首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chi W  He B  Mao J  Li Q  Ma J  Ji D  Zou M  Zhang L 《Plant physiology》2012,158(2):693-707
The chloroplast ribosome is a large and dynamic ribonucleoprotein machine that is composed of the 30S and 50S subunits. Although the components of the chloroplast ribosome have been identified in the last decade, the molecular mechanisms driving chloroplast ribosome biogenesis remain largely elusive. Here, we show that RNA helicase 22 (RH22), a putative DEAD RNA helicase, is involved in chloroplast ribosome assembly in Arabidopsis (Arabidopsis thaliana). A loss of RH22 was lethal, whereas a knockdown of RH22 expression resulted in virescent seedlings with clear defects in chloroplast ribosomal RNA (rRNA) accumulation. The precursors of 23S and 4.5S, but not 16S, rRNA accumulated in rh22 mutants. Further analysis showed that RH22 was associated with the precursors of 50S ribosomal subunits. These results suggest that RH22 may function in the assembly of 50S ribosomal subunits in chloroplasts. In addition, RH22 interacted with the 50S ribosomal protein RPL24 through yeast two-hybrid and pull-down assays, and it was also bound to a small 23S rRNA fragment encompassing RPL24-binding sites. This action of RH22 may be similar to, but distinct from, that of SrmB, a DEAD RNA helicase that is involved in the ribosomal assembly in Escherichia coli, which suggests that DEAD RNA helicases and rRNA structures may have coevolved with respect to ribosomal assembly and function.  相似文献   

2.
3.
4.
A majority of the proteins of the chloroplast are encoded by the nuclear genome, and are post‐translationally targeted to the chloroplast. From databases of tagged insertion lines at international seed stock centers and our own stock, we selected 3246 Ds/Spm (dissociator/suppressor–mutator) transposon‐ or T‐DNA‐tagged Arabidopsis lines for genes encoding 1369 chloroplast proteins (about 66% of the 2090 predicted chloroplast proteins) in which insertions disrupt the protein‐coding regions. We systematically observed 3‐week‐old seedlings grown on agar plates, identified mutants with abnormal phenotypes and collected homozygous lines with wild‐type phenotypes. We also identified insertion lines for which no homozygous plants were obtained. To date, we have identified 111 lines with reproducible seedling phenotypes, 122 lines for which we could not obtain homozygotes and 1290 homozygous lines without a visible phenotype. The Chloroplast Function Database presents the molecular and phenotypic information obtained from this resource. The database provides tools for searching for mutant lines using Arabidopsis Genome Initiative (AGI) locus numbers, tagged line numbers and phenotypes, and provides rapid access to detailed information on the tagged line resources. Moreover, our collection of insertion homozygotes provides a powerful tool to accelerate the functional analysis of nuclear‐encoded chloroplast proteins in Arabidopsis. The Chloroplast Function Database is freely available at http://rarge.psc.riken.jp/chloroplast/ . The homozygous lines generated in this project are also available from the various Arabidopsis stock centers. We have donated the insertion homozygotes to their originating seed stock centers.  相似文献   

5.
6.
DEAD‐box RNA helicases are involved in many aspects of RNA metabolism and in diverse biological processes in plants. Arabidopsis thaliana mutants of two DEAD‐box RNA helicases, STRESS RESPONSE SUPPRESSOR1 (STRS1) and STRS2 were previously shown to exhibit tolerance to abiotic stresses and up‐regulated stress‐responsive gene expression. Here, we show that Arabidopsis STRS‐overexpressing lines displayed a less tolerant phenotype and reduced expression of stress‐induced genes confirming the STRSs as attenuators of Arabidopsis stress responses. GFP–STRS fusion proteins exhibited localization to the nucleolus, nucleoplasm and chromocenters and exhibited relocalization in response to abscisic acid (ABA) treatment and various stresses. This relocalization was reversed when stress treatments were removed. The STRS proteins displayed mis‐localization in specific gene‐silencing mutants and exhibited RNA‐dependent ATPase and RNA‐unwinding activities. In particular, STRS2 showed mis‐localization in three out of four mutants of the RNA‐directed DNA methylation (RdDM) pathway while STRS1 was mis‐localized in the hd2c mutant that is defective in histone deacetylase activity. Furthermore, heterochromatic RdDM target loci displayed reduced DNA methylation and increased expression in the strs mutants. Taken together, our findings suggest that the STRS proteins are involved in epigenetic silencing of gene expression to bring about suppression of the Arabidopsis stress response.  相似文献   

7.
8.
Proper maintenance of RNA structure and dynamics is essential to maintain cellular health. Multiple families of RNA chaperones exist in cells to modulate RNA structure, RNA–protein complexes, and RNA granules. The largest of these families is the DEAD‐box proteins, named after their catalytic Asp‐Glu‐Ala‐Asp motif. The human DEAD‐box protein DDX3 is implicated in diverse biological processes including translation initiation and is mutated in numerous cancers. Like many DEAD‐box proteins, DDX3 is essential to cellular health and exhibits dosage sensitivity, such that both decreases and increases in protein levels can be lethal. Therefore, chemical inhibition would be an ideal tool to probe the function of DDX3. However, most DEAD‐box protein active sites are extremely similar, complicating the design of specific inhibitors. Here, we show that a chemical genetic approach best characterized in protein kinases, known as analog‐sensitive chemical inhibition, is viable for DDX3 and possibly other DEAD‐box proteins. We present an expanded active‐site mutant that is tolerated in vitro and in vivo, and is sensitive to chemical inhibition by a novel bulky inhibitor. Our results highlight a course towards analog sensitive chemical inhibition of DDX3 and potentially the entire DEAD‐box protein family.  相似文献   

9.
10.
11.
Summary Ribosomes and ribosomal proteins from wild-type and a yellow mutant of Chlamydomonas reinhardii were analysed and compared by two-dimensional gel electrophoresis.Mixothrophycally grown yellow-27 mutant differs from wild-type cells in lowered chlorophyll content and grana fromation of the chloroplast.Analytical ultracentrifuge analyses of cell extracts show a reduced amount of free 70S ribosomes and increased level of 50S subunits in the mutant cells. Similar results were obtained by electronmicroscopical method.Two-dimensional gel electrophoresis shows alterations in protein composition of 70S ribosomes of the mutant. Two proteins of 70S ribosomes have been altered. One of them with high molecular weight is practically absent while there is an additional, intensively stained spot in the mutant.Since the mutation is inherited in a non-Mendelian manner it is possible that the protein alterations in 70S ribosome are localized in the chloroplast DNA.  相似文献   

12.
Plants play a prominent role as sulfur reducers in the global sulfur cycle. Sulfate, the major form of inorganic sulfur utilized by plants, is absorbed and transported by specific sulfate transporters into plastids, especially chloroplasts, where it is reduced and assimilated into cysteine before entering other metabolic processes. How sulfate is transported into the chloroplast, however, remains unresolved; no plastid‐localized sulfate transporters have been previously identified in higher plants. Here we report that SULTR3;1 is localized in the chloroplast, which was demonstrated by SULTR3;1‐GFP localization, Western blot analysis, protein import as well as comparative analysis of sulfate uptake by chloroplasts between knockout mutants, complemented transgenic plants, and the wild type. Loss of SULTR3;1 significantly decreases the sulfate uptake of the chloroplast. Complementation of the sultr3;1 mutant phenotypes by expression of a 35S‐SULTR3;1 construct further confirms that SULTR3;1 is one of the transporters responsible for sulfate transport into chloroplasts.  相似文献   

13.
14.
A family of six genes encoding acyl‐CoA‐binding proteins (ACBPs), ACBP1–ACBP6, has been characterized in Arabidopsis thaliana. In this study, we demonstrate that ACBP1 promotes abscisic acid (ABA) signaling during germination and seedling development. ACBP1 was induced by ABA, and transgenic Arabidopsis ACBP1‐over‐expressors showed increased sensitivity to ABA during germination and seedling development, whereas the acbp1 mutant showed decreased ABA sensitivity during these processes. Subsequent RNA assays showed that ACBP1 over‐production in 12‐day‐old seedlings up‐regulated the expression of PHOSPHOLIPASE Dα1 (PLDα1) and three ABA/stress‐responsive genes: ABA‐RESPONSIVE ELEMENT BINDING PROTEIN1 (AREB1), RESPONSE TO DESICCATION29A (RD29A) and bHLH‐TRANSCRIPTION FACTOR MYC2 (MYC2). The expression of AREB1 and PLDα1 was suppressed in the acbp1 mutant in comparison with the wild type following ABA treatment. PLDα1 has been reported to promote ABA signal transduction by producing phosphatidic acid, an important lipid messenger in ABA signaling. Using lipid profiling, seeds and 12‐day‐old seedlings of ACBP1‐over‐expressing lines were shown to accumulate more phosphatidic acid after ABA treatment, in contrast to lower phosphatidic acid in the acbp1 mutant. Bimolecular fluorescence complementation assays indicated that ACBP1 interacts with PLDα1 at the plasma membrane. Their interaction was further confirmed by yeast two‐hybrid analysis. As recombinant ACBP1 binds phosphatidic acid and phosphatidylcholine, ACBP1 probably promotes PLDα1 action. Taken together, these results suggest that ACBP1 participates in ABA‐mediated seed germination and seedling development.  相似文献   

15.
Abscisic acid (ABA) is major plant hormone involved in regulating abiotic stress responses. Several studies have established that an ABA‐signalling transduction pathway—from ABA perception to response—functions in plant cells. The group A PP2Cs constitute core components of ABA signalling, and they negatively regulate ABA signalling and stress responses. Recent studies have identified and functionally analysed regulators of PP2C activity; however, the precise regulatory mechanisms remain unclear. In the present study, we used a yeast 2‐hybrid (Y2H) screening analysis to identify the DEAD‐box RNA helicase RH8, which interacted with PP2CA in the nucleus. rh8 knockout mutants exhibited ABA hyposensitivity and drought‐susceptible phenotypes characterized by high levels of transpirational water loss via reduced stomatal closure and decreased leaf temperatures. However, rh8/pp2ca double mutants showed ABA hypersensitivity and drought‐tolerant phenotypes, indicating that RH8 and PP2CA function in the same ABA‐signalling pathway in the drought stress response; moreover, RH8 functions upstream of PP2CA. In vitro phosphatase and kinase assays revealed that RH8 inhibits PP2CA phosphatase activity. Our data indicate that RH8 and its interacting partner PP2CA modulate the drought stress response via ABA‐dependent signalling.  相似文献   

16.

Key message

Plant RbgA GTPase is targeted to chloroplasts and co-fractionated with chloroplast ribosomes, and plays a role in chloroplast rRNA processing and/or ribosome biogenesis.

Abstract

Ribosome Biogenesis GTPase A (RbgA) homologs are evolutionarily conserved GTPases that are widely distributed in both prokaryotes and eukaryotes. In this study, we investigated functions of chloroplast-targeted RbgA. Nicotiana benthamiana RbgA (NbRbgA) and Arabidopsis thaliana RbgA (AtRbgA) contained a conserved GTP-binding domain and a plant-specific C-terminal domain. NbRbgA and AtRbgA were mainly localized in chloroplasts, and possessed GTPase activity. Since Arabidopsis rbgA null mutants exhibited an embryonic lethal phenotype, virus-induced gene silencing (VIGS) of NbRbgA was performed in N. benthamiana. NbRbgA VIGS resulted in a leaf-yellowing phenotype caused by disrupted chloroplast development. NbRbgA was mainly co-fractionated with 50S/70S ribosomes and interacted with the chloroplast ribosomal proteins cpRPL6 and cpRPL35. NbRbgA deficiency lowered the levels of mature 23S and 16S rRNAs in chloroplasts and caused processing defects. Sucrose density gradient sedimentation revealed that NbRbgA-deficient chloroplasts contained reduced levels of mature 23S and 16S rRNAs and diverse plastid-encoded mRNAs in the polysomal fractions, suggesting decreased protein translation activity in the chloroplasts. Interestingly, NbRbgA protein was highly unstable under high light stress, suggesting its possible involvement in the control of chloroplast ribosome biogenesis under environmental stresses. Collectively, these results suggest a role for RbgA GTPase in chloroplast rRNA processing/ribosome biogenesis, affecting chloroplast protein translation in higher plants.
  相似文献   

17.
The Arabidopsis arc1 (accumulation and replication of chloroplasts 1) mutant has pale seedlings and smaller, more numerous chloroplasts than the wild type. Previous work has suggested that arc1 affects the timing of chloroplast division but does not function directly in the division process. We isolated ARC1 by map‐based cloning and discovered it encodes FtsHi1 (At4g23940), one of several FtsHi proteins in Arabidopsis. These poorly studied proteins resemble FtsH metalloproteases important for organelle biogenesis and protein quality control but are presumed to be proteolytically inactive. FtsHi1 bears a predicted chloroplast transit peptide and localizes to the chloroplast envelope membrane. Phenotypic studies showed that arc1 (hereafter ftsHi1‐1), which bears a missense mutation, is a weak allele of FtsHi1 that disrupts thylakoid development and reduces de‐etiolation efficiency in seedlings, suggesting that FtsHi1 is important for chloroplast biogenesis. Consistent with this finding, transgenic plants suppressed for accumulation of an FtsHi1 fusion protein were often variegated. A strong T‐DNA insertion allele, ftsHi1‐2, caused embryo‐lethality, indicating that FtsHi1 is an essential gene product. A wild‐type FtsHi1 transgene rescued both the chloroplast division and pale phenotypes of ftsHi1‐1 and the embryo‐lethal phenotype of ftsHi1‐2. FtsHi1 overexpression produced a subtle increase in chloroplast size and decrease in chloroplast number in wild‐type plants while suppression led to increased numbers of small chloroplasts, providing new evidence that FtsHi1 negatively influences chloroplast division. Taken together, our analyses reveal that FtsHi1 functions in an essential, envelope‐associated process that may couple plastid development with division.  相似文献   

18.
The membrane‐integrated metalloprotease FtsH11 of Arabidopsis thaliana is proposed to be dual‐targeted to mitochondria and chloroplasts. A bleached phenotype was observed in ftsh11 grown at long days or continuous light, pointing to disturbances in the chloroplast. Within the chloroplast, FtsH11 was found to be located exclusively in the envelope. Two chloroplast‐located proteins of unknown function (Tic22‐like protein and YGGT‐A) showed significantly higher abundance in envelope membranes and intact chloroplasts of ftsh11 and therefore qualify as potential substrates for the FtsH11 protease. No proteomic changes were observed in the mitochondria of 6‐week‐old ftsh11 compared with wild type, and FtsH11 was not immunodetected in these organelles. The abundance of plastidic proteins, especially of photosynthetic proteins, was altered even during standard growth conditions in total leaves of ftsh11. At continuous light, the amount of photosystem I decreased relative to photosystem II, accompanied by a drastic change of the chloroplast morphology and a drop of non‐photochemical quenching. FtsH11 is crucial for chloroplast structure and function during growth in prolonged photoperiod.  相似文献   

19.
20.
Chloroplasts from the cell wall mutant cw-15-2 of Chlamydomonas reinhardii were isolated by disruption of the cells in the Yeda press and fractionation through step gradients of Percoll. The resulting chloroplast fraction contained 80–85% intact chloroplasts. Electron micrographs of thin sections of the chloroplast fraction showed some cytoplasmic impurities, although almost no cytoplasmic ribosomes were detected by analysis of the ribosomal subunits.The isolated chloroplasts are active in photosynthetic O2-evolution and CO2-fixation, with the highest rates obtained in the presence of ATP.The chloroplast fraction also showed high rates of light-dependent in organello protein synthesis, with labelling of discrete chloroplast proteins known to be synthesized in the chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号