首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1983,97(5):1467-1475
The antigenic site recognized by a rat monoclonal antibody (clone YL 1/2) reacting with alpha-tubulin (Kilmartin, J.V., B. Wright, and C. Milstein, 1982, J. Cell Biol., 93:576-582) has been determined and partially characterized. YL 1/2 reacts specifically with the tyrosylated form of brain alpha-tubulin from different mammalian species. YL 1/2 reacts with the synthetic peptide Gly-(Glu)3-Gly-(Glu)2- Tyr, corresponding to the carboxyterminal amino acid sequence of tyrosylated alpha-tubulin, but does not react with Gly-(Glu)3-Gly- (Glu)2, the constituent peptide of detyrosylated alpha-tubulin. Electron microscopy as well as direct and indirect immunofluorescence microscopy shows that YL 1/2 binds to the surface of microtubules polymerized in vitro and in vivo. Further in vitro studies show that the antibody has no effect on the rate and extent of microtubule polymerization, the stability of microtubules, and the incorporation of the microtubule-associated proteins (MAP2) and tau into microtubules. In vivo studies using Swiss 3T3 fibroblasts injected with YL 1/2 show that; when injected at low concentration (2 mg IgG/ml in the injection solution), the antibody binds to microtubules without changing their distribution in the cytoplasm. Injection of larger concentration of YL 1/2 (6 mg IgG/ml) induces the formation of microtubule bundles, and still higher concentrations cause the aggregation of microtubule bundles around the nucleus (greater than 12 mg IgG/ml).  相似文献   

2.
Rhodamine-labeled monoclonal antibodies, which react with tyrosinated alpha-tubulin (clone YL 1/2; Kilmartin, J. V., B. Wright, and C. Milstein, 1982, J. Cell Biol., 93:576-582) and label microtubules in vivo (Wehland, J., M. C. Willingham, and I. Sandoval, 1983, J. Cell Biol., 97:1467-1475) were microinjected into syncytial stage Drosophila embryos. At 1 mg/ml antibody concentration, the microtubule arrays of the surface caps became labeled by YL 1/2 but normal development was found to continue. The results are compared with the data from fixed material particularly with regard to interphase microtubules, centrosome separation, and spindle and midbody formation. At 5 mg/ml antibody concentration the microtubules took up larger quantities of antibodies and clumped around the nuclei. Nuclei with clumped microtubules lost their position in the surface layer and moved into the interior. As a result, the F-actin cap meshwork associated with such nuclei either failed to form or subsided. It is concluded that microtubule activity is required to maintain the nuclei in the surface layer and organize the F-actin meshwork of the caps.  相似文献   

3.
Three monoclonal alpha-tubulin antibodies YL 1/2 (Kilmartin et al., 1982), 6-11B-1 (Piperno and Fuller, 1985) and DM1A (Blose et al., 1984) were used in indirect immunofluorescence (IIF) microscopy of the microtubule (MT) cytoskeleton in tobacco (Nicotiana tabacum) pollen tubes. The majority of pollen tube MTs contain tyrosinated alpha-tubulin recognized by YL 1/2. Acetylated alpha-tubulin revealed by 6-11B-1 was detected in the generative cell and in the kinetochore fibers, in polar spindle regions, and in the cell plate of the phragmoplast during generative cell division. In addition, small fragments of acetylated microtubules were seen in the older parts of the pollen tube grown on a taxol medium. The interaction of pollen tube MTs with mAb 6-11B-1 suggested that acetylation of alpha-tubulin correlates well with the putative arrays of stable MTs.  相似文献   

4.
A rat monoclonal antibody against yeast tubulin (clone YL 1/2; Kilmartin et al., 1982) that reacts specifically with mammalian alpha-tubulin carrying a carboxyterminal tyrosine residue (Wehland et al., 1983) was used to localize microtubules in plant cells derived from onion root apices (Allium cepa L.). YL 1/2 reacted with all types of microtubular arrays known to occur in higher plant meristematic cells such as interphase cortical microtubules, pre-prophase bands, the mitotic spindle and phragmoplast microtubules. The specific labeling of microtubules in isolated cells from onion root tips by YL 1/2 indicates that plant cells like animal cells contain tubulin tyrosine ligase, the enzyme which posttranslationally modifies alpha-tubulin. This enzyme could be involved in the dynamic regulation of microtubular arrays in all eukaryotic cells.  相似文献   

5.
Two monoclonal antibodies against alpha-tubulin (YL1/2 and D2D6) were microinjected into the egg of the sand dollar Clypeaster japonicus, and their effects on cleavage of the egg were investigated. They had already been shown by immunoblotting to react specifically with egg tubulin and by immunofluorescence to stain the mitotic apparatus [OKA et al., (1990). Cell Motil. Cytoskel. 16:239-250]. Injection of YL1/2 prevented chromosome movement and cleavage, although the cleavage furrow developed in some cases. In all eggs injected at prometaphase, metaphase, or anaphase, the birefringence of the mitotic apparatus disappeared immediately after injection. Injection of D2D6 had no significant effect on mitosis or cleavage of whole eggs injected after nuclear disappearance, although it prevented the disappearance of the nuclear envelope in 54% of the eggs injected before the disappearance. FITC-conjugated D2D6 did not accumulate in the spindle when injected into the dividing sand dollar egg. These results indicate that YL1/2 disassembled microtubules, whereas D2D6 did not bind to microtubules in the living cell.  相似文献   

6.
We have recently shown that acetylated alpha-tubulin containing microtubules (acetyl-MTs; labeled by antibody 6-11B-1) constitute a cold-stable subset of the microtubule network of nonneuronal cells in rat primary forebrain cultures [Cambray-Deakin and Burgoyne: Cell Motil. 8(3):284-291, 1987b]. In contrast, tyrosinated alpha-tubulin containing MTs (tyr-MTs; labeled by antibody YL1/2) are cold-labile. Here we have examined the distribution of acetyl-MTs and tyr-MTs in cultures of newborn rat forebrain astrocytes and simultaneously investigated the distribution of mitochondria and glial filaments. In double-label immunofluorescence experiments a marked colocalisation of acetyl-MTs and glial filament bundles was observed. Tyr-MTs did not show a similar colocalisation with glial filament bundles. Furthermore, the distribution of mitochondria closely followed that of the acetyl-MT and glial filament bundles. When cells were exposed to short-term (30-min) treatments with MT-disrupting agents such as colchicine and nocodazole, the tyr-MT network was removed but the distributions of acetyl-MTs, glial filaments, and mitochondria were unchanged. Increased exposure to colchicine (9-16 hr) caused a progressive disruption of the acetyl-MTs and the collapse of glial filaments and mitochondria to the perinuclear region. These results suggest that acetyl-MTs and glial filaments but not tyr-MTs may be involved in the intracellular transport of organelles and/or in the control of their cytoplasmic distribution.  相似文献   

7.
Multiple sites for the initiation of microtubule assembly in mammalian cells.   总被引:18,自引:0,他引:18  
The pattern of microtubule regrowth in mammalian fibroblast and epithelial cells has been examined by immunofluorescence of cytoskeletal preparations with antibody to tubulin. After reversal of treatment with colcemid, vinblastine or low temperature, microtubules appear to grow simultaneously from several distinct initiation sites located within 5 microns of the nucleus of mouse and human fibroblasts. Each site initiates the growth of 10-30 microtubules. More than 70% of the mouse fibroblasts have between 5 and 10 initiation sites with an average of 8. The human fibroblasts have an average of 5 sites per cell. The average number and numerical distribution of sites per fibroblast cell are not affected by time of exposure to colcemid or the concentration of colcemid applied to the cells. Multiple microtubule initiation sites are also observed during the process of microtubule depolymerization. In addition to growth from these complex initiation sites, microtubules appear to grow singly from the perinuclear region of human fibroblasts. The regrowth of individual microtubules from the perinuclear growth is especially prominent in epithelial cell lines from rat kangaroo and pig. These epithelial lines have only a single complex initiation site per cell. Two classes of complex initiation sites can be distinguished in microtubule regrowth experiments in human and mouse fibroblasts after exposure to griseofulvin. Microtubules first grow extensively from a single distinct site, which has approximately 20 microtubules growing from it and may be the centriole or centriolar pair. Subsequently, microtubules regrow from other perinuclear complex initiation sites. It thus appears that at least three distinct classes of initiation sites can be observed in mammalian cells: primary sites, which regrow microtubules first after griseofulvin treatment; secondary sites, which are distinct perinuclear sites and recover from griseofulvin treatment more slowly than the primary sites; and tertiary sites or sites of growth of single microtubules, also located near the cell nucleus.  相似文献   

8.
The microtubule-nucleating activity of centrosomes was analyzed in fibroblastic (Vero) and in epithelial cells (PtK2, Madin-Darby canine kidney [MDCK]) by double-immunofluorescence labeling with anti-centrosome and antitubulin antibodies. Most of the microtubules emanated from the centrosomes in Vero cells, whereas the microtubule network of MDCK cells appeared to be noncentrosome nucleated and randomly organized. The pattern of microtubule organization in PtK2 cells was intermediate to the patterns observed in the typical fibroblastic and epithelial cells. The two centriole cylinders were tightly associated and located close to the nucleus in Vero and PtK2 cells. In MDCK cells, however, they were clearly separated and electron microscopy revealed that they nucleated only a few microtubules. The stability of centrosomal and noncentrosomal microtubules was examined by treatment of these different cell lines with various concentrations of nocodazole. 1.6 microM nocodazole induced an almost complete depolymerization of microtubules in Vero cells; some centrosome nucleated microtubules remained in PtK2 cells, while many noncentrosomal microtubules resisted that treatment in MDCK cells. Centrosomal and noncentrosomal microtubules regrew in MDCK cells with similar kinetics after release from complete disassembly by high concentrations of nocodazole (33 microM). During regrowth, centrosomal microtubules became resistant to 1.6 microM nocodazole before the noncentrosomal ones, although the latter eventually predominate. We suggest that in MDCK cells, microtubules grow and shrink as proposed by the dynamic instability model but the presence of factors prevents them from complete depolymerization. This creates seeds for reelongation that compete with nucleation off the centrosome. By using specific antibodies, we have shown that the abundant subset of nocodazole-resistant microtubules in MDCK cells contained detyrosinated alpha-tubulin (glu tubulin). On the other hand, the first microtubules to regrow after nocodazole removal contained only tyrosinated tubulin. Glu-tubulin became detectable only after 30 min of microtubule regrowth. This strongly supports the hypothesis that alpha-tubulin detyrosination occurs primarily on "long lived" microtubules and is not the cause of the stabilization process. This is also supported by the increased amount of glu-tubulin that we found in taxol-treated cells.  相似文献   

9.
In the mitotic sea urchin egg, the spindle microtubules were composed of different tubulin isotypes from those of astral microtubules using monoclonal antibodies [Oka et al. (1990) Cell Motil. Cytoskeleton, 16, 239-250]. Three of the antibodies, D2D6, DM1B, and YL1/2, were specific for spindle microtubules, astral microtubules and reactive with both microtubules, respectively. The mitotic sea urchin egg was treated with microtubule depolymerizing (colcemid and nocodazole) and stabilizing (hexylene glycol) drugs and change in the heterogeneous distribution of the tubulin isotypes was investigated by the immunofluorescence procedure using these three monoclonal anti-tubulin antibodies. We observed that: (1) the microtubule depolymerizing drugs caused quick depolymerization of most mitotic microtubules, and a small number of spindle microtubules remaining were stained with all three antibodies; (2) hexylene glycol induced many microtubules in the mitotic apparatus, which was stained with D2D6 but was not stained with DM1B; (3) hexylene glycol also induced a great number of miniasters in the cytoplasm, and they were stained with three antibodies. These results suggest that these drugs altered the distribution of tubulin isotypes in the mitotic microtubules during depolymerization or polymerization within a short time.  相似文献   

10.
11.
During the course of preimplantation development, the cells of the mouse embryo undergo both a major subcellular reorganization (at the time of compaction) and, subsequently, a process of differentiation as the phenotypes of trophectoderm and inner cell mass cell types diverge. We have used antibodies specific for tyrosinated (Kilmartin, J. V., B. Wright, and C. Milstein. 1982. J. Cell Biol. 93:576-582) and acetylated (Piperno, G., and M. T. Fuller. 1985. J. Cell Biol. 101:2085-2094) alpha-tubulin in immunofluorescence studies and found that subsets of microtubules can be distinguished within and between cells during the course of these events. Whereas all microtubules contained tyrosinated alpha-tubulin, acetylated alpha-tubulin was detected only in a subpopulation, located predominantly in the cell cortices. Striking differences developed between the distribution of the two populations during the course of development. Firstly, whereas the microtubule population as a whole tends to redistribute towards the apical domain of cells as they polarize during compaction (Houliston, E., S. J. Pickering, and B. Maro. 1987. J. Cell Biol. 104:1299-1308), the microtubules recognized by the antiacetylated alpha-tubulin antibody became enriched in the basal part of the cell cortex. After asymmetric division of polarized cells to generate two distinct cell types (termed inside and outside cells) we found that, despite the relative abundance of microtubules in outside cells, acetylated microtubules accumulated preferentially in inside cells. Treatment with nocodazole demonstrated that within each cell type acetylated microtubules were the more stable ones; however, the difference in composition of the microtubule network between cell types was not accompanied by a greater stability of the microtubule network in inside cells.  相似文献   

12.
An electron microscopy study showed that in melanophores with dispersed and aggregated pigment the sensitivity of the centrosome and the stability of microtubules were different and depended on the colcemid concentration. The structure of the centrosome didn't change upon exposure to colcemid in dispersed melanophores. In aggregated melanophores, on exposure to 10(-6) M colcemid, the centrosome retained its structure; colcemid at 10(-5)-10(-3) M caused a dramatic collapse of the centrosome. Treatment of aggregated melanophores with colcemid resulted in the complete disassembly of the microtubules; though microtubules in dispersed melanophores appear to be colcemid resistant. Light microscopy studies indicated that in Xenopus melanophores with aggregated or dispersed pigment melanosomes didn't change their location after exposure to 10(-3)-10(-6) M colcemid. Subsequent incubation in colcemid-free medium revealed that the cells retained their ability to translocate melanosomes in response to hormone stimulation. Electron microscopy data revealed the inactivation of the centrosome as MTOC (microtubule-organizing center) in dispersed melanophores with melatonin substituted for MSH in the presence of colcemid. In contrast, with melanocyte-stimulating hormone (MSH) substituted for melatonin, we observed the activation of the centrosome in aggregated cells. We showed that in aggregated melanophores pigment movement proceeded in the complete absence of microtubules, suggesting the involvement of a microtubule-independent component in the hormone-induced melanosome dispersion. However, we observed abnormal aggregation along colcemid-resistent microtubules in dispersed melanophores, suggesting the involvement of not only stable but also labile microtubules in the centripetal movement of melanosomes. The results raise the intriguing questions about the mechanism of the hormone and colcemid action on the centrosome structure and microtubule network in melanophores with dispersed and aggregated pigment.  相似文献   

13.
We have examined the distribution of acetylated alpha-tubulin using immunofluorescence microscopy in fibroblastic cells of rat brain meninges. Meningeal fibroblasts showed heterogeneous staining patterns with a monoclonal antibody against acetylated alpha-tubulin ranging from staining of primary cilia or microtubule-organising centers (MTOCs) alone to extensive microtubule networks. Staining with a broad spectrum anti-alpha-tubulin monoclonal indicated that all cells possessed cytoplasmic microtubule networks. From double-labeling experiments using an antibody against acetylated alpha-tubulin (6-11B-1) and antibodies against either tyrosinated or detyrosinated alpha-tubulin, it was found that acetylated alpha-tubulin and tyrosinated alpha-tubulin were often segregated to different microtubules. The microtubules containing acetylated but not tyrosinated alpha-tubulin were cold stable. Therefore, it appeared that in general meningeal cells possessed two subset of microtubules: One subset contained detyrosinated and acetylated alpha-tubulin and was cold stable, and the other contained tyrosinated alpha-tubulin and was cold labile. These results are consistent with the idea that acetylation and detyrosination of alpha-tubulin are involved in the specification of stable microtubules.  相似文献   

14.
The GLUT4 glucose transporter resides mostly in perinuclear membranes in unstimulated 3T3-L1 adipocytes and is acutely translocated to the cell surface in response to insulin. Using a novel method to purify intracellular GLUT4-enriched membranes, we identified by mass spectrometry the intermediate filament protein vimentin and the microtubule protein alpha-tubulin as components of these membranes. Immunoelectron microscopy of the GLUT4-containing membranes also revealed their association with these cytoskeletal proteins. Disruption of intermediate filaments and microtubules in 3T3-L1 adipocytes by microinjection of a vimentin-derived peptide of the helix initiation 1A domain caused marked dispersion of perinuclear GLUT4 to peripheral regions of the cells. Inhibition of the microtubule-based motor dynein by brief cytoplasmic acidification of cultured adipocytes also dispersed perinuclear GLUT4 and inhibited insulin-stimulated GLUT4 translocation to the cell surface. Insulin sensitivity was restored as GLUT4 was again concentrated near the nucleus upon recovery of cells in physiological buffer. These data suggest that GLUT4 trafficking to perinuclear membranes of cultured adipocytes is directed by dynein and is required for optimal GLUT4 regulation by insulin.  相似文献   

15.
《The Journal of cell biology》1995,131(5):1275-1290
Separate populations of microtubules (MTs) distinguishable by their level of posttranslationally modified tubulin subunits and by their stability in vivo have been described. In polarized 3T3 cells at the edge of an in vitro wound, we have found a striking preferential coalignment of vimentin intermediate filaments (IFs) with detyrosinated MTs (Glu MTs) rather than with the bulk of the MTs, which were tyrosinated MTs (Tyr MTs). Vimentin IFs were not stabilizing the Glu MTs since collapse of the IF network to a perinuclear location, induced by microinjection of monoclonal anti-IF antibody, had no noticeable effect on the array of Glu MTs. To test whether Glu MTs may affect the organization of IFs we regrew MTs in cells that had been treated with nocodazole to depolymerize all the MTs and to collapse IFs; the reextension of IFs into the lamella lagged behind the rapid regrowth of Tyr MTs, but was correlated with the slower reformation of Glu MTs. Similar realignment of IFs with newly formed Glu MTs was observed in serum-starved cells treated with either serum or taxol to induce the formation of Glu MTs. Next, we microinjected affinity purified antibodies specific for Glu tubulin (polyclonal SG and monoclonal 4B8) and specific for Tyr tubulin (polyclonal W2 and monoclonal YL1/2) into 3T3 cells. Both injected SG and 4B8 antibodies labeled the subset of endogenous Glu MTs; W2 and YL1/2 antibodies labeled virtually all of the cytoplasmic MTs. Injection of SG or 4B8 resulted in the collapse of IFs to a perinuclear region. This collapse was comparable to that observed after complete MT depolymerization by nocodazole. Injection of W2, YL1/2, or nonspecific control IgGs did not result in collapse of the IFs. Taken together, these results show that Glu MTs localize IFs in migrating 3T3 fibroblasts and suggest that detyrosination of tubulin acts as a signal for the recruitment of vimentin IFs to MTs.  相似文献   

16.
Using two monoclonal antibodies that specifically recognise alpha-tubulin we describe differences in their light and electron microscopic immunoperoxidase staining of axons in cerebellum, hippocampus, and cerebral cortex. In the molecular layer of the cerebellar cortex at the light microscopic level, one of the antibodies (YOL/34) labelled parallel fibre axons (in an identical manner to a beta-tubulin monoclonal antibody) while the other antibody (YL1/2) failed to label them. Extending these studies to the electron microscopic level in the cerebellum we have determined the sub-cellular localisation of alpha-tubulin in microtubules and the postsynaptic density, and also demonstrated a sub-population of parallel fibres and myelinated axons labelled with antibody YL1/2. The monoclonal antibodies were further characterised using immunoblotting against alpha-tubulin separated by isoelectric focusing gels. The results suggest that the contrasting staining patterns between the alpha-tubulin antibodies may reflect axonal sub-populations containing different isotypes of alpha-tubulin.  相似文献   

17.
Fibroblasts alter their shape, orientation, and direction of movement to align with the direction of micromachined grooves, exhibiting a phenomenon termed topographic guidance. In this study we examined the ability of the microtubule and actin microfilament bundle systems, either in combination with or independently from each other, to affect alignment of human gingival fibroblasts on sets of micromachined grooves of different dimensions. To assess specifically the role of microtubules and actin microfilament bundles, we examined cell alignment, over time, in the presence or absence of specific inhibitors of microtubules (colcemid) and actin microfilament bundles (cytochalasin B). Using time-lapse videomicroscopy, computer-assisted morphometry and confocal microscopy of the cytoskeleton we found that the dimensions of the grooves influenced the kinetics of cell alignment irrespective of whether cytoskeletons were intact or disturbed. Either an intact microtubule or an intact actin microfilament-bundle system could produce cell alignment with an appropriate substratum. Cells with intact microtubules aligned to smaller topographic features than cells deficient in microtubules. Moreover, cells deficient in microtubules required significantly more time to become aligned. An unexpected finding was that very narrow 0.5-μm-wide and 0.5-μm-deep grooves aligned cells deficient in actin microfilament bundles (cytochalasin B-treated) better than untreated control cells but failed to align cells deficient in microtubules yet containing microfilament bundles (colcemid treated). Thus, the microtubule system appeared to be the principal but not sole cytoskeletal substratum-response mechanism affecting topographic guidance of human gingival fibroblasts. This study also demonstrated that micromachined substrata can be useful in dissecting the role of microtubules and actin microfilament bundles in cell behaviors such as contact guidance and cell migration without the use of drugs such as cytochalasin and colcemid.  相似文献   

18.
Monoclonal antibodies (JLB1 and JLB7) that recognize minor components of the intermediate filament system of cultured cells were introduced into living fibroblasts by microinjection. Several minutes after injection of the JLB7 antibody virtually all of the intermediate filaments of the cells were found to be aggregated into tight bundles near or around the nucleus. In contrast, injection of the JLB1 antibody caused little or no aggregation of the intermediate filaments. Electron microscopy showed that the perinuclear bundles that formed after injection of the JLB7 antibody each consisted of ten or more intermediate filaments apparently crosslinked together. Double-label immunofluorescence microscopy showed that virtually all of the vimentin-containing intermediate filaments in the JLB7 antibody-injected cells were redistributed to the perinuclear region and remained there for at least 24 hr. The distributions of actin microfilaments and microtubules were seemingly undisturbed following microinjection. No obvious changes in cell morphology or behavior were apparent in the cells injected with JLB7 antibody; the cells displayed a flat appearance, showed a polarity, were able to ruffle and bleb and even appeared to show the normal saltatory movements of intracellular vesicles, granules and mitochondria, suggesting that intermediate filaments are not involved in these activities. The microinjection of highly specific monoclonal antibodies that recognize and alter components of the cell provides an additional approach to determine the in vivo functions of intracellular elements.  相似文献   

19.
How important are the changes of microtubule control for the realization of actin cortex changes during neoplastic transformation? To answer this question we studied the actin cytoskeleton and intermediate filaments condition after colcemid destruction or taxol disintegration of microtubule system in non-transformed cells BALB/c 3T3 and in the same cells transformed by Ha-ras gene. We have come to a conclusion that the differences between non-transformed and transformed cells in the actin cytoskeleton organization remain the same after specific inhibitor action on the microtubules; after the microtubules are destroyed the differences between the two cell types appear in the intermediate filament organization; there are reasons to assume that changes in the actin cortex structure may play the central role in morphological transformation expression.  相似文献   

20.
The subcellular distribution of microtubules containing acetylated alpha-tubulin in mammalian cells in culture was analyzed with 6-11B-1, a monoclonal antibody specific for acetylated alpha-tubulin. Cultures of 3T3, HeLa, and PtK2 cells were grown on coverslips and observed by immunofluorescence microscopy after double-staining by 6-11B-1 and B-5-1-2, a monoclonal antibody specific for all alpha-tubulins. The antibody 6-11B-1 binds to primary cilia, centrioles, mitotic spindles, midbodies, and to subsets of cytoplasmic microtubules in 3T3 and HeLa cells, but not in PtK2 cells. These observations confirm that the acetylation of alpha-tubulin is a modification occurring in different microtubule structures and in a variety of eukaryotic cells. Some features of the acetylation of cytoplasmic microtubules of mammalian cells are also described here. First, acetylated alpha-tubulin is present in microtubules that, under depolymerizing conditions, are more stable than the majority of cytoplasmic microtubules. In addition to the specific microtubule frameworks already mentioned, cytoplasmic microtubules resistant to nocodazole or colchicine, but not cold-resistant microtubules, contain more acetylated alpha-tubulin than the rest of cellular microtubules. Second, the alpha-tubulin in all cytoplasmic microtubules of 3T3 and HeLa cells becomes acetylated in the presence of taxol, a drug that stabilizes microtubules. Third, acetylation and deacetylation of cytoplasmic microtubules are reversible in cells released from exposure to 0 degrees C or antimitotic drugs. Fourth, the epitope recognized by the antibody 6-11B-1 is not absolutely necessary for cell growth and division. This epitope is absent in PtK2 cells. The acetylation of alpha-tubulin could regulate the presence of microtubules in specific intracellular spaces by selective stabilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号