首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants have mechanisms to recognize and reject pollen from other species. Although widespread, these mechanisms are less well understood than the self‐incompatibility (SI) mechanisms plants use to reject pollen from close relatives. Previous studies have shown that some interspecific reproductive barriers (IRBs) are related to SI in the Solanaceae. For example, the pistil SI proteins S‐RNase and HT protein function in a pistil‐side IRB that causes rejection of pollen from self‐compatible (SC) red/orange‐fruited species in the tomato clade. However, S‐RNase‐independent IRBs also clearly contribute to rejecting pollen from these species. We investigated S‐RNase‐independent rejection of Solanum lycopersicum pollen by SC Solanum pennellii LA0716, SC. Solanum habrochaites LA0407, and SC Solanum arcanum LA2157, which lack functional S‐RNase expression. We found that all three accessions express HT proteins, which previously had been known to function only in conjunction with S‐RNase, and then used RNAi to test whether they also function in S‐RNase‐independent pollen rejection. Suppressing HT expression in SC S. pennellii LA0716 allows S. lycopersicum pollen tubes to penetrate farther into the pistil in HT suppressed plants, but not to reach the ovary. In contrast, suppressing HT expression in SC. Solanum habrochaites LA0407 and in SC S. arcanum LA2157 allows S. lycopersicum pollen tubes to penetrate to the ovary and produce hybrids that, otherwise, would be difficult to obtain. Thus, HT proteins are implicated in both S‐RNase‐dependent and S‐RNase‐independent pollen rejection. The results support the view that overall compatibility results from multiple pollen–pistil interactions with additive effects.  相似文献   

2.
Multiple independent and overlapping pollen rejection pathways contribute to unilateral interspecific incompatibility (UI). In crosses between tomato species, pollen rejection usually occurs when the female parent is self‐incompatible (SI) and the male parent self‐compatible (SC) (the ‘SI × SC rule’). Additional, as yet unknown, UI mechanisms are independent of self‐incompatibility and contribute to UI between SC species or populations. We identified a major quantitative trait locus on chromosome 10 (ui10.1) which affects pollen‐side UI responses in crosses between cultivated tomato, Solanum lycopersicum, and Solanum pennelliiLA0716, both of which are SC and lack S‐RNase, the pistil determinant of S‐specificity in Solanaceae. Here we show that ui10.1 is a farnesyl pyrophosphate synthase gene (FPS2) expressed in pollen. Expression is about 18‐fold higher in pollen of S. pennellii than in S. lycopersicum. Pollen with the hypomorphic S. lycopersicum allele is selectively eliminated on pistils of the F1 hybrid, leading to transmission ratio distortion in the F2 progeny. CRISPR/Cas9‐generated knockout mutants (fps2) in S. pennelliiLA0716 are self‐sterile due to pollen rejection, but mutant pollen is fully functional on pistils of S. lycopersicum. F2 progeny of S. lycopersicum × S. pennellii (fps2) show reversed transmission ratio distortion due to selective elimination of pollen bearing the knockout allele. Overexpression of FPS2 in S. lycopersicum pollen rescues the pollen elimination phenotype. FPS2‐based pollen selectivity does not involve S‐RNase and has not been previously linked to UI. Our results point to an entirely new mechanism of interspecific pollen rejection in plants.  相似文献   

3.
4.
5.
Tobacco leaf curl Japan virus, Honeysuckle yellow vein mosaic virus and Tomato yellow leaf curl virus are three begomoviruses that infect tomato crops in Japan. Tomato infection by begomoviruses has increased in Japan after the development of a high level of resistance to certain insecticides in some populations of the vector B. tabaci biotypes ‘B and Q’. Ty‐1 and Ty‐2 homozygous tomato hybrids were evaluated for reaction to monopartite begomovirus species in Japan by Agrobacterium‐mediated inoculation. Test plants were evaluated by a disease assessment scale (DAS), varying from 1 = no symptoms to 4 = severe symptoms, and systemic infection was evaluated by polymerase chain reaction (PCR), using specific begomovirus primers for each virus. Ty‐1 hybrids showed tolerance to HYVMV and with a large number of plants being neither virus‐free nor symptom‐free. The response of Ty‐1 hybrids was also resistant to moderately resistant against TbLCJV. The response of Ty‐2 hybrids was resistant to highly resistant against the three monopartite begomoviruses, when compared with susceptible plants.  相似文献   

6.
Although our knowledge about the mechanisms of gene expression in chloroplasts has increased substantially over the past decades, next to nothing is known about the signals and factors that govern expression of the plastid genome in non-green tissues. Here we report the development of a quantitative method suitable for determining the activity of cis-acting elements for gene expression in non-green plastids. The in vivo assay is based on stable transformation of the plastid genome and the discovery that root length upon seedling growth in the presence of the plastid translational inhibitor kanamycin is directly proportional to the expression strength of the resistance gene nptII in transgenic tobacco plastids. By testing various combinations of promoters and translation initiation signals, we have used this experimental system to identify cis-elements that are highly active in non-green plastids. Surprisingly, heterologous expression elements from maize plastids were significantly more efficient in conferring high expression levels in root plastids than homologous expression elements from tobacco. Our work has established a quantitative method for characterization of gene expression in non-green plastid types, and has led to identification of cis-elements for efficient plastid transgene expression in non-green tissues, which are valuable tools for future transplastomic studies in basic and applied research.  相似文献   

7.
Plant cell wall modification is a critical component in stress responses. Endo‐1,4‐β‐glucanases (EGs) take part in cell wall editing processes, e.g. elongation, ripening and abscission. Here we studied the infection response of Solanum lycopersicum and Arabidopsis thaliana with impaired EGs. Transgenic TomCel1 and TomCel2 tomato antisense plants challenged with Pseudomonas syringae showed higher susceptibility, callose priming and increased jasmonic acid pathway marker gene expression. These two EGs could be resistance factors and may act as negative regulators of callose deposition, probably by interfering with the defence‐signalling network. A study of a set of Arabidopsis EG T‐DNA insertion mutants challenged with P. syringae and Botrytis cinerea revealed that the lack of other EGs interferes with infection phenotype, callose deposition, expression of signalling pathway marker genes and hormonal balance. We conclude that a lack of EGs could alter plant response to pathogens by modifying the properties of the cell wall and/or interfering with signalling pathways, contributing to generate the appropriate signalling outcomes. Analysis of microarray data demonstrates that EGs are differentially expressed upon many different plant–pathogen challenges, hormone treatments and many abiotic stresses. We found some Arabidopsis EG mutants with increased tolerance to osmotic and salt stress. Our results show that impairing EGs can alter plant–pathogen interactions and may contribute to appropriate signalling outcomes in many different biotic and abiotic plant stress responses.  相似文献   

8.
The identification of mutations in targeted genes has been significantly simplified by the advent of TILLING (Targeting Induced Local Lesions In Genomes), speeding up the functional genomic analysis of animals and plants. Next‐generation sequencing (NGS) is gradually replacing classical TILLING for mutation detection, as it allows the analysis of a large number of amplicons in short durations. The NGS approach was used to identify mutations in a population of Solanum lycopersicum (tomato) that was doubly mutagenized by ethylmethane sulphonate (EMS). Twenty‐five genes belonging to carotenoids and folate metabolism were PCR‐amplified and screened to identify potentially beneficial alleles. To augment efficiency, the 600‐bp amplicons were directly sequenced in a non‐overlapping manner in Illumina MiSeq, obviating the need for a fragmentation step before library preparation. A comparison of the different pooling depths revealed that heterozygous mutations could be identified up to 128‐fold pooling. An evaluation of six different software programs (camba , crisp , gatk unified genotyper , lofreq , snver and vipr ) revealed that no software program was robust enough to predict mutations with high fidelity. Among these, crisp and camba predicted mutations with lower false discovery rates. The false positives were largely eliminated by considering only mutations commonly predicted by two different software programs. The screening of 23.47 Mb of tomato genome yielded 75 predicted mutations, 64 of which were confirmed by Sanger sequencing with an average mutation density of 1/367 Kb. Our results indicate that NGS combined with multiple variant detection tools can reduce false positives and significantly speed up the mutation discovery rate.  相似文献   

9.
10.
RenSeq is a NB‐LRR (nucleotide binding‐site leucine‐rich repeat) gene‐targeted, Resistance gene enrichment and sequencing method that enables discovery and annotation of pathogen resistance gene family members in plant genome sequences. We successfully applied RenSeq to the sequenced potato Solanum tuberosum clone DM, and increased the number of identified NB‐LRRs from 438 to 755. The majority of these identified R gene loci reside in poorly or previously unannotated regions of the genome. Sequence and positional details on the 12 chromosomes have been established for 704 NB‐LRRs and can be accessed through a genome browser that we provide. We compared these NB‐LRR genes and the corresponding oligonucleotide baits with the highest sequence similarity and demonstrated that ~80% sequence identity is sufficient for enrichment. Analysis of the sequenced tomato S. lycopersicum ‘Heinz 1706’ extended the NB‐LRR complement to 394 loci. We further describe a methodology that applies RenSeq to rapidly identify molecular markers that co‐segregate with a pathogen resistance trait of interest. In two independent segregating populations involving the wild Solanum species S. berthaultii (Rpi‐ber2) and S. ruiz‐ceballosii (Rpi‐rzc1), we were able to apply RenSeq successfully to identify markers that co‐segregate with resistance towards the late blight pathogen Phytophthora infestans. These SNP identification workflows were designed as easy‐to‐adapt Galaxy pipelines.  相似文献   

11.
The aerial epidermis of all land plants is covered with a hydrophobic cuticle that provides essential protection from desiccation, and so its evolution is believed to have been prerequisite for terrestrial colonization. A major structural component of apparently all plant cuticles is cutin, a polyester of hydroxy fatty acids; however, despite its ubiquity, the details of cutin polymeric structure and the mechanisms of its formation and remodeling are not well understood. We recently reported that cutin polymerization in tomato (Solanum lycopersicum) fruit occurs via transesterification of hydroxyacylglycerol precursors, catalyzed by the GDSL‐motif lipase/hydrolase family protein (GDSL) Cutin Deficient 1 (CD1). Here, we present additional biochemical characterization of CD1 and putative orthologs from Arabidopsis thaliana and the moss Physcomitrella patens, which represent a distinct clade of cutin synthases within the large GDSL superfamily. We demonstrate that members of this ancient and conserved family of cutin synthase‐like (CUS) proteins act as polyester synthases with negligible hydrolytic activity. Moreover, solution‐state NMR analysis indicates that CD1 catalyzes the formation of primarily linear cutin oligomeric products in vitro. These results reveal a conserved mechanism of cutin polyester synthesis in land plants, and suggest that elaborations of the linear polymer, such as branching or cross‐linking, may require additional, as yet unknown, factors.  相似文献   

12.
13.
14.
Developing new strategies for crop plants to respond to drought is crucial for their innovative breeding. The down‐regulation of nuclear cap‐binding proteins in Arabidopsis renders plants drought tolerant. The CBP80 gene in the potato cultivar Desiree was silenced using artificial microRNAs. Transgenic plants displayed a higher tolerance to drought, ABA‐hypersensitive stomatal closing, an increase in leaf stomata and trichome density, and compact cuticle structures with a lower number of microchannels. These findings were correlated with a higher tolerance to water stress. The level of miR159 was decreased, and the levels of its target mRNAs MYB33 and MYB101 increased in the transgenic plants subjected to drought. Similar trends were observed in an Arabidopsis cbp80 mutant. The evolutionary conservation of CBP80, a gene that plays a role in the response to drought, suggests that it is a candidate for genetic manipulations that aim to obtain improved water‐deficit tolerance of crop plants.  相似文献   

15.
16.
Carotenoid pigments are indispensable for plant life. They are synthesized within plastids where they provide essential functions in photosynthesis. Carotenoids serve as precursors for the synthesis of the strigolactone phytohormones, which are made from β‐carotene, and of abscisic acid (ABA), which is produced from certain xanthophylls. Despite the significant progress that has been made in our understanding of the carotenoid biosynthesis pathway, the synthesis of the xanthophyll neoxanthin has remained unknown. We report here on the isolation of a tomato (Solanum lycopersicum) mutant, neoxanthin‐deficient 1 (nxd1), which lacks neoxanthin, and on the cloning of a gene that is necessary for neoxanthin synthesis in both tomato and Arabidopsis. The locus nxd1 encodes a gene of unknown function that is conserved in all higher plants. The activity of NXD1 is essential but cannot solely support neoxanthin synthesis. Lack of neoxanthin does not significantly reduce the fitness of tomato plants in cultivated field conditions and does not impair the synthesis of ABA, suggesting that in tomato violaxanthin is a sufficient precursor for ABA production in vivo.  相似文献   

17.
18.
The transition from flowering to fruit production, namely fruit set, is crucial to ensure successful sexual plant reproduction. Although studies have described the importance of hormones (i.e. auxin and gibberellins) in controlling fruit set after pollination and fertilization, the role of microRNA‐based regulation during ovary development and fruit set is still poorly understood. Here we show that the microRNA159/GAMYB1 and ‐2 pathway (the miR159/GAMYB1/2 module) is crucial for tomato ovule development and fruit set. MiR159 and SlGAMYBs were expressed in preanthesis ovaries, mainly in meristematic tissues, including developing ovules. SlMIR159‐overexpressing tomato cv. Micro‐Tom plants exhibited precocious fruit initiation and obligatory parthenocarpy, without modifying fruit shape. Histological analysis showed abnormal ovule development in such plants, which led to the formation of seedless fruits. SlGAMYB1/2 silencing in SlMIR159‐overexpressing plants resulted in misregulation of pathways associated with ovule and female gametophyte development and auxin signalling, including AINTEGUMENTA‐like genes and the miR167/SlARF8a module. Similarly to SlMIR159‐overexpressing plants, SlGAMYB1 was downregulated in ovaries of parthenocarpic mutants with altered responses to gibberellins and auxin. SlGAMYBs likely contribute to fruit initiation by modulating auxin and gibberellin responses, rather than their levels, during ovule and ovary development. Altogether, our results unveil a novel function for the miR159‐targeted SlGAMYBs in regulating an agronomically important trait, namely fruit set.  相似文献   

19.
Ascorbate is a powerful antioxidant in plants, and its levels are an important quality criteria in commercial species. Factors influencing these levels include environmental variations, particularly light, and the genetic control of its biosynthesis, recycling and degradation. One of the genes involved in the recycling pathway encodes a monodehydroascorbate reductase (MDHAR), an enzyme catalysing reduction of the oxidized radical of ascorbate, monodehydroascorbate, to ascorbate. In plants, MDHAR belongs to a multigene family. Here, we report the presence of an MDHAR isoform in both the cytosol and peroxisomes and show that this enzyme negatively regulates ascorbate levels in Solanum lycopersicum (tomato). Transgenic lines overexpressing MDHAR show a decrease in ascorbate levels in leaves, whereas lines where MDHAR is silenced show an increase in these levels in both fruits and leaves. Furthermore, the intensity of these differences is light dependent. The unexpected effect of this MDHAR on ascorbate levels cannot be explained by changes in the expression of Smirnoff–Wheeler pathway genes, or the activity of enzymes involved in degradation (ascorbate peroxidase) or recycling of ascorbate (dehydroascorbate reductase and glutathione reductase), suggesting a previously unidentified mechanism regulating ascorbate levels.  相似文献   

20.
Insect pest populations exhibit seasonal dynamics in response to changes in resource availability or other environmental factors such as climatic conditions, natural enemies, and intra‐ or interspecific competition. Understanding such dynamics is critical for developing effective integrated pest management strategies. The objective of the present study was to identify factors driving the seasonal decline of the tomato leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), in the shifting landscape of a vegetable‐growing area in Senegal. A set of 42 tomato fields was monitored for the number of T. absoluta adults caught in pheromone traps and for the incidence of larvae, during 5 months from June to November 2016 in the Niayes area (Senegal). The surface of solanaceous host crops, climatic conditions, and abundance of natural enemies were also monitored. A drastic decline in T. absoluta abundance was observed during the rainy season. The decrease in resource availability, especially tomato crops, in the surrounding landscape of monitored fields was the main factor affecting the population dynamics during the rainy season. However, alternative host crops such as eggplant and Ethiopian eggplant, can provide ‘reservoirs’ for residual populations of the pest. For applied purpose, it would be interesting to focus the management efforts on residual populations during the rainy season, to make more difficult the reconstitution of populations during the dry season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号