首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the construction and analysis of a Bacteroides thetaiotaomicron recA disruption mutant and an investigation of whether RecA is required for excision and integration of Bacteroides mobile DNA elements. The recA mutant was deficient in homologous recombination and was more sensitive than the wild-type strain to DNA-damaging agents. The recA mutant was also more sensitive to oxygen than the wild type, indicating that repair of DNA contributes to the aerotolerance of B. thetaiotaomicron. Many Bacteroides clinical isolates carry self-transmissible chromosomal elements known as conjugative transposons. These conjugative transposons can also excise and mobilize in trans a family of unlinked integrated elements called nonreplicating Bacteroides units (NBUs). The results of a previous study had raised the possibility that RecA plays a role in excision of Bacteroides conjugative transposons, but this hypothesis could not be tested in Bacteroides spp. because no RecA-deficient Bacteroides strain was available. We report here that the excision and integration of the Bacteroides conjugative transposons, as well as NBU1 and Tn4351, were unaffected by the absence of RecA activity.  相似文献   

2.
Antibiotic-resistant Gram-positive bacteria are responsible for morbidity and mortality in healthcare environments. Enterococcus faecium, Enterococcus faecalis, Staphylococcus aureus and Streptococcus pneumoniae can all exhibit clinically relevant multidrug resistance phenotypes due to acquired resistance genes on mobile genetic elements. It is possible that clinically relevant multidrug-resistant Clostridium difficile strains will appear in the future, as the organism is adept at acquiring mobile genetic elements (plasmids and transposons). Conjugative transposons of the Tn916/Tn1545 family, which carry major antibiotic resistance determinants, are transmissible between these different bacteria by a conjugative mechanism during which the elements are excised by a staggered cut from donor cells, converted to a circular form, transferred by cell-cell contact and inserted into recipient cells by a site-specific recombinase. The ability of these conjugative transposons to acquire additional, clinically relevant antibiotic resistance genes importantly contributes to the emergence of multidrug resistance.  相似文献   

3.
Broad host range gene transfer: plasmids and conjugative transposons   总被引:2,自引:0,他引:2  
Abstract Conjugation is the primary route of broad host range DNA transfer between different genera of bacteria. Plasmids are the most familiar conjugative elements, but there are also self-transmissible integrated elements called conjugative transposons. Conjugative transposons have been found in many genera of gram-positive bacteria, in mycoplasmas and in gram negative bacteria such as Bacteriodes spp. and Moraxella spp., and they have a very broad host range. The best-studied conjugative transposons are: the ones related to Tn 916 , a 16 kb conjugative transposon found originally in Gram-positive bacteria; Tn 5276 , a 70 kb conjugative transposon from Lactococcus lactis ; and a group of large (> 70 kb) conjugative transposons found in Bacteroides spp. Transfer of conjugative transposons takes place in three steps: excision to form a circular intermediate, transfer of one strand of the circular intermediate to a recipient, and integration into the recipient genome. Some conjugative transposons integrate almost randomly, whereas other integrate site-specifically. Conjugative transposons not only transfer themselves but also mobilize co-resident plasmids, either by providing transfer functions in trans or by inserting themselves into the plasmid. In addition, the conjugative transposons found in Bacteroides spp. can excise and mobilize unlinked integrated elements, called NBUs. Transfer of many of the Bacteroides conjugative transposons is regulated by tetracycline, whereas transfer of Tn 916 and other conjugative transposons appears to be constitutive. The conjugative transposons are clearly widespread in clinical isolates, but their distribution in environmental isolates remains to be determined.  相似文献   

4.
Conjugative transposons are integrated DNA elements that excise themselves to form a covalently closed circular intermediate. This circular intermediate can either reintegrate in the same cell (intracellular transposition) or transfer by conjugation to a recipient and integrate into the recipient's genome (intercellular transposition). Conjugative transposons were first found in gram-positive cocci but are now known to be present in a variety of gram-positive and gram-negative bacteria also. Conjugative transposons have a surprisingly broad host range, and they probably contribute as much as plasmids to the spread of antibiotic resistance genes in some genera of disease-causing bacteria. Resistance genes need not be carried on the conjugative transposon to be transferred. Many conjugative transposons can mobilize coresident plasmids, and the Bacteroides conjugative transposons can even excise and mobilize unlinked integrated elements. The Bacteroides conjugative transposons are also unusual in that their transfer activities are regulated by tetracycline via a complex regulatory network.  相似文献   

5.
Osborn AM  Böltner D 《Plasmid》2002,48(3):202-212
Plasmids and bacteriophage represent the classical vectors for gene transfer within the horizontal gene pool. However, the more recent discovery of an increasing array of other mobile genetic elements (MGE) including genomic islands (GIs), conjugative transposons (CTns), and mobilizable transposons (MTns) which each integrate within the chromosome, offer an increasingly diverse assemblage contributing to bacterial adaptation and evolution. Molecular characterisation of these elements has revealed that they are comprised of functional modules derived from phage, plasmids, and transposons, and further that these modules are combined to generate a continuum of mosaic MGE. In particular, they are comprised of any one of three distinct types of recombinase, together with plasmid-derived transfer and mobilisation gene functions. This review highlights both the similarities and distinctions between these integrating transferable elements resulting from combination of the MGE toolbox.  相似文献   

6.
Major progress in sequencing the genome of Sulfolobus solfataricus has been closely concerted with the characterization and sequencing of many extrachromosomal genetic elements, including viruses, cryptic plasmids and conjugative plasmids, as well as mobile archaeal introns and transposons. The latter have provided a basis for developing the first generation of vectors that are now being used to study the genetics of Sulfolobus and other Archaea.  相似文献   

7.
Integrative and conjugative elements (ICEs, also known as conjugative transposons) are mobile elements that are found integrated in a host genome and can excise and transfer to recipient cells via conjugation. ICEs and conjugative plasmids are found in many bacteria and are important agents of horizontal gene transfer and microbial evolution. Conjugative elements are capable of self-transfer and also capable of mobilizing other DNA elements that are not able to self-transfer. Plasmids that can be mobilized by conjugative elements are generally thought to contain an origin of transfer (oriT), from which mobilization initiates, and to encode a mobilization protein (Mob, a relaxase) that nicks a site in oriT and covalently attaches to the DNA to be transferred. Plasmids that do not have both an oriT and a cognate mob are thought to be nonmobilizable. We found that Bacillus subtilis carrying the integrative and conjugative element ICEBs1 can transfer three different plasmids to recipient bacteria at high frequencies. Strikingly, these plasmids do not have dedicated mobilization-oriT functions. Plasmid mobilization required conjugation proteins of ICEBs1, including the putative coupling protein. In contrast, plasmid mobilization did not require the ICEBs1 conjugative relaxase or cotransfer of ICEBs1, indicating that the putative coupling protein likely interacts with the plasmid replicative relaxase and directly targets the plasmid DNA to the ICEBs1 conjugation apparatus. These results blur the current categorization of mobilizable and nonmobilizable plasmids and indicate that conjugative elements play a role in horizontal gene transfer even more significant than previously recognized.  相似文献   

8.

Background  

Over the last decade, cholera outbreaks in parts of Kenya have become common. Although a number of recent studies describe the epidemiology of cholera in Kenya, there is pauCity of information concerning the diversity and occurrence of mobile genetic elements in Vibrio cholerae strains implicated in these outbreaks. A total of 65 Vibrio cholerae O1 El Tor serotype Inaba isolated between 1994 and 2007 from various outbreaks in Kenya were investigated for mobile genetic elements including integrons, transposons, the integrating conjugative elements (ICEs), conjugative plasmids and for their genotypic relatedness.  相似文献   

9.
Results of previous investigations suggested that the conjugative transposons found in human colonic Bacteroides species were all members of a closely related family of elements, exemplified by Tcr Emr DOT. We have now found a new type of conjugative transposon, Tcr Emr 7853, that does not belong to this family. Tcr Emr 7853 has approximately the same size as the Tcr Emr DOT-type elements (70 to 80 kbp) and also carries genes encoding resistance to tetracycline (Tcr) and erythromycin (Emr); however, it differs from previously described conjugative transposons in a number of ways. Its transfer is not regulated by tetracycline and its transfer genes are not controlled by the regulatory genes rteA and rteB, which are found on Tcr Emr DOT and related conjugative transposons. Its ends do not cross-hybridize with the ends of Tcr Emr DOT-type conjugative transposons, and the Emr gene it carries does not cross-hybridize with ermF, the Emr gene found on all previously studied Bacteroides conjugative transposons. There is only one region with high sequence similarity between Tcr Emr 7853 and previously characterized elements, the region that contains the Tcr gene, tetQ. This sequence similarity ends 145 bp upstream of the start codon and 288 bp downstream from the stop codon. A 2-kbp region upstream of tetQ on Tcr Emr 7853 cross-hybridized with four additional EcoRV fragments of Bacteroides thetaiotaomicron 7853 DNA other than the one that contained tetQ. These additional cross-hybridizing bands were not part of Tcr Emr 7853, but one of them cotransferred with Tcr Emr 7853 in some matings. Thus, at least one of the additional cross-hybridizing bands may be associated with another conjugative element or with an element that is mobilized by Tcr Emr 7853. DNA that cross-hybridized with the upstream region was found in one clinical isolate of Bacteroides ovatus and four Tcr isolates of Prevotella ruminicola.  相似文献   

10.
Genes for the degradation of organic pollutants have usually been allocated to plasmid DNAs in bacteria or considered non-mobile when detected in the chromosome. New discoveries have shown that catabolic genes can also be part of so-called integrative and conjugative elements (ICElands), a group of mobile DNA elements also known as genomic islands and conjugative transposons. One such ICEland is the clc element for chlorobenzoate and chlorocatechol degradation in Pseudomonas sp. strain B13. Genome comparisons and genetic data on integrase functioning reveal that the clc element and several other unclassified ICElands belong to a group of elements with conserved features. The clc element is unique among them in carrying the genetic information for several degradation pathways, whereas the others give evidence for pathogenicity functions. Many more such elements may exist, bridging the gap between pathogenicity and degradation functions.  相似文献   

11.
12.
Here we report the draft genome sequence of Clostridium difficile strain CD37, the first nontoxigenic strain sequenced. Every sequenced strain of Clostridium difficile has been shown to contain multiple different mobile genetic elements. The draft genome sequence of strain CD37 reveals the presence of two putative conjugative transposons.  相似文献   

13.
The 34,734-bp element ICESt1 from Streptococcus thermophilus CNRZ368 is site-specifically integrated into the 3(') end of the gene fda. ICESt1 encodes integrative functions and putative transfer functions. Six proteins of the putative conjugative system of ICESt1 are related to those encoded by the conjugative transposon Tn916 from Enterococcus faecalis. A comparison of these proteins with those encoded by the complete or partial genome sequences of various low G+C bacteria including Bacillus subtilis, Clostridium difficile, E. faecalis, Listeria monocytogenes, Staphylococcus aureus, and Streptococcus mutans revealed the presence of numerous putative site-specific integrative conjugative elements and/or conjugative transposons within these genomes. Sequence comparisons revealed that these elements possess a modular structure and that exchanges of unrelated or distantly related modules and genes have occurred between these elements, and also plasmids and prophages. These exchanges have probably led to modifications in the site specificity of integration of these elements. Therefore, a distinction between low specificity integrative conjugative elements (i.e., conjugative transposons) and site-specific integrative conjugative elements does not appear to be relevant. We propose to call all the conjugative elements that excise by site-specific recombination and integrate by recombination between a specific site of a circular intermediate and another site, "Integrative and Conjugative Elements" (ICEs), irrespective of the integration specificity.  相似文献   

14.
Anti-restriction and anti-modification (anti-RM) is the ability to prevent cleavage by DNA restriction–modification (RM) systems of foreign DNA entering a new bacterial host. The evolutionary consequence of anti-RM is the enhanced dissemination of mobile genetic elements. Homologues of ArdA anti-RM proteins are encoded by genes present in many mobile genetic elements such as conjugative plasmids and transposons within bacterial genomes. The ArdA proteins cause anti-RM by mimicking the DNA structure bound by Type I RM enzymes. We have investigated ArdA proteins from the genomes of Enterococcus faecalis V583, Staphylococcus aureus Mu50 and Bacteroides fragilis NCTC 9343, and compared them to the ArdA protein expressed by the conjugative transposon Tn916. We find that despite having very different structural stability and secondary structure content, they can all bind to the EcoKI methyltransferase, a core component of the EcoKI Type I RM system. This finding indicates that the less structured ArdA proteins become fully folded upon binding. The ability of ArdA from diverse mobile elements to inhibit Type I RM systems from other bacteria suggests that they are an advantage for transfer not only between closely-related bacteria but also between more distantly related bacterial species.  相似文献   

15.
Many Bacteroides clinical isolates contain large conjugative transposons, which excise from the genome of a donor and transfer themselves to a recipient by a process that requires cell-to-cell contact. It has been suggested that the transfer intermediate of the conjugative transposons is a covalently closed circle, which is transferred by the same type of rolling circle mechanism used by conjugative plasmids, but the transfer origin of a conjugative transposon has not previously been localized and characterized. We have now identified the transfer origin (oriT) region of one of the Bacteroides conjugative transposons, TcrEmr DOT, and have shown that it is located near the middle of the conjugative transposon. We have also identified a 16-kbp region of the conjugal transposon which is necessary and sufficient for conjugal transfer of the element and which is located near the oriT. This same region proved to be sufficient for mobilization of coresident plasmids and unlinked integrated elements as well as for self-transfer, indicating that all of these activities are mediated by the same transfer system. Previously, we had reported that disruption of a gene, rteC, abolished self-transfer of the element. rteC is one of a set of rte genes that appears to mediate tetracycline induction of transfer activities of the conjugative transposons. On the basis of these and other data, we had proposed that RteC activated expression of transfer genes. We have now found, however, that when the transfer region of TcrEmr DOT was cloned as a plasmid that did not contain rteC and the plasmid (pLYL72) was tested for transfer out of a Bacteroides strain that did not have a copy of rteC in the chromosome, the plasmid was self-transmissible without tetracycline induction. This and other findings suggest that RteC is not an activator transfer genes but is stimulating transfer in some other way.  相似文献   

16.
Integrative and conjugative elements (ICEs), also known as conjugative transposons, are mobile genetic elements that can transfer from one bacterial cell to another by conjugation. ICEBs1 is integrated into the trnS-leu2 gene of Bacillus subtilis and is regulated by the SOS response and the RapI-PhrI cell-cell peptide signaling system. When B. subtilis senses DNA damage or high concentrations of potential mating partners that lack the element, ICEBs1 excises from the chromosome and can transfer to recipients. Bacterial conjugation usually requires a DNA relaxase that nicks an origin of transfer (oriT) on the conjugative element and initiates the 5'-to-3' transfer of one strand of the element into recipient cells. The ICEBs1 ydcR (nicK) gene product is homologous to the pT181 family of plasmid DNA relaxases. We found that transfer of ICEBs1 requires nicK and identified a cis-acting oriT that is also required for transfer. Expression of nicK leads to nicking of ICEBs1 between a GC-rich inverted repeat in oriT, and NicK was the only ICEBs1 gene product needed for nicking. NicK likely mediates conjugation of ICEBs1 by nicking at oriT and facilitating the translocation of a single strand of ICEBs1 DNA through a transmembrane conjugation pore.  相似文献   

17.
Tn5253, carrying tetracycline and chloramphenicol resistance determinants, is a 65.5-kb conjugative transposon originally detected in the chromosome of Streptococcus pneumoniae BM6001. We have identified an 18-kb segment of DNA carrying the tet determinant within Tn5253 to be an independent conjugative transposon when removed from the context of the larger element. In vivo deletion of this DNA segment, now termed Tn5251, from within Tn5253 did not affect the conjugative transposition properties of the remaining sequences. Thus, Tn5253 is a composite element of two conjugative structures: Tn5252, constituting the sequences beyond Tn5251 within Tn5253, and Tn5251. The transfer properties of Tn5252 and Tn5251 suggest that these may belong to two different classes of mobile elements even though they were initially found associated. The notion that a tet-carrying transposon like Tn5251 may have been the ancestral element in the evolution of the larger streptococcal conjugative transposons must be reevaluated in the light of present observations.  相似文献   

18.
Cupriavidus metallidurans strain CH34 is a β-Proteobacterium that thrives in low concentrations of heavy metals. The genetic determinants of resistance to heavy metals are located on its two chromosomes, and are particularly abundant in the two megaplasmids, pMOL28 and pMOL30. We explored the involvement of mobile genetic elements in acquiring these and others traits that might be advantageous in this strain using genome comparison of Cupriavidus/Ralstonia strains and related β-Proteobacteria. At least eleven genomic islands were identified on the main replicon, three on pMOL28 and two on pMOL30. Multiple islands contained genes for heavy metal resistance or other genetic determinants putatively responding to harsh environmental conditions. However, cryptic elements also were noted. New mobile genetic elements (or variations of known ones) were identified through synteny analysis, allowing the detection of mobile genetic elements outside the bias of a selectable marker. Tn4371-like conjugative transposons involved in chemolithotrophy and degradation of aromatic compounds were identified in strain CH34, while similar elements involved in heavy metal resistance were found in Delftia acidovorans SPH-1 and Bordetella petrii DSM12804. We defined new transposons, viz., Tn6048 putatively involved in the response to heavy metals and Tn6050 carrying accessory genes not classically associated with transposons. Syntenic analysis also revealed new transposons carrying metal response genes in Burkholderia xenovorans LB400, and other bacteria. Finally, other putative mobile elements, which were previously unnoticed but apparently common in several bacteria, were also revealed. This was the case for triads of tyrosine-based site-specific recombinases and for an int gene paired with a putative repressor and associated with chromate resistance.  相似文献   

19.
Tetracycline resistance genes of the M class,tet(M), are typically found on mobile genetic elements as the conjugative transposons of gram-positive bacteria. By comparing the sequences of eight differenttet(M) genes (fromEnterococcus faecalis, Streptococcus pneumoniae, Staphylococcus aureus, Ureaplasma urealyticum,andNeisseria), a mosaic structure was detected which could be traced to two distinct alleles. The two alleles displayed a divergence of 8% and a different G/C content. The block structure of these genes provides evidence for the contribution of homologous recombination to the evolution and the heterogeneity of thetet(M) locus. Unlike described cases of chromosomally located mosaic loci,tet(M) is a relatively recently acquired determinant in the species examined and it would appear that mosaic structure withintet(M) has evolved after acquisition of the gene by the mobile genetic elements upon which it is located.  相似文献   

20.
In matings between Lactococcus lactis strains, the conjugative transposons Tn916 and Tn919 are found in the chromosome of the transconjugants in the same place as in the chromosome of the donor, indicating that no transposition has occurred. In agreement with this, the frequency of L. lactis transconjugants from intraspecies matings is the same whether the donor contains the wild-type form of the transposon or the mutant Tn916-int1, which has an insertion in the transposon's integrase gene. However, in intergeneric crosses with Bacillus subtilis or Enterococcus faecalis donors, Tn916 and Tn919 transpose to different locations on the chromosome of the L. lactis transconjugants. Moreover, Tn916 and Tn919 could not be transferred by conjugation from L. lactis and B. subtilis, E. faecalis or Streptococcus pyogenes. This suggests that excision of these elements does not occur in L. lactis. When cloned into E. coli with adjacent chromosomal DNA from L. lactis, the conjugative transposons were able to excise, transpose and promote conjugation. Therefore, the inability of these elements to excise in L. lactis is not caused by a permanent structural alteration in the transposon. We conclude that L. lactis lacks a factor required for excision of conjugative transposons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号