首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

Commercial scallops (Pecten fumatus) were collected from Bass Strait, Australia from 41 dredge tows. Of these, four dredges undertaken in February 2016 at 46 m depth returned scallops that were covered by ascidians of the Pyura stolonifera species complex, commonly known as cunjevoi. There were no obvious signs of immediate ill health in the scallops, with meat being assessed as normal quality and all scallops requiring force to separate the shells. Ascidian-encrusted scallops were significantly smaller, and previous tows in the same location ten and eight months earlier returned far fewer scallops with clean shells and no signs of ascidians. This suggests that both both scallop and ascidian recruitment and growth occurred during the period between sampling events. Future research combining laboratory experiments and field observations is recommended to understand this relationship and its potential impacts on scallop populations.  相似文献   

2.
The conservation of humpback dolphins, distributed in coastal waters of the Indo‐West Pacific and eastern Atlantic Oceans, has been hindered by a lack of understanding about the number of species in the genus (Sousa) and their population structure. To address this issue, we present a combined analysis of genetic and morphologic data collected from beach‐cast, remote‐biopsied and museum specimens from throughout the known Sousa range. We extracted genetic sequence data from 235 samples from extant populations and explored the mitochondrial control region and four nuclear introns through phylogenetic, population‐level and population aggregation frameworks. In addition, 180 cranial specimens from the same geographical regions allowed comparisons of 24 morphological characters through multivariate analyses. The genetic and morphological data showed significant and concordant patterns of geographical segregation, which are typical for the kind of demographic isolation displayed by species units, across the Sousa genus distribution range. Based on our combined genetic and morphological analyses, there is convincing evidence for at least four species within the genus (S. teuszii in the Atlantic off West Africa, S. plumbea in the central and western Indian Ocean, S. chinensis in the eastern Indian and West Pacific Oceans, and a new as‐yet‐unnamed species off northern Australia).  相似文献   

3.
Subspecific taxa of species complexes can display cryptic morphological variation, and individuals and populations can often be difficult to identify with certainty. However, accurate population identification is required for comprehensive conservation and breeding strategies and for studies of invasiveness and gene flow. Using five informative microsatellite markers and a Bayesian statistical approach, we developed an efficient polymerase chain reaction-based diagnostic tool for the rapid identification of individuals and populations of the Acacia saligna species complex of Western Australia. We genotyped 189 individuals from 14 reference populations previously characterised based on morphology and used these data to investigate population structure in the species complex. High total genetic diversity (H T = 0.729) and high population differentiation (θ = 0.355) indicated strong intraspecific structuring. With the provision of prior population information, the reference data set was optimally resolved into four clusters, each corresponding to one of the four main proposed subspecies, with very high membership values (Q > 97%). The reference data set was then used to assign individuals and test populations to one of the four subspecies. Assignment was unequivocal for all test individuals from two populations of subsp. lindleyi and for all but one individual of subsp. stolonifera. Individuals from populations of subsp. saligna and subsp. pruinescens showed a degree of genetic affinity for the two subspecies in their assignments, although the majority of individuals were correctly assigned to subspecies. The diagnostic tool will assist in characterising populations of A. saligna, especially naturalised and invasive populations of unknown origin.  相似文献   

4.
Most nominal fan worm species belonging to the genus Parasabella Bush, 1905, and Sabellomma Nogueira, Fitzhugh & Silva‐Rossi, 2010 (Sabellidae, Annelida) lack unique morphological diagnostic features. Species diagnoses rely on a combination of attributes, often making reference to characters that are qualitatively or quantitatively continuous. This, together with a lack of knowledge about phenotypic intraspecific variation in most species, suggests that the sole use of morphological features is insufficient to identify and characterize some of these species. Examination of collections revealed that Parasabella is a common and diverse group of sabellids along the Australian coastline, although it had only been recorded here twice. The genus Sabellomma is here reported in Australia for the first time. Comparison of morphological data and nuclear (internal transcribed spacer) and mitochondrial (cytochrome oxidase I) DNA sequence data of 30 terminals in a range of analyses allowed us to assess the monophyly of Parasabella and its sister‐group relationship with Sabellomma and to examine some of the species boundaries and genetic diversity within lineages. The combined sequence data results indicate the presence of seven distinct genetic Parasabella lineages in Australia, four of which are assigned to previously described species (three are new records for Australia), and two are considered as a complex of species sharing a unique combination of characters, one of which is described as new. Another Parasabella species with distinct atypical radiolar eyes and a species of Sabellomma are also described as new. © 2015 The Linnean Society of London  相似文献   

5.
Genetic markers are widely used to define and manage populations of threatened species based on the notion that populations with unique lineages of mtDNA and well‐differentiated nuclear marker frequencies should be treated separately. However, a danger of this approach is that genetic uniqueness might be emphasized at the cost of genetic diversity, which is essential for adaptation and is potentially boosted by mixing geographically separate populations. Here, we re‐explore the issue of defining management units, focussing on a detailed study of Galaxiella pusilla, a small freshwater fish of national conservation significance in Australia. Using a combination of microsatellite and mitochondrial markers, 51 populations across the species range were surveyed for genetic structure and diversity. We found an inverse relationship between genetic differentiation and genetic diversity, highlighting a long‐term risk of deliberate isolation of G. pusilla populations based on protection of unique lineages. Instead, we adopt a method for identifying genetic management units that takes into consideration both uniqueness and genetic variation. This produced a management framework to guide future translocation and re‐introduction efforts for G. pusilla, which contrasted to the framework based on a more traditional approach that may overlook important genetic variation in populations.  相似文献   

6.
The Mediterranean Basin harbors a remarkable amount of biodiversity, a high proportion of which is endemic to this region. Here, we present an in‐depth study of an angiosperm species complex, in which cryptic taxonomic diversity has been hypothesized. Specifically, we focus on four currently recognized species in the Roucela complex, a well‐supported clade in the Campanulaceae/Campanuloideae: Campanula creutzburgii, C. drabifolia, C. erinus, and C. simulans. This study takes a phylogenomic approach, utilizing near‐complete plastomes and 130 nuclear loci, to uncover cryptic diversity and test hypotheses regarding hybridization and polyploidy within this clade. Genome size estimates recovered tetraploid and octoploid lineages within the currently recognized, widespread species C. erinus, showing an east‐west geographic pattern. Though genomic data clearly differentiate these two cytotypes, we failed to discern morphological differences. The formation of a cryptic octoploid lineage, distributed across the eastern Mediterranean, is hypothesized to be the result of an allopolyploid event in which one parental morphology is retained. The tetraploid C. erinus and C. creutzburgii (also a tetraploid) are implicated as parental lineages. Our results highlight the utility of target‐enrichment approaches for obtaining genomic datasets for thorough assessments of species diversity and the importance of carefully considering gene‐tree discordance within such datasets.  相似文献   

7.
Although species delimitation can be highly contentious, the development of reliable methods to accurately ascertain species boundaries is an imperative step in cataloguing and describing Earth's quickly disappearing biodiversity. Spider species delimitation remains largely based on morphological characters; however, many mygalomorph spider populations are morphologically indistinguishable from each other yet have considerable molecular divergence. The focus of our study, the Antrodiaetus unicolor species complex containing two sympatric species, exhibits this pattern of relative morphological stasis with considerable genetic divergence across its distribution. A past study using two molecular markers, COI and 28S, revealed that A. unicolor is paraphyletic with respect to A. microunicolor. To better investigate species boundaries in the complex, we implement the cohesion species concept and use multiple lines of evidence for testing genetic exchangeability and ecological interchangeability. Our integrative approach includes extensively sampling homologous loci across the genome using a RADseq approach (3RAD), assessing population structure across their geographic range using multiple genetic clustering analyses that include structure , principal components analysis and a recently developed unsupervised machine learning approach (Variational Autoencoder). We evaluate ecological similarity by using large‐scale ecological data for niche‐based distribution modelling. Based on our analyses, we conclude that this complex has at least one additional species as well as confirm species delimitations based on previous less comprehensive approaches. Our study demonstrates the efficacy of genomic‐scale data for recognizing cryptic species, suggesting that species delimitation with one data type, whether one mitochondrial gene or morphology, may underestimate true species diversity in morphologically homogenous taxa with low vagility.  相似文献   

8.
Dincă V  Dapporto L  Vila R 《Molecular ecology》2011,20(18):3921-3935
Widespread species have the potential to reveal large‐scale biogeographical patterns, as well as responses to environmental changes possibly unique to habitat generalists. This study presents a continental‐scale phylogeographical analysis of Polyommatus icarus, one of the most common Palaearctic butterflies, and the morphologically and ecologically similar Polyommatus celina, a recently discovered cryptic species. By combining data from mitochondrial [cytochrome c oxidase subunit I (COI)] and nuclear [internal transcribed spacer (ITS2)] molecular markers with geometric morphometrics, we document a complex phylogeographical history for the two species. Despite morphological similarities, the genetic divergence between these two species is high (more than 5% at COI) and they are not sister species. For the first time, we show that P. celina occurs not only in North Africa but also in Europe, where it inhabits several west Mediterranean islands, as well as large parts of Iberia, where it occurs in parapatry with P. icarus. The two species appear to completely exclude each other on islands, but we provide morphological and molecular evidence that introgression occurred in the Iberian Peninsula. We discovered strongly diverged lineages that seem to represent relict populations produced by past range expansions and contractions: Crete and Iberian isolates for P. icarus, Balearics–Sardinia and Sicily–Lipari for P. celina. This study shows that a combined genetic‐morphometric approach can shed light on cryptic diversity while providing the necessary resolution to reconstruct a fine‐scale phylogeographical history of species at both spatial and temporal levels.  相似文献   

9.
We assess morphological and multilocus genetic variation among 11 isolated montane populations of white‐toothed shrews from Tanzania that have been referred to either Crocidura monax Thomas or C. montis Thomas. The montane sites we sampled represent ‘sky‐islands’ from two geologically distinct archipelagos (Northern Highlands and the Eastern Arc Mountains) and are a significant component of the Eastern Afromontane Biodiversity Hotspot. We used multivariate analyses of morphometric traits and phylogenetic and species‐delimitation analyses of multilocus DNA sequence data to assess species‐level diversity. Our species delimitation analyses included a novel, pairwise validation approach that avoids potential biases associated with specifying a guide tree. These analyses reveal several distinct lineages, which we treat as six allopatric species. Each species is restricted to one, two or four mountains. We use available names to recognize C. monax, C. tansaniana Hutterer and C. usambarae Dippenaar, while naming and describing three new species. Our results demonstrate the effectiveness of combining morphological and genetic data to uncover and describe hidden diversity in a cryptic mammalian system. © 2015 The Linnean Society of London  相似文献   

10.
By applying second‐generation sequencing technologies to microsatellite genotyping, sequence information is produced which can result in high‐resolution population genetics analysis populations and increased replicability between runs and laboratories. In the present study, we establish an approach to study the genetic structure patterns of two European hedgehog species Erinaceaus europaeus and E. roumanicus. These species are usually associated with human settlements and are good models to study anthropogenic impacts on the genetic diversity of wild populations. The short sequence repeats genotyping by sequence (SSR‐GBS) method presented uses amplicon sequences to determine genotypes for which allelic variants can be defined according to both length and single nucleotide polymorphisms (SNPs). To evaluate whether complete sequence information improved genetic structure definition, we compared this information with datasets based solely on length information. We identified a total of 42 markers which were successfully amplified in both species. Overall, genotyping based on complete sequence information resulted in a higher number of alleles, as well as greater genetic diversity and differentiation between species. Additionally, the structure patterns were slightly clearer with a division between both species and some potential hybrids. There was some degree of genetic structure within species, although only in E. roumanicus was this related to geographical distance. The statistically significant results obtained by SSR‐GBS demonstrate that it is superior to electrophoresis‐based methods for SSR genotyping. Moreover, the greater reproducibility and throughput with lower effort which can be obtained with SSR‐GBS and the possibility to include degraded DNA into the analysis, allow for continued relevance of SSR markers during the genomic era.  相似文献   

11.
In marine species, population diversity and differentiation is affected by the population history and by the complex interaction between oceanographic dynamics and ecological traits. In the present study, we examined two species of marine gastropods (the mangrove periwinkle Littoraria scabra and the rocky shore Littoraria glabrata) along the East African coast, using both genetic and geometric morphometric methods. We report a greater variation of shell shape in L. scabra compared to the slightly smaller variation in L. glabrata. This variation was probably associated with variation of environmental factors along the coast, such as temperature and hydrodynamics. Despite morphological variation, we found low mitochondrial genetic differentiation among samples from different localities for both species, which is probably a consequence of the ongoing gene flow during the free‐swimming larval stage of these gastropods. Additionally, high levels of haplotype diversity, low nucleotide diversity, and ‘star‐like’ genealogies were found in both species. These observations and the results from mismatch distributions, indicate a possible signature of recent population expansions in both species, which probably started during interglacial periods of the Pleistocene and led to the colonization of the Indian Ocean coast. © 2013 The Linnean Society of London  相似文献   

12.
13.
14.
Geological history of oceanic islands can have a profound effect on the evolutionary history of insular flora, especially in complex islands such as Tenerife in the Canary Islands. Tenerife results from the secondary connection of three paleo‐islands by a central volcano, and other geological events that further shaped it. This geological history has been shown to influence the phylogenetic history of several taxa, including genus Micromeria (Lamiaceae). Screening 15 microsatellite markers in 289 individuals representing the eight species of Micromeria present in Tenerife, this study aims to assess the genetic diversity and structure of these species and its relation with the geological events on the island. In addition, we evaluate the extent of hybridization among species and discuss its influence on the speciation process. We found that the species restricted to the paleo‐islands present lower levels of genetic diversity but the highest levels of genetic differentiation suggesting that their ranges might have contracted over time. The two most widespread species in the island, M. hyssopifolia and M. varia, present the highest genetic diversity levels and a genetic structure that seems correlated with the geological composition of the island. Samples from M. hyssopifolia from the oldest paleo‐island, Adeje, appear as distinct while samples from M. varia segregate into two main clusters corresponding to the paleo‐islands of Anaga and Teno. Evidence of hybridization and intraspecific migration between species was found. We argue that species boundaries would be retained despite hybridization in response to the habitat's specific conditions causing postzygotic isolation and preserving morphological differentiation.  相似文献   

15.
The spatial scale over which genetic divergences occur between populations and the extent that they are paralleled by morphological differences can vary greatly among marine species. In the present study, we use a hierarchical spatial design to investigate genetic structure in Heliocidaris erythrogramma occurring on near shore limestone reefs in Western Australia. These reefs are inhabited by two distinct subspecies: the thick‐spined Heliocidaris erythrogramma armigera and the thin‐spined Heliocidaris erythrogramma erythrogramma, each of which also have distinct colour patterns. In addition to pronounced morphological variation, H. erythrogramma exhibits a relatively short (3–4 days) planktonic phase before settlement and metamorphosis, which limits their capacity for dispersal. We used microsatellite markers to determine whether patterns of genetic structure were influenced more by morphological or life history limitations to dispersal. Both individual and population‐level analyses found significant genetic differentiation between subspecies, which was independent of geographical distance. Genetic diversity was considerably lower within H. e. erythrogramma than within H. e. armigera and genetic divergence was four‐fold greater between subspecies than among populations within subspecies. This pattern was consistent even at fine spatial scales (< 5 km). We did detect some evidence of gene flow between the subspecies; however, it appears to be highly restricted. Within subspecies, genetic structure was more clearly driven by dispersal capacity, although weak patterns of isolation‐by‐distance suggest that there may be other factors limiting gene exchange between populations. Our results show that spatial patterns of genetic structure in Western Australian H. erythrogramma is influenced by a range of factors but is primarily correlated with the distribution of morphologically distinct subspecies. This suggests the presence of reproductive barriers to gene exchange between them and demonstrates that morphological variation can be a good predictor of genetic divergence. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 578–592.  相似文献   

16.
Oceanic islands are productive habitats for generating new species and high endemism, which is primarily due to their geographical isolation, smaller population sizes and local adaptation. However, the short divergence times and subtle morphological or ecological divergence of insular organisms may obscure species identity, so the cryptic endemism on islands may be underestimated. The endangered weevil Pachyrhynchus sonani Kôno (Coleoptera: Curculionidae: Entiminae: Pachyrhynchini) is endemic to Green Island and Orchid Island of the Taiwan‐Luzon Archipelago and displays widespread variation in coloration and host range, thus raising questions regarding its species boundaries and degree of cryptic diversity. We tested the species boundaries of P. sonani using an integrated approach that combined morphological (body size and shape, genital shape, coloration and cuticular scale), genetic (four genes and restriction site‐associated DNA sequencing, RAD‐seq) and ecological (host range and distribution) diversity. The results indicated that all the morphological datasets for male P. sonani, except for the colour spectrum, reveal overlapping but statistically significant differences between islands. In contrast, the morphology of the female P. sonani showed minimum divergence between island populations. The populations of P. sonani on the two islands were significantly different in their host ranges, and the genetic clustering and phylogenies of P. sonani established two valid evolutionary species. Integrated species delimitation combining morphological, molecular and ecological characters supported two distinct species of P. sonani from Green Island and Orchid Island. The Green Island population was described as P. jitanasaius sp.n. Chen & Lin, and it is recommended that its threatened conservation status be recognized. Our findings suggest that the inter‐island speciation of endemic organisms inhabiting both islands may be more common than previously thought, and they highlight the possibility that the cryptic diversity of small oceanic islands may still be largely underestimated.  相似文献   

17.
Panicum coloratum var. makarikariense is a perennial C4 grass native to South Africa with relatively good forage production under limited‐resource conditions. Genetic characterisation and breeding efforts have been scant, thus limiting its use in cattle raising systems. The goal of the present study was to assess the genetic diversity of a collection of P. coloratum var. makarikariense using agro‐morphological traits and molecular markers, in comparison with one accession of var. coloratum and one population of Panicum bergii. Agro‐morphological variability between and within accessions of var. makarikariense in a common garden setting was observed, showing that there is still opportunity for selection. Some accessions performed better than the commercialised material in relation to potential forage production. A total of 117 ISSR bands and 48 SSR alleles allowed the detection of genetic variability between and within accessions. The presence of accession‐specific bands suggested distinctness and limited gene flow. The genetic variability encountered in the commercialised material suggested that it is a stabilised population which has not undergone a strong selection process. Low correlation between agro‐morphologic and molecular variability was observed indicating that both approaches provide complementary information. Both morphological and molecular markers reveal genetic differentiation between varieties and species. This study provides a set of new SSR markers available for diversity assessment and valuable information that can be applied directly in collection management for breeding and conservation programmes.  相似文献   

18.
Aim The aim of this research is to develop and investigate methods for the spatial analysis of diversity based on genetic and taxonomic units of difference. We use monophyletic groups of species to assess the potential for these diversity indices to elucidate the geographical components of macro‐scaled evolutionary processes. Location The range occupied by Pultenaea species in temperate and sub‐tropical eastern Australia, extending from western South Australia (133° E–32° S) to Tasmania (146° E–43° S) to coastal central Queensland (148° E–20° S). Methods We applied a series of both spatially explicit and spatially implicit analyses to explore the nature of diversity patterns in the genus Pultenaea, Fabaceae. We first analysed the eastern species as a whole and then the phylogenetic groups within them. We delineated patterns of endemism and biotic (taxon) regions that have been traditionally circumscribed in biogeographical studies of taxa. Centres of endemism were calculated using corrected weighted endemism at a range of spatial scales. Biotic regions were defined by comparing the similarity of species assemblages of grid cells using the Jaccard index and clustering similar cells using hierarchical clustering. On the basis that genetically coherent areas were likely to be more evolutionary informative than species patterns, genetic indices of similarity and difference were derived. A matrix of similarity distances between taxa was generated based on the number of shared informative characters of two sections of trnL‐F and ndhF chloroplast nuclear regions. To identify genetically similar areas, we clustered cells using the mean genetic similarities of the species contained within each pair of cells. Measures of the mean genetic similarity of species in areas were delineated using a geographically local multi‐scalar approach. Resultant patterns of genetic diversity are interpreted in relation to theories of the evolutionary relationships between species and species groups. Results Centres of Pultenaea endemism were defined, those of clades 1 congruent with the spatially separated centres of clades 2 and 3. The taxonomic classification analysis defined cells with shared groups of species, which in some cases clustered when plotted in geographic space, defining biotic regions. In some instances the distribution of biotic regions was congruent with centres of endemism, however larger scale groupings were also apparent. In clade 1 one set of species was replaced by another along the extent of the range, with some connectivity between some geographically disjunct regions due to the presence of widespread species. In the combined analysis of clade 2 and 3 species the major biotic (taxonomic) groups with geographic coherence were defined by species in the respective clades, representing the geographic separation of these clades. However distinctive biotic regions within these main groupings of clades 2 and 3 were also apparent. Clustering cells using the mean genetic similarities of the species contained within each pair of cells indicated that some of the taxonomically defined biotic boundaries were the result of changes in composition of closely related species. This was most apparent in clades 1 and 2 where most cells were highly genetically similar. In clade 3 genetically distinct groups remained and were in part defined by sister taxa with disjunct distributions. Gradients in mean genetic similarity became more apparent from small to larger scales of analysis. At larger scales of analysis, regions of different levels of genetic diversity were delineated. Regions with highest diversity levels (lowest level of similarity) often represented regions where the ranges of phylogenetically distinctive species intergraded. Main conclusions The combined analysis of diversity, phylogeny and geography has potential to reveal macro‐scaled evolutionary patterns from which evolutionary processes may be inferred. The spatial genetic diversity indices developed in this study contribute new methods for identifying coherent evolutionary units in the landscape, which overcome some of the limitations of using taxonomic data, and from which the role of geography in evolutionary processes can be tested. We also conclude that a multiple‐index approach to diversity pattern analysis is useful, especially where patterns may be the result of a long history of different environmental changes and related evolutionary events. The analysis contributes to the knowledge of large‐scale diversity patterns of Pultenaea which has relevance for the assessment of the conservation status of the genus.  相似文献   

19.
In this study, we present an iterative method for delimiting species under the general lineage concept (GLC) based on the multivariate clustering of morphological, ecological and genetic data. Our rationale is that distinct multivariate groups correspond to evolutionarily independent metapopulation lineages because they reflect the common signal of different secondary defining properties (environmental and genetic distinctiveness, phenotypic diagnosability, etc.) that imply the existence of barriers preventing or limiting gene exchange. We applied this method to study a group of endangered poison frogs, the Oophaga histrionica complex. In our study case, we used next‐generation targeted amplicon sequencing to obtain a robust genetic data set that we combined with patterns of morphological and ecological features. Our analyses revealed the existence of at least five different species in the histrionica complex (three, new to science), some of them, occurring in small isolated populations outside any protected areas. The lineage delimitation proposed here has important conservation implications as it revealed that some of the Oophaga species should be considered among the most vulnerable of the Neotropical frogs. More broadly, our study exemplifies how multiple‐amplicon and multivariate statistical techniques can be integrated to successfully identify species and their boundaries.  相似文献   

20.
Molecular studies have been instrumental for refining species boundaries in the coral genus Pocillopora and revealing hidden species diversity within the extensively studied global species Pocillopora damicornis. Here we formally revise the taxonomic status of species closely related to and within the P. damicornis species complex, taking into account both genetic evidence and new data on morphometrics, including fine‐scale corallite and coenosteum structure. We found that mitochondrial molecular phylogenies are congruent with groups based on gross‐morphology, therefore reflecting species‐level differentiation. However, high levels of gross morphological plasticity and shared morphological characteristics mask clear separation for some groups. Fine‐scale morphological variation, particularly the shape and type of columella, was useful for differentiating between clades and provides an excellent signature of the evolutionary relationships among genetic lineages. As introgressive hybridization and incomplete lineage sorting complicate the delineation of species within the genus on the basis of a single species concept, the Unified Species Concept may represent a suitable approach in revising Pocillopora taxonomy. Eight species are herein described (P. damicornis, P. acuta, P. aliciae, P. verrucosa, P. meandrina, P. eydouxi, P. cf. brevicornis), including a novel taxon – P ocillopora bairdi sp. nov. (Schmidt‐Roach, this study). Citation synonyms and type materials are presented. © 2014 The Linnean Society of London  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号