibromothymoquinone) on the rates of reduction of cytochrome b-559 and ferricyanide.  相似文献   

5.
A rapid procedure has been developed for the isolation of the photosystem two reaction centre complex (PS II RC) from a double mutant of Chlamydomonas reinhardtii, F54-14, which lacks the Photosystem one complex and the chloroplast ATPase. Thylakoid membranes are solubilised with 1.5% (w/v) Triton X-100 and the PS II RC purified by anion-exchange chromatography using TSK DEAE-650(S) (Merck). The complex has a pigment stoichiometry of approximately six chlorophyll a: two pheophytin a: one cytochrome b-559: one to two -carotene. It photoaccumulates reduced pheophytin and oxidised P680 in the presence of sodium dithionite and silicomolybdate, respectively. Immunoblotting experiments have confirmed the presence of the D1 and D2 polypeptides in this complex. The -subunit of cytochrome b-559 was identified by N-terminal sequencing. Comparison of the complex with the PS II RC from pea using SDS-polyacrylamide gel electrophoresis showed that their polypeptide compositions were similar. However, the -subunit of cytochrome b-559 from C. reinhardtii has a lower apparent molecular weight than the pea counterpart whereas the -subunit is larger.Abbreviations DM n-dodecyl -d-maltoside - RC reaction centre - SiMo silicomolybdate, SiMo12O40 4– - TAP Tris-acetate-phosphate  相似文献   

6.
《FEBS letters》1985,179(1):51-54
The high-potential form of cytochrome b-559 (b-559 HP) is closely linked to the oxygenic photosystem (photosystem II) but its relation to other redox components of the photosynthetic apparatus, including plastoquinone, is still obscure. We investigated the photoreduction of cytochrome b-559 HP by isolated chloroplasts in the presence of 3 antagonists of plastoquinone, of which, DBMIB (dibromothymoquinone) and DNP-INT (dinitrophenyl ether of iodonitrothymol) are known to inhibit the oxidation of the plastoquinone pool (PQ) by the FeS-cytochrome ƒ/b6 complex and one, UHDBT (5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole) is known to inhibit the reduction of PQ by QB.QB is a protein-bound plastoquinone that serves as a two-electron gate for the reduction of PQ. We found that DBMIB and DNP-INT did not inhibit but low concentrations of UHDBT severely inhibited the photoreduction of cytochrome b-559 HP. These results suggest that the electron donor for the reduction of cytochrome b-559 HP was either QB or a portion of the PQ pool that was oxidized by a new pathway free of binding sites for DBMIB and DNP-INT.  相似文献   

7.
Restoration of a high potential (HP) form of cytochrome b-559 (Cyt b-559) from a low potential (LP) form was the primary process in the reconstitution of O2-evolving center during the photoreactivation of Tris-inactivated chloroplasts. In normal chloroplasts, about 0.5 to 0.7 mol of Cyt b-559 was present in the HP form per 400 chlorophyll molecules. However, the HP form was converted to the LP form when the O2-evolving center was inactivated by 0.8 M alkaline Tris-washing (pH 9.1). The inactivation was reversible and both the Cyt b-559 HP form and the O2-evolving activity were restored by incubating the inactivated chloroplasts with weak light, Mn2+, Ca2+ and an electron donor (photoreactivation). The recovery of the HP form preceded the recovery of O2-evolving activity. 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) did not inhibit the recovery of the HP form. Thus, the recovery of Cyt b-559 HP form was the primary reaction in the photoreactivation, which was stimulated by the light-induced redox reaction of the PS-II core center.Abbreviations ASC ascorbate - BSA bovine serum albumin - Chl chlorophyll - Cyt b-559 HP form high potential form of cytochrome b-559 - Cyt b-559 LP form low potential form of cytochrome b-559 - Cyt b-559 VLP form very low potential form of cytochrome b-559 - Cyt f cytochrome f - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCPIP 2,6-dichlorophenol indophenol - Hepes N-2-hydroxyethyl-piperazine-N-2-ethanesulfonic acid - HQ hydroquinone - SHN chloroplast-preparation medium containing 0.4 M sucrose, 50 mM Hepes-Na (pH 7.8) and 20 mM NaCl - PS-II Photosystem II  相似文献   

8.
Eric Lam  Richard Malkin   《BBA》1982,682(3):378-386
Photoreactions of cytochrome b6 have been studied using resolved chloroplast electron-transfer complexes. In the presence of Photosystem (PS) II and the cytochrome b6-f complex, photoreduction of the cytochrome can be observed. No soluble components are required for this reaction. Cytochrome b6 photoreduction was found to be inhibited by quinone analogs, which inhibit at the Rieske iron-sulfur center of the cytochrome complex, by the addition of ascorbate and by depletion of the Rieske center and bound plastoquinone from the cytochrome complex. Photoreduction of cytochrome b6 can also be demonstrated in the presence of the cytochrome complex and PS I. This photoreduction requires plastocyanin and a low-potential electron donor, such as durohydroquinone. Cytochrome b6 photoreduction in the presence of PS I is inhibited by quinone analogs which interact with the Rieske iron-sulfur center. These results are discussed in terms of a Q-cycle mechanism in which plastosemiquinone serves as the reductant for cytochrome b6 via an oxidant-induced reductive pathway.  相似文献   

9.
A non-detergent photosystem II preparation, named BS, has been characterized by countercurrent distribution, light saturation curves, absorption spectra and fluorescence at room and at low temperature (–196°C). The BS fraction is prepared by a sonication-phase partitioning procedure (Svensson P and Albertsson P-Å, Photosynth Res 20: 249–259, 1989) which removes the stroma lamellae and the margins from the grana and leaves the appressed partition region intact in the form of vesicles. These are closed structures of inside-out conformation. They have a chlorophyll a/b ratio of 1.8–2.0, have a high oxygen evolving capacity (295 mol O2 per mg chl h), are depleted in P700 and enriched in the cytochrome b/f complex. They have about 2 Photosystem II reaction centers per 1 cytochrome b/f complex.The plastoquinone pool available for PS II in the BS vesicles is 6–7 quinones per reaction center, about the same as for the whole thylakoid. It is concluded, therefore, that the plastoquinone of the stroma lamellae is not available to the PS II in the grana and that plastoquinone does not act as a long range electron transport shuttler between the grana and stroma lamellae.Compared with Photosystem II particles prepared by detergent (Triton X-100) treatment, the BS vesicles retain more cytochrome b/f complex and are more homogenous in their surface properties, as revealed by countercurrent distribution, and they have a more efficient energy transfer from the antenna pigments to the reaction center.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - Fv variable fluorescence - LHC light-harvesting complex - PpBQ phenyl-p-benzoquinone - PQ plastoquinone pool - P700 reaction center of PS I - PS I, PS II Photosystem I, II - QA first bound plastoquinone accepter - RC reaction centre  相似文献   

10.
Light-induced redox changes of cytochrome b-559   总被引:2,自引:0,他引:2  
Dark incubation of spinach or pea chloroplasts with 10 μm carbonylcyanide m-chlorophenylhydrazone (CCCP) had a negligible effect either on the redox state or the redox potential of the high potential form of cytochrome b-559 (cytochrome b-559hp). A similar result was obtained with spinach chloroplasts on incubation with 3.3 μm carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP), but pea chloroplasts showed a decrease of 10–20% in the amount of reduced cytochrome b-559.Light-induced redox changes of cytochrome b-559 were not observed in untreated spinach chloroplasts. In the presence of CCP or FCCP, cytochrome b-559 was photooxidized both in 655 nm actinic light and in far-red light. Addition of the plastoquinone antagonist, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) to CCCP- or FCCP-treated chloroplasts had only a small effect on the photooxidation of cytochrome b-559 in 655 light, but it completely inhibited the oxidation in far-red light.Electron flow from water to 2,3′,6-trichlorophenolindophenol was partly inhibited by CCCP or FCCP, but the degree of inhibition does not appear to be sufficient to account for the photooxidation of cytochrome b-559.The photooxidation of cytochrome b-559 by 655 nm light at liquid nitrogen temperature was not influenced by prior treatment of the chloroplasts at room temperature with CCCP, DBMIB, or CCCP + DBMIB.The results cannot be explained by the presence of two independent pools of cytochrome b-559 in CCCP-treated chloroplasts, one photooxidized by Photosystem II and the other photooxidized by Photosystem I and photoreduced by Photosystem II.  相似文献   

11.
Pure and active oxygen-evolving PS II core particles containing 35 Chl per reaction center were isolated with 75% yield from spinach PS II membrane fragments by incubation with n-dodecyl--D-maltoside and a rapid one step anion-exchange separation. By Triton X-100 treatment on the column these particles could be converted with 55% yield to pure and active PS II reaction center particles, which contained 6 Chl per reaction center.Abbreviations Bis-Tris bis[2-hydroxyethyl]imino-tris[hydroxymethyl]methane - Chl chlorophyll - CP29 Chl a/b protein of 29 kDa - Cyt b 559 cytochrome b 559 - DCBQ 2,5-dichloro-p-benzo-quinone - LHC II light-harvesting complex II, predominant Chl a/b protein - MES 2-[N-Morpholino]ethanesulfonic acid - Pheo pheophytin - PS H photosystem II - QA bound plastoquinone, serving as the secondary electron acceptor in PS II (after Pheo) - SDS sodiumdodecylsulfate  相似文献   

12.
Formation of thermoluminescence signals is characteristics of energy- and charge storage in Photosystem II. In isolated D1/D2/cytochrome b-559 Photosystem II reaction centre preparation four thermoluminescence components were found. These appear at -180 (Z band), between -80 and -50 (Zv band), at -30 and at +35°C. The Z band arises from pigment molecules but not correlated with photosynthetic activity. The Zv and -30°C bands arise from the recombination of charge pairs stabilized in the Photosystem II reaction centre complex. The +35°C band probably corresponds to the artefact glow peak resulting from a pigment-protein-detergent interaction in subchloroplast preparations (Rózsa Zs, Droppa M and Horváth G (1989) Biochim Biophys Acta 973, 350–353).Abbreviations Chl chlorophyll - Cyt cytochrome - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - D1 psbA gene product - D2 psbD gene product - P680 primary electron donor of PS II - Pheo pheophytin - PS II Photosystem II - QA primary quinone acceptor of PS II - QB secondary quinone acceptor of PS II - RC reaction centre of PS II - TL thermoluminescence  相似文献   

13.
Stromal membranes enriched in PS I contain a low potential cytochrome with a reduced -band peak close to 560 nm. The identity of this cytochrome component has been ascribed either to a low potential form of the Photosystem II cytochrome b-559 or to a different cytochrome with a reduced -band of 560 nm. The half-bandwidth of the 560 nm component in stromal membranes is identical to that of purified cytochrome b-559. Western blots show that the stromal membranes contain an amount of PS II cytochrome b-559 -subunit that is more than sufficient to account for the cytochrome b-560 detected spectrophotometrically in these membranes. These immunochemical data and the similarity of (i) the spectral peaks, and (ii) the redox properties of low potential PS II cytochrome b-559 and the b-560 component, suggest that the simplest inference is that the cytochrome b-560 protein in stromal membranes is identical to the PS II cytochrome b-559.Abbreviations: A absorbance - cyt cytochrome - DCBQ 2,5-dichloro-p-benzoquinone - Emx midpoint potential at pH x - hbw half-bandwidth - LP low potential - MD menadiol - MES 2-(N-morpholino)ethanesulfonic acid - MHQ methylhydroquinone - PS I-PS II photosystems I, II - SDS-PAGE sodium dodecylsulfate polyacrylamide gel electrophoresis  相似文献   

14.
The nature of interaction of cytochrome b-559 high potential (HP) with electron transport on the reducing side of photosystem II was investigated by measuring the susceptibility of cytochrome b-559HP to 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) under different conditions. Submicromolar DCMU concentrations decreased the rate of absorbance change corresponding to cytochrome b-559HP photoreduction while the amplitude was lowered at higher concentrations (up to 10 M). Appreciable extents of cytochrome b-559HP photoreduction were observed at DCMU concentrations which completely abolished the electron transport from water to methyl viologen under the same experimental conditions. However, the susceptibility of cytochrome b-559HP to DCMU increased with the degree of cytochrome b-559HP oxidation, induced either by ferricyanide or by illumination of low intensity (2 W/m2) of red light in the presence of 2 M carbonyl cyanide-m-chlorophenylhydrazone. Also, the DCMU inhibition was more severe when the pH increased from 6.5 to 8.5, indicating that the unprotonated form of cytochrome b-559HP is more susceptible to DCMU. These results demonstrate that cytochrome b-559HP can accept electrons prior to the QB site, probably via QA although both QA and QB can be involved to various extents in this reaction. We suggest that the redox state and the degree of protonation of cytochrome b-559HP alter its interaction with the reducing side of photosystem II.Abbreviations ADRY acceleration of the deactivation reactions of the water-splitting system Y - CCCP carbonylcyanide m-chlorophenylhydrazone - FeCN ferricyanide - HP high potential - MV methylviologen CIW-DPB Publication No.1096.  相似文献   

15.
Most of the chloroplastb-559 is high potential at neutral pH as defined by hydroquinone reducibility. FCCP* (20 M) and antimycin A (50 M) convert high potentialb-559 to a low potential state which can be reduced by ascorbate but not hydroquinone. The low and high potential states of cytochromeb-559 are different forms of the same cytochrome.Three lines of evidence indicate that the cytb-559 oxidized by photosystem I is low potential: (1) theb-559 photooxidized by far-red light in the presence of FCCP (3 M) is low potentialb-559; (2) the amplitude of theb-559 oxidation by far-red light and the amount of low potentialb-559 present in the dark have the same general dependence on pH; (3) inhibitor studies show that plastoquinone mediates the oxidation of cytb-559 by PS I.The well-known stimulation ofb-559 oxidation by far-red light in the presence of FCCP is attributed to FCCP-facilitated photoconversion of high potentialb-559 to a low potential form.It is concluded that if cytb-559 is oxidized by system I light, then it is a low potential form (E m7+80 mV) which is oxidized. It is not proven, however, that a significant amount of cytb-559 is oxidized by PS I under coupled or physiological conditions.Possible thermodynamic regulation of non-cyclic electron flow involving the distribution between high and low potential forms of cytb-559 is discussed.  相似文献   

16.
A recent report (Nanba O, Satoh K: Proc. Natl. Acad. Sci. USA 84: 109–112, 1987) described the isolation from spinach of a putative photosystem 2 reaction centre which contained cytochrome b-559 and three other electrophoretically resolvable polypeptide bands, two of which have molecular weights comparable to the D1 and D2 polypeptides. We have used in vivo labelling with radioactive methionine and probed with D1 and D2 monospecific antibodies (raised against synthetically expressed sequences of the psbA and psbD genes) for specific detection of these proteins in a similarly prepared photosystem 2 reaction centre preparation. These techniques identified a 32 000 dalton D1 band, a 30 000 dalton D2 band and a 55 000 dalton D1/D2 aggregate, the latter apparently arising from the detergent treatments employed. Digestions with a lysine-specific protease further confirmed the identification of the lysine-free D1 polypeptide and also confirmed that the D1 molecules in the 55 000 dalton band were in aggregation with other bands and not in self-aggregates. The D1 and D2 polypeptides (including the aggregate) are considerably enriched in the photosystem two reaction centre preparation compared to the other resolved fractions.  相似文献   

17.
Cytochrome (cyt) b-559 absorbance changes in intact chloroplasts were deconvoluted using a previously described LED-Array-Spectrophotometer (Klughammer et al. (1990), Photosynth Res 25: 317–327). When intact chloroplasts were isolated in the presence of ascorbate, approx. 15% of the total cyt b-559 could be transiently oxidised by 200 M H2O2 in the dark. This fraction displays low-potential properties, as it can be also oxidised by menadione in the presence of 5 mM ascorbate. Heat pretreatment increased the size of this fraction by a factor of 3–4. Low concentrations of cyanide (in the M range) prolonged the oxidation time while high concentrations suppressed the oxidation (I50=1.5 mM KCN). The former KCN-effect relates to inhibition of ascorbate dependent H2O2-reduction which is catalysed by ascorbate peroxidase, whereas the latter effect reflects competition between H2O2 and CN for the same binding site at the cytochrome heme. In the light, much lower concentrations of H2O2 were required to obtain oxidation, the amplitude depending on light intensity and on the concentration of the added H2O2, but never exceeding approx. 15% of the total cyt b-559. In the light, but not in the dark, H2O2 also induced the transient oxidation of a cyt f fraction similar in size to the H2O2-oxidisable cyt b-559 fraction. In this case, H2O2 serves as an acceptor of Photosystem I in conjunction with the ascorbate peroxidase detoxification system. Light can also induce oxidation of a 15% cyt b-559 fraction without H2O2-addition, if nitrite is present as electron acceptor and the chloroplasts are depleted of ascorbate. It is concluded that light-induced cyt b-559 oxidation in vivo is likely to be restricted to the H2O2-oxidisable cyt b-559 LP fraction and is normally counteracted by ascorbate.Abbreviations APX ascorbate peroxidase - chl chlorophyll - cyt cytochrome - HP high potential - LP low potential - MDA monodehydroascorbate - PQ plastoquinone - PS I and PS II Photosystems I and II  相似文献   

18.
Cytochrome b559 (Cyt b559) is a well-known intrinsic component of Photosystem II (PS II) reaction center in all photosynthetic oxygen-evolving organisms, but its physiological role remains unclear. This work reports the response of the two redox forms of Cyt b559 (i.e. the high- (HP) and low-potential (LP) forms) to inhibition of the donor or acceptor side of PS II. The photooxidation of HP Cyt b559 induced by red light at room temperature was pH-dependent under conditions in which electron flow from water was diminished. This photooxidation was observed only at pH values higher than 7.5. However, in the presence of 1 M CCCP, a limited oxidation of HP Cyt b559 was observed at acidic pH, At pH 8.5 and in the presence of the protonophore, this photooxidation of the HP form was accompanied by its partial transformation into the LP form. On the other hand, a partial photoreduction of LP Cyt b559 was induced by red light under aerobic conditions when electron transfer through the primary quinone acceptor QA was impaired by strong irradiation in the presence of DCMU. This photoreduction was enhanced at acidic pH values. To the best of our knowledge, this is the first time that both photoreduction and photooxidation of Cyt b559 is described under inhibitory conditions using the same kind of membrane preparations. A model accommodating these findings is proposed.Abbreviations CCCP carbonylcyanide 3-chlorophenylhydrazone - Cyt cytochrome - DCBQ 2,5-dichloro-p-benzoquinone - DCMU dichlorophenyldimethylurea - E m midpoint redox potential - HP and LP high- and low-potential forms of Cyt b559 - P680 primary donor - IA acceptor side inhibition - ID donor side inhibition - Pheo pheophytin - PS II photosystem II - QA primary quinone acceptor of PS II - QB secondary quinone acceptor of PS II  相似文献   

19.
The presence of 1.0 mol/L glycinebetaine during isolation of D1/D2/Cytb559 reaction centre (RC) complexes from photosystem II (PSII) membrane fragments preserved the photochemical activity, monitored as the light-induced reduction of pheophytin and electron transport from diphenylcarbazide to 2.6-dichlorophenol-indophenol.-Glycinebetaine also protected the D1/D2/Cytb559 complexes against strong light-induced damage to the photochemical reactions and the irreversible bleaching of beta-carotene and chlorophyll. The presence of glycinebetaine also enhanced thermotolerance of the D1/D2/Cytb559 complexes isolated in the presence of 1.0 mol/L betaine with an increase in the temperature for 50% inactivation from 29 degrees C to 35 degrees C. The results indicate an increased supramolecular structural stability in the presence of glycinebetaine.  相似文献   

20.
Eduard Hurt  Günter Hauska   《BBA》1982,682(3):466-473
(1) Oxidant-induced reduction of cytochrome b6 is completely dependent on a reduced component within the isolated cytochrome b6-f complex. This component can be reduced by dithionite or by NADH/N-methylphenazonium methosulfate. It is a 2H+/2e carrier with a midpoint potential of 100 mV at pH 7.0, which is very similar to the midpoint potential of the plastoquinone pool in chloroplasts. (2) Oxidant-induced reduction of cytochrome b6 is stimulated by plastoquinol-1 as well as by plastoquinol-9. The midpoint potential of the transient reduction of cytochrome b6, however, was not shifted by added plastoquinol. (3) Quinone analysis of the purified cytochrome b6-f complex revealed about one plastoquinone per cytochrome f. The endogenous quinone is heterogeneous, a form more polar than plastoquinone-A, probably plastoquinone-C, dominating, This is different from the thylakoid membrane where plastoquinone-A is the main quinone. (4) The endogenous quinone can be extracted from the lyophilized cytochrome b6-f complex by acetone, but not by hydrocarbon solvents. Oxidant-induced reduction of cytochrome b6 was observed in the lyophilized and hexane-extracted complex, but was lost in the acetone-extracted complex. Reconstitution was achieved either with plastoquinol-1 or plastoquinol-9, suggesting that a plastoquinol molecule is involved in oxidant-induced reduction of cytochrome b6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号