首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The functional characterization of wax biosynthetic enzymes in transgenic plants has opened the possibility of producing tailored wax esters (WEs) in the seeds of a suitable host crop. In this study, in addition to systematically evaluating a panel of WE biosynthetic activities, we have also modulated the acyl‐CoA substrate pool, through the co‐expression of acyl‐ACP thioesterases, to direct the accumulation of medium‐chain fatty acids. Using this combinatorial approach, we determined the additive contribution of both the varied acyl‐CoA pool and biosynthetic enzyme substrate specificity to the accumulation of non‐native WEs in the seeds of transgenic Camelina plants. A total of fourteen constructs were prepared containing selected FAR and WS genes in combination with an acyl‐ACP thioesterase. All enzyme combinations led to the successful production of wax esters, of differing compositions. The impact of acyl‐CoA thioesterase expression on wax ester accumulation varied depending on the substrate specificity of the WS. Hence, co‐expression of acyl‐ACP thioesterases with Marinobacter hydrocarbonoclasticus WS and Marinobacter aquaeolei FAR resulted in the production of WEs with reduced chain lengths, whereas the co‐expression of the same acyl‐ACP thioesterases in combination with Mus musculus WS and M. aquaeolei FAR had little impact on the overall final wax composition. This was despite substantial remodelling of the acyl‐CoA pool, suggesting that these substrates were not efficiently incorporated into WEs. These results indicate that modification of the substrate pool requires careful selection of the WS and FAR activities for the successful high accumulation of these novel wax ester species in Camelina seeds.  相似文献   

2.
The CRISPR/Cas9 nuclease system is a powerful and flexible tool for genome editing, and novel applications of this system are being developed rapidly. Here, we used CRISPR/Cas9 to target the FAD2 gene in Arabidopsis thaliana and in the closely related emerging oil seed plant, Camelina sativa, with the goal of improving seed oil composition. We successfully obtained Camelina seeds in which oleic acid content was increased from 16% to over 50% of the fatty acid composition. These increases were associated with significant decreases in the less desirable polyunsaturated fatty acids, linoleic acid (i.e. a decrease from ~16% to <4%) and linolenic acid (a decrease from ~35% to <10%). These changes result in oils that are superior on multiple levels: they are healthier, more oxidatively stable and better suited for production of certain commercial chemicals, including biofuels. As expected, A. thaliana T2 and T3 generation seeds exhibiting these types of altered fatty acid profiles were homozygous for disrupted FAD2 alleles. In the allohexaploid, Camelina, guide RNAs were designed that simultaneously targeted all three homoeologous FAD2 genes. This strategy that significantly enhanced oil composition in T3 and T4 generation Camelina seeds was associated with a combination of germ‐line mutations and somatic cell mutations in FAD2 genes in each of the three Camelina subgenomes.  相似文献   

3.
4.
Plant seed oil‐based liquid transportation fuels (i.e., biodiesel and green diesel) have tremendous potential as environmentally, economically and technologically feasible alternatives to petroleum‐derived fuels. Due to their nutritional and industrial importance, one of the major objectives is to increase the seed yield and oil production of oilseed crops via biotechnological approaches. Camelina sativa, an emerging oilseed crop, has been proposed as an ideal crop for biodiesel and bioproduct applications. Further increase in seed oil yield by increasing the flux of carbon from increased photosynthesis into triacylglycerol (TAG) synthesis will make this crop more profitable. To increase the oil yield, we engineered Camelina by co‐expressing the Arabidopsis thaliana (L.) Heynh. diacylglycerol acyltransferase1 (DGAT1) and a yeast cytosolic glycerol‐3‐phosphate dehydrogenase (GPD1) genes under the control of seed‐specific promoters. Plants co‐expressing DGAT1 and GPD1 exhibited up to 13% higher seed oil content and up to 52% increase in seed mass compared to wild‐type plants. Further, DGAT1‐ and GDP1‐co‐expressing lines showed significantly higher seed and oil yields on a dry weight basis than the wild‐type controls or plants expressing DGAT1 and GPD1 alone. The oil harvest index (g oil per g total dry matter) for DGTA1‐ and GPD1‐co‐expressing lines was almost twofold higher as compared to wild type and the lines expressing DGAT1 and GPD1 alone. Therefore, combining the overexpression of TAG biosynthetic genes, DGAT1 and GPD1, appears to be a positive strategy to achieve a synergistic effect on the flux through the TAG synthesis pathway, and thereby further increase the oil yield.  相似文献   

5.
Seed oil composed of wax esters with long‐chain monoenoic acyl moieties represents a high‐value commodity for industry. Such plant‐derived sperm oil‐like liquid wax esters are biodegradable and can have excellent properties for lubrication. In addition, wax ester oil may represent a superior substrate for biodiesel production. In this study, we demonstrate that the low‐input oil seed crop Camelina sativa can serve as a biotechnological platform for environmentally benign wax ester production. Two biosynthetic steps catalysed by a fatty alcohol‐forming acyl‐CoA reductase (FAR) and a wax ester synthase (WS) are sufficient to achieve wax ester accumulation from acyl‐CoA substrates. To produce plant‐derived sperm oil‐like liquid wax esters, the WS from Mus musculus (MmWS) or Simmondsia chinensis (ScWS) were expressed in combination with the FAR from Mus musculus (MmFAR1) or Marinobacter aquaeolei (MaFAR) in seeds of Arabidopsis thaliana and Camelina sativa. The three analysed enzyme combinations Oleo3:mCherry:MmFAR1?c/Oleo3:EYFP:MmWS, Oleo3:mCherry:MmFAR1?c/ScWS and MaFAR/ScWS showed differences in the wax ester molecular species profiles and overall biosynthetic performance. By expressing MaFAR/ScWS in Arabidopsis or Camelina up to 59% or 21% of the seed oil TAGs were replaced by wax esters, respectively. This combination also yielded wax ester molecular species with highest content of monounsaturated acyl moieties. Expression of the enzyme combinations in the Arabidopsis fae1 fad2 mutant background high in oleic acid resulted in wax ester accumulation enriched in oleyl oleate (18:1/18:1 > 60%), suggesting that similar values may be obtained with a Camelina high oleic acid line.  相似文献   

6.
Poly‐3‐hydroxybutyrate (PHB) production in plastids of Camelina sativa seeds was investigated by comparing levels of polymer produced upon transformation of plants with five different binary vectors containing combinations of five seed‐specific promoters for expression of transgenes. Genes encoding PHB biosynthetic enzymes were modified at the N‐terminus to encode a plastid targeting signal. PHB levels of up to 15% of the mature seed weight were measured in single sacrificed T1 seeds with a genetic construct containing the oleosin and glycinin promoters. A more detailed analysis of the PHB production potential of two of the best performing binary vectors in a Camelina line bred for larger seed size yielded lines containing up to 15% polymer in mature T2 seeds. Transmission electron microscopy showed the presence of distinct granules of PHB in the seeds. PHB production had varying effects on germination, emergence and survival of seedlings. Once true leaves formed, plants grew normally and were able to set seeds. PHB synthesis lowered the total oil but not the protein content of engineered seeds. A change in the oil fatty acid profile was also observed. High molecular weight polymer was produced with weight‐averaged molecular weights varying between 600 000 and 1 500 000, depending on the line. Select lines were advanced to later generations yielding a line with 13.7% PHB in T4 seeds. The levels of polymer produced in this study are the highest reported to date in a seed and are an important step forward for commercializing an oilseed‐based platform for PHB production.  相似文献   

7.
TRANSPARENT TESTA2 (TT2) regulates the biosynthesis of proanthocyanidins in the seed coat of Arabidopsis. We recently found that TT2 also participates in inhibition of fatty acid (FA) biosynthesis in the seed embryo. However, the mechanism by which TT2 suppresses the accumulation of seed FA remains unclear. In this study, we show that TT2 is expressed in embryos at an early developmental stage. TT2 is directly bound to the regulatory region of FUSCA3 (FUS3), and mediates the expression of numerous genes in the FA biosynthesis pathway. These genes include BCCP2, CAC2, MOD1 and KASII, which encode proteins involved in the initial steps of FA chain formation, FAD2 and FAD3, which are responsible for FA desaturation, and FAE1, which catalyzes very‐long‐chain FA elongation. Loss of function of TT2 results in reduced expression of GLABRA2 but does not cause a significant reduction in the mucilage attached to the seed coats, which competes with FA for photosynthates. TT2 is expressed in both maternal seed coats and embryonic tissues, but proanthocyanidins are only found in wild‐type seed coats and not in embryonic tissues. The amount of proanthocyanidins in the seed coat is negatively correlated with the amount of FAs in the embryo.  相似文献   

8.
A moderate change in ambient temperature can lead to vital physiological and biochemical adjustments in ectotherms, one of which is a change in fatty acid composition. When temperature decreases, the composition of membrane lipids (phospholipid fatty acids) is expected to become more unsaturated to be able to maintain homeoviscosity. Although different in function, storage lipids (triacylglycerol fatty acids) are expected to respond to temperature changes in a similar way. Age-specific differences, however, could influence this temperature response between different life stages. Here, we investigate if fatty acid composition of membrane and storage lipids responds similarly to temperature changes for two different life stages of Orchesella cincta. Juveniles and adults were cold acclimated (15 °C → 5 °C) for 28 days and then re-acclimated (5 °C → 15 °C) for another 28 days. We found adult membranes had a more unsaturated fatty acid composition than juveniles. Membrane lipids became more unsaturated during cold acclimation, and a reversed response occurred during warm acclimation. Membrane lipids, however, showed no warm acclimation, possibly due to the moderate temperature change. The ability to adjust storage lipid composition to moderate changes in ambient temperature may be an underestimated fitness component of temperature adaptation because fluidity of storage lipids permits accessibility of enzymes to energy reserves.  相似文献   

9.
Triacylglycerol, which was one of the minor lipid components in immature seeds of tobacco, accumulated dramatically between 7 and 27 days after flowering and, in mature seeds at 37 days, the fatty acid methyl esters of the triacylglycerols comprised 96.3% of those of the total lipids. Diacylglycerols and sterol ester also increased significantly during seed development. Phosphatidylcholine and phosphatidylethanolamine, which were major components in immature seeds, decreased constantly with increasing maturation as well as the quantities of phosphatidylinositol and phosphatidylglycerol. Monogalactosyldiacylglycerols, digalactosyldiacylglycerols and sulfoquinovosyldiacylglycerols also decreased and disappeared in mature seeds. In the triacylglycerols the percentages of palmitate, stearate and linolenate fell with increasing seed age, while that of linoleate increased up to 75.3% in mature seeds. A similar trend was observed in the fatty acid composition in the diacylglycerols and sterol ester. Generally, in the phospholipids the proportions of linoleate and linolenate decreased with concomitant increases of stearate and oleate.  相似文献   

10.
Plant triacylglycerols (TAGs), or vegetable oils, provide approximately 25% of dietary calories to humans and are becoming an increasingly important source of renewable bioenergy and industrial feedstocks. TAGs are assembled by multiple enzymes in the endoplasmic reticulum from building blocks that include an invariable glycerol backbone and variable fatty acyl chains. It remains a challenge to elucidate the mechanism of synthesis of hundreds of different TAG species in planta. One reason is the lack of an efficient analytical approach quantifying individual molecular species. Here we report a rapid and quantitative TAG profiling approach for Arabidopsis seeds based on electrospray ionization tandem mass spectrometry with direct infusion and multiple neutral loss scans. The levels of 93 TAG molecular species, identified by their acyl components, were determined in Arabidopsis seeds. Quantitative TAG pattern analyses revealed that the TAG assembly machinery preferentially produces TAGs with one elongated fatty acid. The importance of the selectivity in oil synthesis was consistent with an observation that an Arabidopsis mutant overexpressing a patatin‐like phospholipase had enhanced seed oil content with elongated fatty acids. This quantitative TAG profiling approach should facilitate investigations aimed at understanding the biochemical mechanisms of TAG metabolism in plants.  相似文献   

11.
12.
The synthesis and accumulation of omega‐3 long‐chain polyunsaturated fatty acids in transgenic Camelina sativa is demonstrated using the so‐called alternative pathway. This aerobic pathway is found in a small number of taxonomically unrelated unicellular organisms and utilizes a C18 Δ9‐elongase to generate C20 PUFAs. Here, we evaluated four different combinations of seed‐specific transgene‐derived activities to systematically determine the potential of this pathway to direct the synthesis of eicosapentaenoic acid (EPA) in transgenic plants. The accumulation of EPA and the related omega‐3 LC‐PUFA eicosatetraenoic acid (ETA) was observed up to 26.4% of total seed fatty acids, of which ETA was 9.5%. Seed oils such as these not only represent an additional source of EPA, but also an entirely new source of the bona fide fish oil ETA. Detailed lipidomic analysis of the alternative pathway in Camelina revealed that the acyl‐substrate preferences of the different activities in the pathway can still generate a substrate‐dichotomy bottleneck, largely due to inefficient acyl‐exchange from phospholipids into the acyl‐CoA pool. However, significant levels of EPA and ETA were detected in the triacylglycerols of transgenic seeds, confirming the channelling of these fatty acids into this storage lipid.  相似文献   

13.
14.
Abscisic acid is an essential hormone for seed dormancy. Our previous study using the plant gene switch system, a chemically induced gene expression system, demonstrated that induction of 9‐cis‐epoxycarotenoid dioxygenase (NCED), a rate‐limiting ABA biosynthesis gene, was sufficient to suppress germination in imbibed Arabidopsis seeds. Here, we report development of an efficient experimental system that causes amplification of NCED expression during seed maturation. The system was created with a Triticum aestivum promoter containing ABA responsive elements (ABREs) and a Sorghum bicolor NCED to cause ABA‐stimulated ABA biosynthesis and signaling, through a positive feedback mechanism. The chimeric gene pABRE:NCED enhanced NCED and ABF (ABRE‐binding factor) expression in Arabidopsis Columbia‐0 seeds, which caused 9‐ to 73‐fold increases in ABA levels. The pABRE:NCED seeds exhibited unusually deep dormancy which lasted for more than 3 months. Interestingly, the amplified ABA pathways also caused enhanced expression of Arabidopsis NCED5, revealing the presence of positive feedback in the native system. These results demonstrated the robustness of positive feedback mechanisms and the significance of NCED expression, or single metabolic change, during seed maturation. The pABRE:NCED system provides an excellent experimental system producing dormant and non‐dormant seeds of the same maternal origin, which differ only in zygotic ABA. The pABRE:NCED seeds contain a GFP marker which enables seed sorting between transgenic and null segregants and are ideal for comparative analysis. In addition to its utility in basic research, the system can also be applied to prevention of pre‐harvest sprouting during crop production, and therefore contributes to translational biology.  相似文献   

15.
Soybean (Glycine max (L.) Merr) is valued for both its protein and oil, whose seed is composed of 40% and 20% of each component, respectively. Given its high percentage of polyunsaturated fatty acids, linoleic acid and linolenic acid, soybean oil oxidative stability is relatively poor. Historically food processors have employed a partial hydrogenation process to soybean oil as a means to improve both the oxidative stability and functionality in end‐use applications. However, the hydrogenation process leads to the formation of trans‐fats, which are associated with negative cardiovascular health. As a means to circumvent the need for the hydrogenation process, genetic approaches are being pursued to improve oil quality in oilseeds. In this regard, we report here on the introduction of the mangosteen (Garcinia mangostana) stearoyl‐ACP thioesterase into soybean and the subsequent stacking with an event that is dual‐silenced in palmitoyl‐ACP thioesterase and ?12 fatty acid desaturase expression in a seed‐specific fashion. Phenotypic analyses on transgenic soybean expressing the mangosteen stearoyl‐ACP thioesterase revealed increases in seed stearic acid levels up to 17%. The subsequent stacked with a soybean event silenced in both palmitoyl‐ACP thioesterase and ?12 fatty acid desaturase activity, resulted in a seed lipid phenotype of approximately 11%–19% stearate and approximately 70% oleate. The oil profile created by the stack was maintained for four generations under greenhouse conditions and a fifth generation under a field environment. However, in generation six and seven under field conditions, the oleate levels decreased to 30%–40%, while the stearic level remained elevated.  相似文献   

16.
The FERONIA (FER) signaling pathway is known to have diverse roles in Arabidopsis thaliana, such as growth, reproduction, and defense, but how this receptor kinase is involved in various biological processes is not well established. In this work, we applied multiple mass spectrometry techniques to identify metabolites involved in the FER signaling pathway and to understand their biological roles. A direct infusion Fourier transform ion cyclotron resonance (FT‐ICR)‐MS approach was used for initial screening of wild‐type and feronia (fer) mutant plant extracts, and Arabidopsides were found to be significantly enriched in the mutant. As Arabidopsides are known to be induced by wounding, further experiments on wounded and non‐wounded leaf samples were carried out to investigate these oxylipins as well as related phytohormones using a quadrupole‐time‐of‐flight (Q‐TOF) MS by direct injection and LC‐MS/MS. In a root growth bioassay with Arabidopside A isolated from fer mutants, the wild‐type showed significant root growth inhibition compared with the fer mutant. Our results therefore implicated Arabidopsides, and Arabidopside A specifically, in FER functions and/or signaling. Finally, matrix‐assisted laser desorption/ionization MS imaging (MALDI‐MSI) was used to visualize the localization of Arabidopsides, and we confirmed that Arabidopsides are highly abundant at wounding sites in both wild‐type and fer mutant leaves. More significantly, five micron high‐spatial resolution MALDI‐MSI revealed that Arabidopsides are localized to the chloroplasts where many stress signaling molecules are made.  相似文献   

17.
Diatoms are a group of highly abundant and diverse aquatic algae species. They contain high lipid content along with many bioactive compounds that can be exploited for biotechnological applications. Despite these attractive attributes, diatoms are underrepresented in production projects due to difficulties in their cultivation. To optimize the growth of three freshwater diatom isolates, Cyclotella sp., Synedra sp. and Navicula sp., an orthogonal assay on N, P, Si and Fe, as well as temperature and pH, was designed using traditional single‐factor tests. We also studied the effect of using nanosilica as an alternate Si source on growth and found that the diatom isolates studied achieved their highest growth rates under different combinations of nutrient and environmental conditions. Silica had the greatest influence on growth, followed by phosphate and iron. The optimized growth conditions for Synedra sp. were N: 30 mg L?1, P: 3 mg L?1, Si: 14.8 mg L?1, Fe: 0.448 mg L?1, temperature 25°C and pH 8. For Navicula sp.: N: 20 mg L?1, P: 2.5 mg L?1, Si: 19.7 mg L?1, Fe: 0.112 mg L?1, temperature 30°C and pH 7.5–8. For Cyclotella sp.: N: 20 mg L?1, P: 2.5 mg L?1, Si: 19.7 mg L?1, Fe: 0.448 mg L?1, temperature 30°C and pH 7.5–8. Nano silica negatively affected growth in Navicula sp. and Cyclotella sp., but no such effect was observed in Synedra sp. Fatty acid profiling showed C16:0, C16:1(n ? 7), C18:0 and C20:5(n ? 3) as major fatty acids, with no significant differences in fatty acid methyl ester profiles between traditional and modified media. This work gives us a new insight into the growth requirements of freshwater diatom species, which are less studied than marine species.  相似文献   

18.
  • Changes in seed lipid composition during ageing are associated with seed viability loss in many plant species. However, due to their small seed size, this has not been previously explored in orchids. We characterized and compared the seed viability and fatty acid profiles of five orchid species before and after ageing: one tropical epiphytic orchid from Indonesia (Dendrobium strebloceras), and four temperate species from New Zealand, D. cunninghamii (epiphytic), and Gastrodia cunninghamii, Pterostylis banksii and Thelymitra nervosa (terrestrial).
  • Seeds were aged under controlled laboratory conditions (3-month storage at 60% RH and 20 °C). Seed viability was tested before and after ageing using tetrazolium chloride staining. Fatty acid methyl esters from fresh and aged seeds were extracted through trans-esterification, and then analysed using gas chromatography–mass spectrometry.
  • All species had high initial viability (>80%) and experienced significant viability loss after ageing. The saturated, polyunsaturated, monounsaturated and total fatty acid content decreased with ageing in all species, but this reduction was only significant for D. strebloceras, D. cunninghamii and G. cunninghamii.
  • Our results suggest that fatty acid degradation is a typical response to ageing in orchids, albeit with species variation in magnitude, but the link between fatty acid degradation and viability was not elucidated. Pterostylis banksii exemplified this variation; it showed marked viability loss despite not having a significant reduction in its fatty acid content after ageing. More research is required to identify the effect of ageing on fatty acid composition in orchids, and its contribution to seed viability loss.
  相似文献   

19.
20.
The extensive exploitation of rare earth elements (REEs), particularly in electronic technologies and agriculture has concomitantly raised the environmental load. Their resulting effects on primary producers such as microalgae are, however, poorly understood. We have studied these effects on two microalgae of biotechnological interest. The yellow‐green alga Trachydiscus minutus (Eustigmatophyceae, Ochrophyta), and the green alga Parachlorella kessleri (Trebouxiophyceae, Chlorophyta) were cultivated in mineral medium supplemented with 10 μmol L?1 chlorides of REEs: cerium, gadolinium, lanthanum, lutetium, praseodymium, scandium, and with monazite, which is a mineral rich in those elements. We observed growth rates at different mean light intensities (20, 50, 150 and 300 μmol m?2 s?1). The high growth rate of P. kessleri was not affected by the presence of any lanthanide, and decreased proportionally with light intensity (from 0.2 to 0.04 doublings per hour). In contrast, the growth rate of T. minutus was about three times lower compared with P. kessleri, with an optimum at 50 μmol m?2 s?1 and decreased at higher or lower light intensities. In the presence of Ce3+, La3+ and Sc3+, the growth rate markedly increased to a value that corresponded to the growth rate in P. kessleri at the same light intensity. The composition and content of pigments and lipids were followed at the optimum light intensity for both species. The lipid content (percentage of dry weight) varied only slightly in the presence of individual rare earths. There was, however, an increase in saturated fatty acids at the expense of polyunsaturated fatty acids. The effect of REEs on pigments was variable: the presence of Ce3+, Gd3+, La3+ and Sc3+ caused an increase in the concentrations of major pigments such as lutein, violaxanthin, β‐carotene or chlorophylls, while Pr3+ and Lu3+ reduced them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号