首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
    
Plants have mechanisms to recognize and reject pollen from other species. Although widespread, these mechanisms are less well understood than the self‐incompatibility (SI) mechanisms plants use to reject pollen from close relatives. Previous studies have shown that some interspecific reproductive barriers (IRBs) are related to SI in the Solanaceae. For example, the pistil SI proteins S‐RNase and HT protein function in a pistil‐side IRB that causes rejection of pollen from self‐compatible (SC) red/orange‐fruited species in the tomato clade. However, S‐RNase‐independent IRBs also clearly contribute to rejecting pollen from these species. We investigated S‐RNase‐independent rejection of Solanum lycopersicum pollen by SC Solanum pennellii LA0716, SC. Solanum habrochaites LA0407, and SC Solanum arcanum LA2157, which lack functional S‐RNase expression. We found that all three accessions express HT proteins, which previously had been known to function only in conjunction with S‐RNase, and then used RNAi to test whether they also function in S‐RNase‐independent pollen rejection. Suppressing HT expression in SC S. pennellii LA0716 allows S. lycopersicum pollen tubes to penetrate farther into the pistil in HT suppressed plants, but not to reach the ovary. In contrast, suppressing HT expression in SC. Solanum habrochaites LA0407 and in SC S. arcanum LA2157 allows S. lycopersicum pollen tubes to penetrate to the ovary and produce hybrids that, otherwise, would be difficult to obtain. Thus, HT proteins are implicated in both S‐RNase‐dependent and S‐RNase‐independent pollen rejection. The results support the view that overall compatibility results from multiple pollen–pistil interactions with additive effects.  相似文献   

3.
    
Tobacco leaf curl Japan virus, Honeysuckle yellow vein mosaic virus and Tomato yellow leaf curl virus are three begomoviruses that infect tomato crops in Japan. Tomato infection by begomoviruses has increased in Japan after the development of a high level of resistance to certain insecticides in some populations of the vector B. tabaci biotypes ‘B and Q’. Ty‐1 and Ty‐2 homozygous tomato hybrids were evaluated for reaction to monopartite begomovirus species in Japan by Agrobacterium‐mediated inoculation. Test plants were evaluated by a disease assessment scale (DAS), varying from 1 = no symptoms to 4 = severe symptoms, and systemic infection was evaluated by polymerase chain reaction (PCR), using specific begomovirus primers for each virus. Ty‐1 hybrids showed tolerance to HYVMV and with a large number of plants being neither virus‐free nor symptom‐free. The response of Ty‐1 hybrids was also resistant to moderately resistant against TbLCJV. The response of Ty‐2 hybrids was resistant to highly resistant against the three monopartite begomoviruses, when compared with susceptible plants.  相似文献   

4.
    
Electron microscopy studies were carried out to investigate the cytopathological changes induced in tomato leaves by Tomato torrado virus (ToTV) that infects tomato plants worldwide causing severe necrotic symptoms. Plants infected with one of the Polish isolates of ToTV were used for cytopathological research. The results revealed severe cellular alterations, especially in Solanum lycopersicum. Moreover, it was shown that crystalline aggregates of virions occurred not only within the phloem cells as it has been previously reported.  相似文献   

5.
6.
    
Controlled glasshouse experiments were conducted to investigate the temporal progress of powdery mildew and its effects on host dynamics of tomato, without and with one fungicide application. Healthy tomato transplants (5‐ to 6‐week old) were artificially inoculated with powdery mildew, and disease progress as well as host growth were monitored in both fungicide sprayed and unsprayed treatments and compared with non‐inoculated plants. Actual disease severity on a plant basis increased in unsprayed plants reaching maximum severity in the proportionate range of 0.53–0.83. One fungicide spray significantly reduced the maximum disease severity by two‐ to fourfolds. Despite adjustments for defoliation, declines in the proportion of disease severity between successive assessments were evident. Whereas the estimated growth rates of diseased plants were significantly lower than that of healthy plants, no significant differences were observed in the maximum leaf area formed of inoculated and non‐inoculated plants. A considerable effect of the powdery mildew epidemics was manifested through hastened shrivelling and defoliation of diseased leaves within the tomato canopy. An average of 18–29% and 40–52% of leaves had abscised from the plant canopy at the last date of assessment in sprayed and non‐sprayed plants, respectively. Accordingly, defoliation accounted for 14–33.3% and 58.3–63.1% losses in leaf area of sprayed and non‐sprayed plants, respectively. Duration of healthy leaf area and yield of inoculated plants were also significantly reduced by powdery mildew epidemics.  相似文献   

7.
    
Begomoviruses are one of the major pathogens in tomato crops worldwide. In Venezuela, six begomovirus species have been described infecting tomato: Potato yellow mosaic virus (PYMV), Euphorbia mosaic Venezuela virus (EuMVV), Merremia mosaic virus (MeMV), Tomato chlorotic leaf distortion virus (ToCLDV), Tomato yellow margin leaf curl virus (TYMLCV) and Tomato yellow leaf curl virus (TYLCV). In this study, the occurrence of these viruses was analysed by PCR in 338 tomato plants exhibiting virus‐like symptoms. Sixty‐three per cent of the plants were positive at least to one of the begomoviruses tested. PYMV and TYLCV were the most frequent viruses showing 39.6 and 23.7% occurrence, respectively. Phylogenetic analyses revealed two groups of PYMV isolates from several Caribbean Basin countries. The first group clustered isolates from several countries, including Venezuela, and the second group clustered only Colombian isolates. Due to the high prevalence of PYMV and TYLCV in Venezuela, it is suggested that the surveillance and control strategies currently applied in the country should be focused on these two begomoviruses.  相似文献   

8.
    
Temporal progress of a begomovirus disease in tomato fields and the abundance of its whitefly vector, Bemisia tabaci biotype B, were evaluated during three consecutive tomato plantings in the municipality of Sumaré, state of São Paulo, Brazil, in 2006 and 2007. The incidence of symptomatic plants and the number of adult whiteflies were weekly monitored on experimental plots randomly chosen in tomato commercial fields. Tomato severe rugose virus (ToSRV) was identified as the causal agent of the disease, and its relationships with other Brazilian begomoviruses was confirmed by partial and complete nucleotide sequencing of the viral genome. The disease temporal progress was analysed by fitting different models to disease incidence. The monomolecular model showed the best fit, which is consistent with a predominant role of primary spread in the epidemiology of ToSRV. A higher number of adult whiteflies were observed at the borders of the plots, also suggesting primary spread of ToSRV from external sources of inoculum, which might be represented by weeds and volunteer tomato‐infected plants. In Brazil, since 2004, there is a legislative measure that mandates, for some regions of processing tomato plantings, a 2‐month crop‐free period during the year. Based on our results, we suggest the extension of this measure to all tomato‐producing regions, including fresh market tomato. We also suggest that growers emphasize the elimination of old plants from harvested fields that can serve as virus reservoirs several weeks prior to new plantings and weeds nearby the fields to limit the primary spread of ToSRV.  相似文献   

9.
    
We present a resource for fine mapping of traits derived from the wild tomato species Solanum pennellii (LA0716). The population of backcross inbred lines (BILs) is composed of 446 lines derived after a few generations of backcrosses of the wild species with cultivated tomato (cultivar M82; LA3475), followed by more than seven generations of self‐pollination. The BILs were genotyped using the 10K SOL‐CAP single nucleotide polymorphism (SNP) ‐Chip, and 3700 polymorphic markers were used to map recombination break points relative to the physical map of Solanum lycopersicum. The BILs carry, on average, 2.7 introgressions per line, with a mean introgression length of 11.7 Mbp. Whereas the classic 76 introgression lines (ILs) partitioned the genome into 106 mapping bins, the BILs generated 633 bins, thereby enhancing the mapping resolution of traits derived from the wild species. We demonstrate the power of the BILs for rapid fine mapping of simple and complex traits derived from the wild tomato species.  相似文献   

10.
    
Identification of the polymorphisms controlling quantitative traits remains a challenge for plant geneticists. Multiparent advanced generation intercross (MAGIC) populations offer an alternative to traditional linkage or association mapping populations by increasing the precision of quantitative trait loci (QTL) mapping. Here, we present the first tomato MAGIC population and highlight its potential for the valorization of intraspecific variation, QTL mapping and causal polymorphism identification. The population was developed by crossing eight founder lines, selected to include a wide range of genetic diversity, whose genomes have been previously resequenced. We selected 1536 SNPs among the 4 million available to enhance haplotype prediction and recombination detection in the population. The linkage map obtained showed an 87% increase in recombination frequencies compared to biparental populations. The prediction of the haplotype origin was possible for 89% of the MAGIC line genomes, allowing QTL detection at the haplotype level. We grew the population in two greenhouse trials and detected QTLs for fruit weight. We mapped three stable QTLs and six specific of a location. Finally, we showed the potential of the MAGIC population when coupled with whole genome sequencing of founder lines to detect candidate SNPs underlying the QTLs. For a previously cloned QTL on chromosome 3, we used the predicted allelic effect of each founder and their genome sequences to select putative causal polymorphisms in the supporting interval. The number of candidate polymorphisms was reduced from 12 284 (in 800 genes) to 96 (in 54 genes), including the actual causal polymorphism. This population represents a new permanent resource for the tomato genetics community.  相似文献   

11.
    
We present a complementary resource for trait fine‐mapping in tomato to those based on the intra‐specific cross between cultivated tomato and the wild tomato species Solanum pennellii, which have been extensively used for quantitative genetics in tomato over the last 20 years. The current population of backcross inbred lines (BILs) is composed of 107 lines derived after three backcrosses of progeny of the wild species Solanum neorickii (LA2133) and cultivated tomato (cultivar TA209) and is freely available to the scientific community. These S. neorickii BILs were genotyped using the 10K SolCAP single nucleotide polymorphism chip, and 3111 polymorphic markers were used to map recombination break points relative to the physical map of Solanum lycopersicum. The BILs harbor on average 4.3 introgressions per line, with a mean introgression length of 34.7 Mbp, allowing partitioning of the genome into 340 bins and thereby facilitating rapid trait mapping. We demonstrate the power of using this resource in comparison with archival data from the S. pennellii resources by carrying out metabolic quantitative trait locus analysis following gas chromatography–mass spectrometry on fruits harvested from the S. neorickii BILs. The metabolic candidate genes phenylalanine ammonia‐lyase and cystathionine gamma‐lyase were then tested and validated in F2 populations and via agroinfiltration‐based overexpression in order to exemplify the fidelity of this method in identifying the genes that drive tomato metabolic phenotypes.  相似文献   

12.
    
Multiple independent and overlapping pollen rejection pathways contribute to unilateral interspecific incompatibility (UI). In crosses between tomato species, pollen rejection usually occurs when the female parent is self‐incompatible (SI) and the male parent self‐compatible (SC) (the ‘SI × SC rule’). Additional, as yet unknown, UI mechanisms are independent of self‐incompatibility and contribute to UI between SC species or populations. We identified a major quantitative trait locus on chromosome 10 (ui10.1) which affects pollen‐side UI responses in crosses between cultivated tomato, Solanum lycopersicum, and Solanum pennelliiLA0716, both of which are SC and lack S‐RNase, the pistil determinant of S‐specificity in Solanaceae. Here we show that ui10.1 is a farnesyl pyrophosphate synthase gene (FPS2) expressed in pollen. Expression is about 18‐fold higher in pollen of S. pennellii than in S. lycopersicum. Pollen with the hypomorphic S. lycopersicum allele is selectively eliminated on pistils of the F1 hybrid, leading to transmission ratio distortion in the F2 progeny. CRISPR/Cas9‐generated knockout mutants (fps2) in S. pennelliiLA0716 are self‐sterile due to pollen rejection, but mutant pollen is fully functional on pistils of S. lycopersicum. F2 progeny of S. lycopersicum × S. pennellii (fps2) show reversed transmission ratio distortion due to selective elimination of pollen bearing the knockout allele. Overexpression of FPS2 in S. lycopersicum pollen rescues the pollen elimination phenotype. FPS2‐based pollen selectivity does not involve S‐RNase and has not been previously linked to UI. Our results point to an entirely new mechanism of interspecific pollen rejection in plants.  相似文献   

13.
14.
15.
16.
    
By comparing the partial nucleotide sequences of the heat shock protein HSP70 homologue gene, we assessed the genetic diversity of Brazilian tomato isolates of Tomato chlorosis virus (ToCV), as well as their relationship with other ToCV isolates found worldwide. The Brazilian ToCV isolates shared 99.9–100% nucleotide identity, which indicates low genetic diversity. Brazilian ToCV isolates showed a closer evolutionary relationship to those from Mediterranean countries. Based on these results, the origin of Brazilian ToCV isolates and the possible number of introductions of the virus into Brazil are discussed.  相似文献   

17.
    
Wild species can be used to improve various agronomic traits in cultivars; however, a limited understanding of the genetic basis underlying the morphological differences between wild and cultivated species hinders the integration of beneficial traits from wild species. In the present study, we generated and sequenced recombinant inbred lines (RILs, 201 F10 lines) derived from a cross between Solanum pimpinellifolium and Solanum lycopersicum tomatoes. Based on a high‐resolution recombination bin map to uncover major loci determining the phenotypic variance between wild and cultivated tomatoes, 104 significantly associated loci were identified for 18 agronomic traits. On average, these loci explained ~39% of the phenotypic variance of the RILs. We further generated near‐isogenic lines (NILs) for four identified loci, and the lines exhibited significant differences for the associated traits. We found that two loci could improve the flower number and inflorescence architecture in the cultivar following introgression of the wild‐species alleles. These findings allowed us to construct a trait–locus network to help explain the correlations among different traits based on the pleiotropic or linked loci. Our results provide insights into the morphological changes between wild and cultivated tomatoes, and will help to identify key genes governing important agronomic traits for the molecular selection of elite tomato varieties.  相似文献   

18.
    
Tomato (Solanum lycopersicum) plants exhibiting yellowing, curling and stunting symptoms were identified in fields of the Tawoos Agricultural Systems, in Al‐Batinah in Oman. Cloning and sequencing of restriction endonuclease digested rolling circle amplified viral DNA identified a cotton begomovirus (family Geminiviridae) associated with the symptomatic tomato plants. Detailed analysis of complete sequences showed the virus to be a previously unknown strain of Cotton leaf curl Gezira virus (CLCuGeV) in association with the betasatellite Tomato leaf curl betasatellite (ToLCB). The new CLCuGeV strain, for which the name “Al Batinah” strain is suggested, has the greatest levels of sequence identity (91.9%) to an isolate of CLCuGeV recently reported from the neighbouring United Arab Emirates. Additionally, CLCuGeV‐Al Batinah was shown to have a recombinant origin with sequences donated by an African cassava mosaic virus‐like parent. This is the first identification of this Malvaceae‐adapted begomovirus in tomato. Although ToLCB is common in Oman, being one of only two betasatellites identified there so far, this is the first identification of this betasatellite with CLCuGeV. The significance of these findings is discussed.  相似文献   

19.
    
Leaf morphogenesis and differentiation are highly flexible processes. The development of compound leaves is characterized by an extended morphogenesis stage compared with that of simple leaves. The tomato mutant clausa (clau) possesses extremely elaborate compound leaves. Here we show that this elaboration is generated by further extension of the morphogenetic window, partly via the activity of ectopic meristems present on clau leaves. Further, we propose that CLAU might negatively affect expression of the NAM/CUC gene GOBLET (GOB), an important modulator of compound‐leaf development, as GOB expression is elevated in clau mutants and reducing GOB expression suppresses the clau phenotype. Expression of GOB is also elevated in the compound leaf mutant lyrate (lyr), and the remarkable enhancement of the clau phenotype by lyr suggests that clau and lyr affect leaf development and GOB in different pathways.  相似文献   

20.
    
The identification of mutations in targeted genes has been significantly simplified by the advent of TILLING (Targeting Induced Local Lesions In Genomes), speeding up the functional genomic analysis of animals and plants. Next‐generation sequencing (NGS) is gradually replacing classical TILLING for mutation detection, as it allows the analysis of a large number of amplicons in short durations. The NGS approach was used to identify mutations in a population of Solanum lycopersicum (tomato) that was doubly mutagenized by ethylmethane sulphonate (EMS). Twenty‐five genes belonging to carotenoids and folate metabolism were PCR‐amplified and screened to identify potentially beneficial alleles. To augment efficiency, the 600‐bp amplicons were directly sequenced in a non‐overlapping manner in Illumina MiSeq, obviating the need for a fragmentation step before library preparation. A comparison of the different pooling depths revealed that heterozygous mutations could be identified up to 128‐fold pooling. An evaluation of six different software programs (camba , crisp , gatk unified genotyper , lofreq , snver and vipr ) revealed that no software program was robust enough to predict mutations with high fidelity. Among these, crisp and camba predicted mutations with lower false discovery rates. The false positives were largely eliminated by considering only mutations commonly predicted by two different software programs. The screening of 23.47 Mb of tomato genome yielded 75 predicted mutations, 64 of which were confirmed by Sanger sequencing with an average mutation density of 1/367 Kb. Our results indicate that NGS combined with multiple variant detection tools can reduce false positives and significantly speed up the mutation discovery rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号