首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Peripheral nerve injuries affect a large proportion of the global population, often causing significant morbidity and loss of function. Current treatment strategies include the use of implantable nerve guide conduits (NGC's) to direct regenerating axons between the proximal and distal ends of the nerve gap. However, NGC's are limited in their effectiveness at promoting regeneration Current NGCs are not suitable as substrates for supporting either neuronal or Schwann cell growth, as they lack an architecture similar to that of the native extracellular matrix (ECM) of the nerve. The aim of this study was to create an acellular porcine peripheral nerve using a novel decellularisation protocol, in order to eliminate the immunogenic cellular components of the tissue, while preserving the three‐dimensional histoarchitecture and ECM components. Porcine peripheral nerve (sciatic branches were decellularised using a low concentration (0.1%; w/v) sodium dodecyl sulphate in conjunction with hypotonic buffers and protease inhibitors, and then sterilised using 0.1% (v/v) peracetic acid. Quantitative and qualitative analysis revealed a ≥95% (w/w) reduction in DNA content as well as preservation of the nerve fascicles and connective tissue. Acellular nerves were shown to have retained key ECM components such as collagen, laminin and fibronectin. Slow strain rate to failure testing demonstrated the biomechanical properties of acellular nerves to be comparable to fresh controls. In conclusion, we report the production of a biocompatible, biomechanically functional acellular scaffold, which may have use in peripheral nerve repair. Biotechnol. Bioeng. 2016;113: 2041–2053. © 2016 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc.  相似文献   

2.
Application of a high-level decontamination or sterilisation procedure and cell removal technique to tendon allograft can reduce the concerns of disease transmission, immune reaction, and may improve remodelling of the graft after implantation. The decellularised matrix can also be used as a matrix for tendon tissue engineering. One such sterilisation factor, Peracetic acid (PAA) has the advantage of not producing harmful reaction residues. The aim of this study was to evaluate the effects of PAA treatment and a cell removal procedure on the production of tendon matrix. Human patellar tendons, thawed from frozen were treated respectively as: Group 1, control with no treatment; Group 2, sterilised with PAA (0.1 % (w/v) PAA for 3 h) Group 3, decellularised (incubation successively in hypotonic buffer, 0.1 % (w/v) sodium dodecyl sulphate, and a nuclease solution); Group 4, decellularised and PAA sterilised. Histological analysis showed that no cells were visible after the decellularisation treatment. The integrity of tendon structure was maintained after decellularisation and PAA sterilisation, however, the collagen waveform was slightly loosened. No contact cytotoxicity was found in any of the groups. Determination of de-natured collagen showed no significant increase when compared with the control. This suggested that the decellularisation and sterilisation processing procedures did not compromise the major properties of the tendon. The sterilised, decellularised tendon could be suitable for clinical use.  相似文献   

3.
Throughout native artery, collagen and elastin play an important role, providing a mechanical backbone, preventing vessel rupture, and promoting recovery under pulsatile deformations. The goal of this study was to mimic the structure of native artery by fabricating a multi-layered electrospun conduit composed of poly(caprolactone) (PCL) with the addition of elastin and collagen with blends of 45-45-10, 55-35-10, and 65-25-10 PCL-ELAS-COL to demonstrate mechanical properties indicative of native arterial tissue, while remaining conducive to tissue regeneration. Whole grafts and individual layers were analyzed using uniaxial tensile testing, dynamic compliance, suture retention, and burst strength. Compliance results revealed that changes to the middle/medial layer changed overall graft behavior with whole graft compliance values ranging from 0.8 - 2.8 % / 100 mmHg, while uniaxial results demonstrated an average modulus range of 2.0 - 11.8 MPa. Both modulus and compliance data displayed values within the range of native artery. Mathematical modeling was implemented to show how changes in layer stiffness affect the overall circumferential wall stress, and as a design aid to achieve the best mechanical combination of materials. Overall, the results indicated that a graft can be designed to mimic a tri-layered structure by altering layer properties.  相似文献   

4.

Objectives

Marfan syndrome is an autosomal dominant inherited disorder of connective tissue. The vascular complications of Marfan syndrome have the biggest impact on life expectancy. The aorta of Marfan patients reveals degradation of elastin layers caused by increased proteolytic activity of matrix metalloproteinases (MMPs). In this study we performed adenoviral gene transfer of human tissue inhibitor of matrix metalloproteinases-1 (hTIMP-1) in aortic grafts of fibrillin-1 deficient Marfan mice (mgR/mgR) in order to reduce elastolysis.

Methods

We performed heterotopic infrarenal transplantation of the thoracic aorta in female mice (n = 7 per group). Before implantation, mgR/mgR and wild-type aortas (WT, C57BL/6) were transduced ex vivo with an adenoviral vector coding for human TIMP-1 (Ad.hTIMP-1) or β-galactosidase (Ad.β-Gal). As control mgR/mgR and wild-type aortas received no gene therapy. Thirty days after surgery, overexpression of the transgene was assessed by immunohistochemistry (IHC) and collagen in situ zymography. Histologic staining was performed to investigate inflammation, the neointimal index (NI), and elastin breaks. Endothelial barrier function of native not virus-exposed aortas was evaluated by perfusion of fluorescent albumin and examinations of virus-exposed tissue were performed by transmission electron microscopy (TEM).

Results

IHC and ISZ revealed sufficient expression of the transgene. Severe cellular inflammation and intima hyperplasia were seen only in adenovirus treated mgR/mgR aortas (Ad.β-Gal, Ad.hTIMP-1 NI: 0.23; 0.43), but not in native and Ad.hTIMP-1 treated WT (NI: 0.01; 0.00). Compared to native mgR/mgR and Ad.hTIMP-1 treated WT aorta, the NI is highly significant greater in Ad.hTIMP-1 transduced mgR/mgR aorta (p = 0.001; p = 0.001). As expected, untreated Marfan grafts showed significant more elastolysis compared to WT (p = 0.001). However, elastolysis in Marfan aortas was not reduced by adenoviral overexpression of hTIMP-1 (compared to untreated Marfan aorta: Ad.hTIMP-1 p = 0.902; control Ad.β-Gal. p = 0.165). The virus-untreated and not transplanted mgR/mgR aorta revealed a significant increase of albumin diffusion through the endothelial barrier (p = 0.037). TEM analysis of adenovirus-exposed mgR/mgR aortas displayed disruption of the basement membrane and basolateral space.

Conclusions

Murine Marfan aortic grafts developed severe inflammation after adenoviral contact. We demonstrated that fibrillin-1 deficiency is associated with relevant dysfunction of the endothelial barrier that enables adenovirus to induce vessel-harming inflammation. Endothelial dysfunction may play a pivotal role in the development of the vascular phenotype of Marfan syndrome.  相似文献   

5.
Aortas from four sheep and three fetal lambs were fixed at physiological pressure in 10% neutral buffered formalin. The regions with branches were serially sectioned in either cross or longitudinal section at 7-micron intervals and stained for elastin with Gomori-aldehyde-fuchsin. A large model of one aortointercostal junction was made from Plexiglas to show that bundles of elastin appeared to be continuous from the aorta into the branch. These bundles were then studied from large photomicrographs of the other junctions. At the intercostals and lumbars, the elastin lamellae ran continuously from the outer third of the media into the branch. There was often an added "pad" of elastin and other acellular material on the flow divider (distal lip). The large muscular branches which arose from the abdominal aorta have much less elastin than the intercostals. In them the aortic elastin appears to merge into a raphe on the proximal and lateral sides of the junction, with a very abrupt transition. A "tongue" of muscle from the branch often penetrated into the media of the aorta distally. Occasionally a small acellular cap was seen on the apex of the flow divider. There were few significant differences between the lambs and the sheep, probably because embryologically the arteries develop very early. The proximal and distal lips of all junctions were easily distinguished from each other, and the small and large branches were also different. We suspect these regions may respond differently to pressure, but we did not test this hypothesis.  相似文献   

6.
This study was undertaken to understand elastin's role in the mechanical homeostasis of the arterial wall. The mechanical properties of elastin vary along the aorta, and we hypothesized this maintained a uniform mechanical environment for the elastin, despite regional variation in loading. Elastin's physiological loading was determined by comparing the inflation response of intact and autoclave purified elastin aortas from the proximal and distal thoracic aorta. Elastin's stretch and stress depend on collagen recruitment. Collagen recruitment started in the proximal aorta at systolic pressures (13.3 to 14.6 kPa) and in the distal at sub-diastolic pressures (9.3 to 10.6 kPa). In the proximal aorta collagen did not contribute significantly to the stress or stiffness, indicating that elastin determined the vessel properties. In the distal aorta, the circumferential incremental modulus was 70% higher than in the proximal aorta, half of which (37%) was due to a stiffening of the elastin. Compared to the elastin tissue in the proximal aorta, the distal elastin suffered higher physiological circumferential stretch (29%, P=0.03), circumferential stress (39%, P=0.02), and circumferential stiffness (37%, P=0.006). Elastin's physiological axial stresses were also higher (67%, P=0.003). These findings do not support the hypothesis that the loading on elastin is constant along the aorta as we expected from homeostasis.  相似文献   

7.
Decellularization, a technique used in liver regenerative medicine, is the removal of all the cellular components from a tissue or organ, leaving behind an intact structure of extracellular matrix. The biomechanical properties of this novel scaffold material are currently unknown and are important due to the mechanosensitivity of liver cells. Characterizing this material is important for bioengineering liver tissue from this decellularized scaffold as well as creating new 3-dimensional mimetic structures of liver extracellular matrix. This study set out to characterize the biomechanical properties of perfused liver tissue in its native and decellularized states on both a macro- and nano-scale. Poroviscoelastic finite element models were then used to extract the fluid and solid mechanical properties from the experimental data. Tissue-level spherical indentation-relaxation tests were performed on 5 native livers and 8 decellularized livers at two indentation rates and at multiple perfusion rates. Cellular-level spherical nanoindentation was performed on 2 native livers and 1 decellularized liver. Tissue-level results found native liver tissue to possess a long-term Young’s modulus of 10.5 kPa and decellularized tissue a modulus of 1.18 kPa. Cellular-level testing found native tissue to have a long-term Young’s modulus of 4.40 kPa and decellularized tissue to have a modulus of 0.91 kPa. These results are important for regenerative medicine and tissue engineering where cellular response is dependent on the mechanical properties of the engineered scaffold.  相似文献   

8.
9.
G M Bressan  D J Prockop 《Biochemistry》1977,16(7):1406-1412
The biosynthesis of elastin was examined in matrix-free cells isolated by enzymic digestion of aortas from 17-day old chick embryos. After the cells were incubated with [14C]proline and then were rapidly boiled in buffer containing high concentrations of protease inhibitors and sodiumdodecyl sulfate, about one-quarter of the intracellular 14C-labeled protein was recovered as an elastin component with an apparent molecular weight of about 72 000. Examination of the medium from the cell suspension indicated that the largest elastin component secreted by the cells also had an apparent molecular weight of about 72 000. Pulse-chase experiments with intact aortas demonstrated that about two-thirds of the 72 000-dalton component disappeared in 2 h, apparently because it was converted to cross-linked fibers. When cross-linking was inhibited with penicillamine, the 72 000-dalton component persisted in the tissue 5 h. When cross-linking was inhibited with beta-aminopropionitrile, the elastin component of 72 000 daltons persisted for about 2 h, but thereafter it was gradually degraded to small peptides which were recovered in the incubation medium. The results suggest that elastin is secreted by cells in chick aorta as a polypeptide of about 72 000 daltons and that the secreted protein is incorporated into elastin fibers without cleavage to a protein of considerably smaller size.  相似文献   

10.
Elastin and collagen fibers play important roles in the mechanical properties of aortic media. Because knowledge of local fiber structures is required for detailed analysis of blood vessel wall mechanics, we investigated 3D microstructures of elastin and collagen fibers in thoracic aortas and monitored changes during pressurization. Using multiphoton microscopy, autofluorescence images from elastin and second harmonic generation signals from collagen were acquired in media from rabbit thoracic aortas that were stretched biaxially to restore physiological dimensions. Both elastin and collagen fibers were observed in all longitudinal–circumferential plane images, whereas alternate bright and dark layers were observed along the radial direction and were recognized as elastic laminas (ELs) and smooth muscle-rich layers (SMLs), respectively. Elastin and collagen fibers are mainly oriented in the circumferential direction, and waviness of collagen fibers was significantly higher than that of elastin fibers. Collagen fibers were more undulated in longitudinal than in radial direction, whereas undulation of elastin fibers was equibiaxial. Changes in waviness of collagen fibers during pressurization were then evaluated using 2-dimensional fast Fourier transform in mouse aortas, and indices of waviness of collagen fibers decreased with increases in intraluminal pressure. These indices also showed that collagen fibers in SMLs became straight at lower intraluminal pressures than those in EL, indicating that SMLs stretched more than ELs. These results indicate that deformation of the aorta due to pressurization is complicated because of the heterogeneity of tissue layers and differences in elastic properties of ELs, SMLs, and surrounding collagen and elastin.  相似文献   

11.
Decellularisation of skeletal muscle provides a system to study the interactions of myoblasts with muscle extracellular matrix (ECM). This study describes the efficient decellularisation of quadriceps muscle with the retention of matrix components and the use of this matrix for myoblast proliferation and differentiation under serum free culture conditions. Three decellularisation approaches were examined; the most effective was phospholipase A2 treatment, which removed cellular material while maximizing the retention of ECM components. Decellularised muscle matrices were then solubilized and used as substrates for C2C12 mouse myoblast serum free cultures. The muscle matrix supported myoblast proliferation and differentiation equally as well as collagen and fibronectin. Immunofluorescence analyses revealed that myoblasts seeded on muscle matrix and fibronectin differentiated to form long, well-aligned myotubes, while myoblasts seeded on collagen were less organized. qPCR analyses showed a time dependent increase in genes involved in skeletal muscle differentiation and suggested that muscle-derived matrix may stimulate an increased rate of differentiation compared to collagen and fibronectin. Decellularized whole muscle three-dimensional scaffolds also supported cell adhesion and spreading, with myoblasts aligning along specific tracts of matrix proteins within the scaffolds. Thus, under serum free conditions, intact acellular muscle matrices provided cues to direct myoblast adhesion and migration. In addition, myoblasts were shown to rapidly secrete and organise their own matrix glycoproteins to create a localized ECM microenvironment. This serum free culture system has revealed that the correct muscle ECM facilitates more rapid cell organisation and differentiation than single matrix glycoprotein substrates.  相似文献   

12.
The study purpose is to optimize modeling parameters, specifically segmentation spacing and centerline extraction, to efficiently construct accurate 3D aortic models. Models are constructed by centerline extraction and orthogonal 2D segmentations. We examine the effect of segmentation interval spacing (2, 1, 0.5, 0.25 cm) and orthogonal segmentation and centerline extraction iteration (one, two, three iterations) for constructing models of Healthy, Tortuous, Aneurysmal, and Dissected human thoracic aortas. Aortic arclength, curvature, and cross-sectional axis ratio were computed to compare variations in modeling parameters. Centerline arclength is precisely characterized for all aortas with a single iteration of centerline extraction (≤1% deviation), however, complex anatomies required 1 cm segmentation intervals whereas the Healthy aorta only required 2 cm intervals. Centerline curvature is more sensitive to modeling methods, requiring 1 cm intervals for ≤5% deviation in peak curvature for the three diseased anatomies, and two iterations of segmentation and centerline extraction for the Aneurysmal and Dissected aortas. Accurate lumen cross-sectional characterization required 1 or 0.5 cm segmentation intervals, and two or three segmentation and centerline iterations, with greater refinement needed for more complex geometries. Depending on the geometric characteristic and complexity of anatomy and pathology, different levels of segmentation interval refinement and iterations of segmentation and centerline extraction are required.  相似文献   

13.
Glutaraldehyde preservation is the gold standard for cardiovascular biological prosthesis. However, secondary calcifications and the absence of tissue growth remain major limitations. Our study assessed in vitro and in vivo the biocompatibility of human (fascia lata, pericardium) and porcine tissues (pericardium, peritoneum) treated with a physicochemical procedure for decellularization and non-conventional pathogens inactivation. Biopsies were performed before and after treatment to assess decellularization (HE/Dapi staining/DNA quantification/MHC I/alpha gal immunostaining) and mechanical integrity. Forty-five rats received an abdominal aortic patch of native cryopreserved tissues (n = 20), treated tissues (n = 20) or glutaraldehyde-preserved bovine pericardium (GBP, control, n = 5). Grafts were explanted at 4 weeks and processed for HE/von Kossa staining and immunohistochemistries for lymphocytes (CD3)/macrophages (CD68) histomorphometry. 95% of decellularization was obtained for all tissues except for fascia lata (75%). Mechanical properties were slightly altered. In the in vivo model, a significant increase of CD3 and CD68 infiltrations was found in native and control implants in comparison with decellularized tissues (p < 0.05). Calcifications were found in 3 controls. Decellularized tissues were recolonized. GBP showed the most inflammatory response. This physicochemical treatment improves the biocompatibility of selected xeno/allogeneic tissues in comparison with their respective native cryopreserved tissues and with GBP. Incomplete decellularization is associated with a significantly higher inflammatory response. Our treatment is a promising tool in the field of tissue decellularization and tissue banking.  相似文献   

14.
This study was directed to the measurement of the mechanical response of fetal membranes to physiologically relevant loading conditions. Characteristic mechanical parameters were determined and their relation to the microstructural constituents collagen and elastin as well as to the pyridinium cross-link concentrations analyzed. 51 samples from twelve fetal membranes were tested on a custom-built inflation device, which allows mechanical characterization within a multiaxial state of stress. Methods of nonlinear continuum mechanics were used to extract representative mechanical parameters. Established biochemical assays were applied for the determination of the collagen and elastin content. Collagen cross-link concentrations were determined by high-performance liquid chromatography measurements. The results indicate a distinct correlation between the mechanical parameters of high stretch stiffness and membrane tension at rupture and the biochemical data of collagen content and pyridinoline as well as deoxypyridinoline concentrations. No correlation was observed between the mechanical parameters and the elastin content. Moreover, the low stretch stiffness is, with a value of 105 ± 31 × 10?3 N/ mm much higher for a biaxial state of stress compared to a uniaxial stress configuration. Determination of constitutive model equations leads to better predictive capabilities for a reduced polynomial hyperelastic model with only terms related to the second invariant, I 2, of the right Cauchy-Green deformation tensor. Relevant insights were obtained on the mechanical behavior of fetal membranes. Collagen and its cross-linking were shown to determine membrane’s stiffness and strength for multiaxial stress states. Their nonlinear deformation behavior characterizes the fetal membranes as I 2 material.  相似文献   

15.
We used a murine model to assess the evolving biomechanical properties of tissue engineered vascular grafts (TEVGs) implanted in the arterial circulation. The initial polymeric tubular scaffold was fabricated from poly(lactic acid)(PLA) and coated with a 50:50 copolymer of poly(caprolactone) and poly(lactic acid)(P[PC/LA]). Following seeding with syngeneic bone marrow derived mononuclear cells, TEVGs (n=50) were implanted as aortic interposition grafts in wild-type mice and monitored serially using ultrasound. A custom biaxial mechanical testing device was used to quantify the in vitro circumferential and axial mechanical properties of grafts explanted at 3 or 7 months. At both times, TEVGs were much stiffer than native tissue in both directions. Repeated mechanical testing of some TEVGs treated with elastase or collagenase suggested that elastin did not contribute significantly to the overall stiffness whereas collagen did contribute. Traditional histology and immunostaining revealed smooth muscle cell layers, significant collagen deposition, and increasing elastin production in addition to considerable scaffold at both 3 and 7 months, which likely dominated the high stiffness seen in mechanical testing. These results suggest that PLA has inadequate in vivo degradation, which impairs cell-mediated development of vascular neotissue having properties closer to native arteries. Assessing contributions of individual components, such as elastin and collagen, to the developing neovessel is needed to guide computational modeling that may help to optimize the design of the TEVG.  相似文献   

16.
A method for identifying mechanical properties of arterial tissue in vivo is proposed in this paper and it is numerically validated for the human abdominal aorta. Supplied with pressure-radius data, the method determines six parameters representing relevant mechanical properties of an artery. In order to validate the method, 22 finite element arteries are created using published data for the human abdominal aorta. With these in silico abdominal aortas, which serve as mock experiments with exactly known material properties and boundary conditions, pressure-radius data sets are generated and the mechanical properties are identified using the proposed parameter identification method. By comparing the identified and pre-defined parameters, the method is quantitatively validated. For healthy abdominal aortas, the parameters show good agreement for the material constant associated with elastin and the radius of the stress-free state over a large range of values. Slightly larger discrepancies occur for the material constants associated with collagen, and the largest relative difference is obtained for the in situ axial prestretch. For pathological abdominal aortas incorrect parameters are identified, but the identification method reveals the presence of diseased aortas. The numerical validation indicates that the proposed parameter identification method is able to identify adequate parameters for healthy abdominal aortas and reveals pathological aortas from in vivo-like data.  相似文献   

17.
1. Elastins were isolated from the visceral pleuras and parenchymas of lungs of humans of different ages. 2. The elastin content of pleuras increased whereas that of parenchymas remained constant with increasing age. 3. The amino acid compositions and carbohydrate contents of elastins isolated from both pulmonary tissues changed in the same way with increasing age of the subjects. These changes were similar to those observed in elastins isolated from the aorta. 4. Similar glycoproteins were isolated from pleuras and aortas, and were more difficult to extract from the elastins of older subjects. Contamination with these glycoproteins was responsible for the changes in composition of elastin, as the age of the tissue from which it was extracted increased. 5. The amount of the cross-linking amino acids desmosine and isodesmosine was lower in elastins isolated from both aorta and pulmonary tissues of senile subjects than those from younger subjects.  相似文献   

18.
The purpose of this investigation was to develop a decellularised human dermis suitable for allografting. Samples of human skin were obtained from deceased donors and taken through a series of steps to remove all cellular material. The steps were: chemical removal of the epidermis, disinfection, lysing of cells in hypotonic buffer, a detergent treatment and a nuclease buffer to remove residual nuclear material. Histological preparations of the decellularised dermis produced were then investigated. In addition residual DNA content, structural strength, collagen denaturation, cytotoxicity and in vivo tissue reactivity following implantation in a murine model were examined. For all donors tested there was no change in morphology as viewed by light microscopy. Mean DNA removal was evaluated at 92.1 %. There were no significant changes in structural strength or evidence of collagen degradation. The tissue did not appear to be cytotoxic or elicit an immune response when implanted in the mouse model. A decellularised tissue has been developed that would appear to be suitable for a range of surgical procedures.  相似文献   

19.
A CD study was carried out on elastin peptide samples obtained from porcine and normal and pathological human aortas. Different solubilization procedures were used: (1) an ethanolic-KOH hydrolysis to obtain porcine κ-elastins; (2) oxalic acid hydrolysis to obtain porcine α- and β-elastins; and (3) enzymatic digestions and a partial acid hydrolysis to obtain porcine and human crosslinked peptides. The comparison of the results obtained from the dichroic study of porcine and normal human aorta peptides does not reveal any differences. On the contrary, the dichroic spectra obtained for the human pathological aorta peptides at different stages of atheromateous lesions exhibit some differences which are attributed to some variations of the conformation around the bridging zones.  相似文献   

20.
Understanding the mechanical environment of each component within the arterial wall is fundamental for understanding vascular growth and remodelling and for engineering artificial vascular conduits. We have investigated the mechanical status of arterial elastin by measuring the circumferential mechanical properties of purified elastin as function of position along the descending thoracic aorta of the pig. The tensile circumferential secant modulus, E(sec), measured in uniaxial mechanical tests, increased 30% (P<0.001), from a value of 0.88 MPa in the proximal tissue near the aortic arch to 1.14 MPa in the distal tissue near the diaphragm, indicating the stiffness of the elastin sample increased with position. Breaking stress was 54% higher in the distal tissue compared to the proximal (P<0.001), but the breaking stretch ratio did not change. E(sec) correlated with the ratio of radius to wall thickness measured in the no load state, r(nl)/h(nl), suggesting that the rise in stiffness was linked to ring morphology. The higher stiffness and strength of the distal tissue might be explained by a higher proportion of circumferentially oriented fibres in the distal tissue, which would indicate that the elastin meshwork in the thoracic aorta may become progressively anisotropic with distance from the heart. The ratio r(nl)/(h(nl)E (sec))rose only 7%, which suggests that the in vivo circumferential strain on the elastin may be constant along the pig thoracic aorta. The positional variation in elastin's properties should be taken into account in mechanical studies on purified elastin and in mathematical models of aorta mechanics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号