首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteomic analysis of the brain is complicated by the need to obtain cells from specific anatomical regions, or nuclei. Laser capture microdissection (LCM) is a technique that is precise enough to dissect single cells within a tissue section, and thus could be useful for isolating specific brain nuclei for analysis. However, we and others have previously demonstrated that histological staining protocols used to guide LCM have detrimental effects on protein separation by two-dimensional electrophoresis (2-DE). Here we describe a new LCM method called navigated LCM. This microdissection method uses fixed but unstained tissue as starting material and thus enables us to avoid artifacts induced by tissue staining. By comparing 2-DE results obtained from fixed, unstained LCM brain tissue samples to those obtained from manually dissected samples, we demonstrated that this microdissection process gave similar protein recovery rates and similar resolution of protein spots on 2-DE gels. Moreover, matrix-assisted laser desorption/ionization-time of flight mass spectrometry analysis of selected spots from gels derived from control and fixed, LCM samples revealed that the fixation-LCM process had no effect on protein identification. Navigated LCM of tissue sections is therefore a practical and powerful method for performing proteomic studies in specifically defined brain regions.  相似文献   

2.
Laser capture microdissection of frozen tissue sections allows homogeneous cell populations to be isolated for expression profiling. However, this requires striking a balance between retaining adequate morphology for accurate microdissection and maintaining RNA integrity. Various staining protocols were applied to frozen endometrial carcinoma tissue sections. Although alcohol-based methods were superior to aqueous stains for maintaining RNA integrity, they suffered from irreproducible staining intensity. We developed a modified alcohol-based, buffered cresyl violet staining protocol that provides reproducible staining with minimal RNA degradation suitable for tissues with moderate to high levels of intrinsic RNase activity.  相似文献   

3.
High-quality RNA from cells isolated by laser capture microdissection   总被引:11,自引:0,他引:11  
Laser capture microdissection (LCM) provides a rapid and simple method for procuring homogeneous populations of cells. However, reproducible isolation of intact RNAfrom these cells can be problematic; the sample may deteriorate before or during sectioning, RNA may degrade during slide staining and LCM, and inadequate extraction and isolation methods may lead to poor recovery. Our report describes an optimized protocol for preparation of frozen sections for LCM using the HistoGene Frozen Section Staining Kit. This slide preparation method is combined with the PicoPure RNA Isolation Kitfor extraction and isolation of RNA from low numbers of microdissected cells. The procedure is easy to perform, rapid, and reproducible. Our results show that the RNA isolated from the LCM samples prepared according to our protocol is of high quality. The RNA maintains its integrity as shown by RT-PCR detection of genes of different abundance levels and by electrophoretic analysis of ribosomal RNA. RNA obtained by this method has also been used to synthesize probes for interrogating cDNA microarray analyses to study expression levels of thousands of genes from LCM samples.  相似文献   

4.
The isolation and molecular analysis of highly purified cell populations from complex, heterogeneous tissues has been a challenge for many years. Spermatogenesis in the testis is a particularly difficult process to study given the unique multiple cellular associations within the seminiferous epithelium, making the isolation of specific cell types difficult. Laser-capture microdissection (LCM) is a recently developed technique that enables the isolation of individual cell populations from complex tissues. This technology has enhanced our ability to directly examine gene expression in enriched testicular cell populations by routine methods of gene expression analysis, such as real-time RT-PCR, differential display, and gene microarrays. The application of LCM has however introduced methodological hurdles that have not been encountered with more conventional molecular analyses of whole tissue. In particular, tissue handling (i.e. fixation, storage, and staining), consumables (e.g. slide choice), staining reagents (conventional H&E vs. fluorescence), extraction methods, and downstream applications have all required re-optimisation to facilitate differential gene expression analysis using the small amounts of material obtained using LCM. This review will discuss three critical issues that are essential for successful procurement of cells from testicular tissue sections; tissue morphology, capture success, and maintenance of molecular integrity. The importance of these issues will be discussed with specific reference to the two most commonly used LCM systems; the Arcturus PixCell IIe and PALM systems. The rat testis will be used as a model, and emphasis will be placed on issues of tissue handling, processing, and staining methods, including the application of fluorescence techniques to assist in the identification of cells of interest for the purposes of mRNA expression analysis.  相似文献   

5.
探讨显微切割过程中有效保持RNA完整性的组织固定方法,建立一种简易的手工显微切割法.应用自制“T形板”辅助冰冻切片,100%无水乙醇一次性脱水固定,“排除切割法”获取目的细胞,用TRIzol提取RNA,琼脂糖凝胶电泳和RT-PCR分析RNA质量.“一步法”固定可长时间保存RNA的完整性;从食管癌标本5个特定阶段的细胞中提取的RNA,经电泳和RT-PCR分析均具有较高的质量.无水乙醇“一步法”固定,在显微切割的过程中可有效保持RNA的完整性;T形板和“排除切割法”简化了手工显微切割的操作,提取的RNA质、量均可满足后续分子水平研究的需要.  相似文献   

6.
Laser capture microdissection (LCM) allows the isolation of specific cells from thin tissue sections with high spatial resolution. Effective LCM requires precise identification of cells subpopulations from a heterogeneous tissue. Identification of cells of interest for LCM is usually based on morphological criteria or on fluorescent protein reporters. The combination of LCM and rapid immunolabeling offers an alternative and efficient means to visualize specific cell types and to isolate them from surrounding tissue. High-quality RNA can then be extracted from a pure cell population and further processed for downstream applications, including RNA-sequencing, microarray or qRT-PCR. This approach has been previously performed and briefly described in few publications. The goal of this article is to illustrate how to perform rapid immunolabeling of a cell population while keeping RNA integrity, and how to isolate these specific cells using LCM. Herein, we illustrated this multi-step procedure by immunolabeling and capturing dopaminergic cells in brain tissue from one-day-old mice. We highlight key critical steps that deserve special consideration. This protocol can be adapted to a variety of tissues and cells of interest. Researchers from different fields will likely benefit from the demonstration of this approach.  相似文献   

7.
Laser capture microdissection of cells from plant tissues   总被引:28,自引:0,他引:28       下载免费PDF全文
Laser capture microdissection (LCM) is a technique by which individual cells can be harvested from tissue sections while they are viewed under the microscope, by tacking selected cells to an adhesive film with a laser beam. Harvested cells can provide DNA, RNA, and protein for the profiling of genomic characteristics, gene expression, and protein spectra from individual cell types. We have optimized LCM for a variety of plant tissues and species, permitting the harvesting of cells from paraffin sections that maintain histological detail. We show that RNA can be extracted from LCM-harvested plant cells in amount and quality that are sufficient for the comparison of RNAs among individual cell types. The linear amplification of LCM-captured RNA should permit the expression profiling of plant cell types.  相似文献   

8.
9.
激光捕获显微切割技术在植物基因组研究中的应用   总被引:2,自引:0,他引:2  
蔡民华  胡英考  李雅轩  晏月明 《遗传》2006,28(10):1325-1336
植物的生长和发育在很大程度上取决于组织和(或)器官特异表达的基因, 但要获取某一发育阶段的特异细胞类群来进行基因表达分析又是相当困难的。近年发展起来的激光捕获显微切割技术可以在显微镜下快速准确地获取单一的细胞类群, 甚至单个细胞, 成功地解决了组织中细胞的异质性问题。介绍了该技术的原理, 并对其在植物中的应用进展情况做了综述, 同时指出了该技术在植物中应用的可能发展方向。  相似文献   

10.
Microarray and RT-PCR based methods are important tools for analysis of gene expression; however, in tissues containing many different cells types, such as the testis, characterization of gene expression in specific cell types can be severely hampered by noise from other cells. The laser microdissection technology allows for enrichment of specific cell types. However, when the cells are not morphologically distinguishable, it is necessary to use a specific staining method for the target cells. In this study we have tested different fixatives, storage conditions for frozen sections and staining protocols, and present two staining protocols for frozen sections, one for fast and specific staining of fetal germ cells, testicular carcinoma in situ cells, and other cells with embryonic stem cell-like properties that express the alkaline phosphatase, and one for specific staining of lipid droplet-containing cells, which is useful for isolation of the androgen-producing Leydig cells. Both protocols retain a morphology that is compatible with laser microdissection and yield RNA of a quality suitable for PCR and microarray analysis.  相似文献   

11.
12.
13.
14.
Laser capture microdissection (LCM) is a powerful system which allows the isolation of selectively targeted cells from a tissue section for the analysis of gene-expression profiles of individual cells. The technique has been successfully used for the isolation of specific mammalian cells, mainly cancer cells. However, LCM has never been reported to be applied to the gene expression analysis of plant cells. We used a modified LCM system and successfully applied it to target and isolate phloem cells of rice leaf tissue whose morphology is apparently different from the surrounding cells. Total RNA was extracted from microdissected (approximately 150) phloem cells and the isolated RNA was used for the construction of a cDNA library following the T7 RNA polymerase amplification. Sequence analysis of 413 randomly chosen clones from the library revealed that there was a high level of redundancy in the population and the clones could be subclassified into 124 different groups that contained related sequences. Approximately 37% of both the redundant population and the non-redundant subgroups had novel components while approximately 63% were either homologues to the known genes reported to be localized in phloem of different plant species, or were homologues to other known genes. In situ hybridization revealed that putative amino acid permease, one of the non-redundant clones, was specifically expressed in the phloem. The results proved the effectiveness of construction of a specialized cDNA library from the specific plant cells.  相似文献   

15.
Laser-capture microdissection (LCM) allows for the one-step procurement of large homogeneous populations of cells from tissue sections. In mammals, LCM has been used to conduct cDNA microarray and proteomics studies on specific cell types. However, LCM has not been applied to plant cells, most likely because plant cell walls make it difficult to separate target cells from surrounding cells and because ice crystals can form in the air spaces between cells when preparing frozen sections. By fixing tissues, using a cryoprotectant before freezing, and using an adhesive-coated slide system, it was possible to capture large numbers (>10,000) of epidermal cells and vascular tissues (vascular bundles and bundle sheath cells) from ethanol:acetic acid-fixed coleoptiles of maize. RNA extracted from these cells was amplified with T7 RNA polymerase and used to hybridize a microarray containing approximately 8800 maize cDNAs. Approximately 250 of these were expressed preferentially in epidermal cells or vascular tissues. These results demonstrate that the combination of LCM and microarrays makes it feasible to conduct high-resolution global gene expression analyses of plants. This approach has the potential to enhance our understanding of diverse plant cell type-specific biological processes.  相似文献   

16.
Laser-based tissue microdissection is an important tool for the molecular evaluation of histological sections. The technology has continued to advance since its initial commercialization in the 1990s, with improvements in many aspects of the process. More recent developments are tailored toward an automated, operator-independent mode that relies on antibodies as targeting probes, such as immuno–laser capture microdissection or expression microdissection (xMD). Central to the utility of expression-based dissection techniques is the effect of the staining process on the biomolecules in histological sections. To investigate this issue, the authors analyzed DNA, RNA, and protein in immunostained, microdissected samples. DNA was the most robust molecule, exhibiting no significant change in quality after immunostaining but a variable 50% to 75% decrease in the total yield. In contrast, RNA in frozen and ethanol-fixed, paraffin-embedded samples was susceptible to hydrolysis and digestion by endogenous RNases during the initial steps of staining. Proteins from immunostained tissues were successfully analyzed by one-dimensional electrophoresis and mass spectrometry but were less amenable to solution phase assays. Overall, the results suggest investigators can use immunoguided microdissection methods for important analytic techniques; however, continued improvements in staining protocols and molecular extraction methods are key to further advancing the capability of these methods.  相似文献   

17.
Laser-capture microdissection (LCM) enables the selection of a specific and pure cell population from a heterogenous tissue such as tumors. Activity-based protein profiling/profile (ABPP) is a chemical technology using enzyme-specific active site-directed probes to read out the functional state of many enzymes directly in any proteome. The aim of this work was to assess the compatibility of LCM with downstream ABPP for serine hydrolase (SH) in human lung adenocarcinoma. Fresh frozen lung adenocarcinoma tissue was stained with hematoxylin, toluidine blue, or methyl green (MG). Proteome from stained tissue was labeled further with SH-directed probes, and ABPPs were determined on a one-dimensional gel-based approach. This allowed us to assess the impact of staining procedures on their ABPPs. The effect of the LCM process on ABPPs was assessed furthermore using MG-stained lung adenocarcinoma tissue. The staining procedures led to strong changes in ABPPs. However, MG staining seemed the most compatible with downstream ABPP. MG-stained, laser-captured, microdissected tissue showed additional change in profiles as a result of the denaturing property of extraction buffer but not to the microdissection process itself. LCM staining procedures but not microdissection per se interfered with downstream ABPP and led to a strong change in ABPPs of SHs in human lung adenocarcinoma.  相似文献   

18.
Analysis of cell-specific gene expression patterns using microarrays can reveal genes that are differentially expressed in diseased and normal tissue, as well as identify genes associated with specialized cellular functions. However, the cellular heterogeneity of the tissues precludes the resolution of expression profiles of specific cell types. While laser capture microdissection (LCM) can be used to obtain purified cell populations, the limited quantity of RNA isolated makes it necessary to perform an RNA amplification step prior to microarray analysis. The linearity and reproducibility of two RNA amplification protocols--the Baugh protocol (Baugh et al., 2001, Nucleic Acids Res 29:E29) and an in-house protocol have been assessed by conducting microarray analyses. Cy3-labeled total RNA from the colorectal cell line Colo-205 was compared to Cy5-labeled Colo-205 amplified RNA (aRNA) generated with each of the two protocols, using a human 10K cDNA array. The correlation of the gene intensities between amplified and total RNA measured in the two channels of each microarray was 0.72 and 0.61 for the Baugh protocol and the in-house protocol, respectively. The two protocols were further evaluated using aRNA obtained from normal colonic crypt cross-sections isolated via LCM. In both cases a microarray profile representative of colonic mucosa was obtained; statistically, the Baugh protocol was superior. Furthermore, a substantial overlap between highly expressed genes in the Colo-205 cells and colonic crypts underscores the reliability of the microarray analysis of LCM-derived material. Taken together, these results demonstrate that LCM-derived tissue from histological specimens can generate abundant amounts of high-quality aRNA for subsequent microarray analysis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号