首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report an approach for the fabrication of CuIn(S,Se)2‐based photovoltaic devices from hydrazinium precursors in non‐hydrazine solvents, specifically a ethanolamine/dimethyl sulfoxide (EA/DMSO) mixture. For the first time, both Cu hydrazinium precursor and Cu‐In hydrazinium precursor are found with good solubility in non‐hydrazine solvents, producing molecular‐level blending of metal precursors. Sulfur loss in Cu hydrazinium precursor is compensated for by either introduction of excessive S/Se or the formation of S/Se‐bridged Cu‐In compounds. The success of dissolving Cu‐In hydrazinium precursor is ascribed to the coordinated S group and strong intramolecular interaction within non‐hydrazine solvents. X‐ray diffraction (XRD) and Raman characterization indicate the formation of the CuIn(S,Se)2 phase after annealing. Through introducing different amounts of excess S/Se, the ratio between CuInS2 and CuInSe2, as well as the morphology of the resulted CuIn(S,Se)2 film can be controlled. Optimized devices exhibit a power conversion efficiency of 3.8% with a CISS absorber layer of only around 300 nm thickness, which is comparable to N2H4‐based devices of similar thickness.  相似文献   

2.
3.
A novel molecular‐ink deposition route based on thiourea and N,N‐dimethylformamide (DMF) that results in a certified solar cell efficiency world record for non‐vacuum deposited CuIn(S,Se)2 (CIS) absorbers and non‐vacuum deposited absorbers with a bandgap of 1.0 eV, is presented. It is found that by substituting the widely employed solvent dimethyl sulfoxide with DMF, the coordination chemistry of InCl3 could be altered, dramatically improving ink stability, enabling up to tenfold increased concentrations, omitting the necessity for elevated ink temperatures, and radically accelerating the deposition process. Furthermore, it is shown that by introducing compositionally graded precursor films, film porosity, compositional gradients, and the surface roughness of the absorbers are effectively reduced and device conversion efficiencies are increased up to 13.8% (13.1% certified, active area). The reduced roughness is also seen as crucial to realize monolithically interconnected CIS‐perovskite tandem devices, where semitransparent MAPbI3 devices are directly deposited on the CIS bottom cell. Confirming the feasibility of this approach, monolithic devices with near perfect voltage addition between subcells of up to 1.40 V are presented.  相似文献   

4.
5.
Sb2Se3, a V2‐VI3 compound semiconductor, has attracted extensive research attention in photovoltaics due to its non‐toxicity, low cost and earth‐abundant constituents. Herein, a combinatorial approach to optimize the performance of TiO2/Sb2Se3 thin film photovoltaics is employed. By simultaneously conducting a series of experiments in parallel rather than one after another, combinatorial strategy increases experimental throughput and reduces personnel costs. Key parameters such as TiO2 thickness, post‐annealing temperature and Sb2Se3 thickness are identified as 65 nm, 450 °C and 850 nm through the combinatorial approach. Finally, in combination with (NH4)2S back surface cleaning, TiO2/Sb2Se3 solar cells with 5.6% efficiency and decent stability are obtained, showcasing the power of high‐throughput strategy for accelerating the optimization of Sb2Se3 photovoltaics.  相似文献   

6.
Organic–inorganic hybrid perovskite solar cells (PVSCs) have become the front‐running photovoltaic technology nowadays and are expected to profoundly impact society in the near future. However, their practical applications are currently hampered by the challenges of realizing high performance and long‐term stability simultaneously. Herein, the development of inverted PVSCs is reported based on low temperature solution‐processed CuCrO2 nanocrystals as a hole‐transporting layer (HTL), to replace the extensively studied NiOx counterpart due to its suitable electronic structure and charge carrier transporting properties. A ≈45 nm thick compact CuCrO2 layer is incorporated into an inverted planar configuration of indium tin oxides (ITO)/c‐CuCrO2/perovskite/[6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM)/bathocuproine (BCP)/Ag, to result in the high steady‐state power conversion efficiency of 19.0% versus 17.1% for the typical low temperature solution‐processed NiOx‐based devices. More importantly, the optimized CuCrO2‐based device exhibits a much enhanced photostability than the reference device due to the greater UV light‐harvesting of the CuCrO2 layer, which can efficiently prevent the perovskite film from intense UV light exposure to avoid associated degradation. The results demonstrate the promising potential of CuCrO2 nanocrystals as an efficient HTL for realizing high‐performance and photostable inverted PVSCs.  相似文献   

7.
A facile and low‐temperature (125 °C) solution‐processed Al‐doped ZnO (AZO) buffer layer functioning very effectively as electron accepting/hole blocking layer for a wide range of polymer:fullerene bulk heterojunction systems, yielding power conversion efficiency in excess of 10% (8%) on glass (plastic) substrates is described. The ammonia‐treatment of the aqueous AZO nanoparticle solution produces compact, crystalline, and smooth thin films, which retain the aluminum doping, and eliminates/reduces the native defects by nitrogen incorporation, making them good electron transporters and energetically matched with the fullerene acceptor. It is demonstrated that highly efficient solar cells can be achieved without the need for additional surface chemical modifications of the buffer layer, which is a common requirement for many metal oxide buffer layers to yield efficient solar cells. Also highly efficient solar cells are achieved with thick AZO films (>50 nm), highlighting the suitability of this material for roll‐to‐roll coating. Preliminary results on the applicability of AZO as electron injection layer in F8BT‐based polymer light emitting diode are also presented.  相似文献   

8.
Photovoltaic tandem technology has the potential to boost the power conversion efficiency of organic photovoltaic devices. Here, a reliable and efficient fully solution‐processed intermediate layer (IML) consisting of ZnO and neutralized poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is demonstrated for series‐connected multi‐junction organic solar cells (OSCs). Drying at 80 °C in air is sufficient for this solution‐processed IML to obtain excellent functionality and reliability, which allow the use of most of high performance donor materials in the tandem structure. An open circuit voltage (Voc) of 0.56 V is obtained for single‐junction OSCs based on a low band‐gap polymer, while multi‐junction OSCs based on the same absorber material deliver promising fill factor values along with fully additive Voc as the number of junctions increase. Optical and electrical simulations, which are reliable and promising guidelines for the design and investigation of multi‐junction OSCs, are discussed. The outcome of optical and electrical simulations is in excellent agreement with the experimental data, indicating the outstanding efficiency and functionality of this solution‐processed IML. The demonstration of this efficient, solution‐processed IML represents a convenient way for facilitating fabrication of multi‐junction OSCs to achieve high power conversion efficiency.  相似文献   

9.
10.
Semitransparent perovskite solar cells (st‐PSCs) have received remarkable interest in recent years because of their great potential in applications for solar window, tandem solar cells, and flexible photovoltaics. However, all reported st‐PSCs require expensive transparent conducting oxides (TCOs) or metal‐based thin films made by vacuum deposition, which is not cost effective for large‐scale fabrication: the cost of TCOs is estimated to occupy ≈75% of the manufacturing cost of PSCs. To address this critical challenge, this study reports a low‐temperature and vacuum‐free strategy for the fabrication of highly efficient TCO‐free st‐PSCs. The TCO‐free st‐PSC on glass exhibits 13.9% power conversion efficiency (PCE), and the four‐terminal tandem cell made with the st‐PSC top cell and c‐Si bottom cell shows an overall PCE of 19.2%. Due to the low processing temperature, the fabrication of flexible st‐PSCs is demonstrated on polyethylene terephthalate and polyimide, which show excellent stability under repeated bending or even crumbing.  相似文献   

11.
12.
The hydrazine‐based deposition of Cu(In,Ga)(S,Se)2 (CIGS) thin films has attracted considerable attention in recent years due to its potential for the high‐throughput production of photovoltaic devices based on this absorber material. This article provides an introduction as well as presenting a complete picture of the current status of hydrazine‐based CIGS solar‐cell fabrication, including the three major steps of this deposition process: dissolution of the precursor materials in hydrazine, deposition of a film from the resulting precursor solution, and the completion and characterization of a photovoltaic device following absorber deposition. Recent discoveries are then discussed, regarding the dissolution chemistry of the relevant precursor complexes in hydrazine, which together represent the true foundation of this processing method. Recent studies on CIGS film formation are then summarized, including the control and analysis of the crystalline phase, electronic bandgap, and film morphology. Finally, the latest progress in high‐performance device fabrication is highlighted, with a focus on optoelectronic characterization including current–voltage, junction capacitance, and minority carrier lifetime measurements. Finally, a discussion and future outlook is provided.  相似文献   

13.
Polymer solar cells (PSCs) are fabricated without solvent additives using a low‐bandgap polymer, PBDTTT‐C‐T, as the donor and [6,6]‐phenyl‐C61‐butyric‐acid‐methyl‐ester (PC61BM) as the acceptor. Donor‐acceptor blend and layer‐by‐layer (LL) solution process are used to form active layers. Relative to the blend devices, the LL devices exhibit stronger absorption, better vertical phase separation, higher hole and electron mobilities, and better charge extraction at correct electrodes. As a result, after thermal annealing the LL devices exhibit an average power conversion efficiency (PCE) of 6.86%, which is much higher than that of the blend devices (4.31%). The best PCE of the LL devices is 7.13%, which is the highest reported for LL processed PSCs and among the highest reported for PC61BM‐based single‐junction PSCs.  相似文献   

14.
The development of solution‐processable routes to prepare efficient photoelectrodes for water splitting is highly desirable to reduce manufacturing costs. Recently, sulfide chalcopyrites (Cu(In,Ga)S2) have attracted attention as photocathodes for hydrogen evolution owing to their outstanding optoelectronic properties and their band gap—wider than their selenide counterparts—which can potentially increase the attainable photovoltage. A straightforward and all‐solution‐processable approach for the fabrication of highly efficient photocathodes based on Cu(In,Ga)S2 is reported for the first time. It is demonstrated that semiconductor nanocrystals can be successfully employed as building blocks to prepare phase‐pure microcrystalline thin films by incorporating different additives (Sb, Bi, Mg) that promote the coalescence of the nanocrystals during annealing. Importantly, the grain size is directly correlated to improved charge transport for Sb and Bi additives, but it is shown that secondary effects can be detrimental to performance even with large grains (for Mg). For optimized electrodes, the sequential deposition of thin layers of n‐type CdS and TiO2 by solution‐based methods, and platinum as an electrocatalyst, leads to stable photocurrents saturating at 8.0 mA cm–2 and onsetting at ≈0.6 V versus RHE under AM 1.5G illumination for CuInS2 films. Electrodes prepared by our method rival the state‐of‐the‐art performance for these materials.  相似文献   

15.
In this communication, novel and simplified structure Cu(In,Ga)Se2 (CIGS) solar cells, which nominally consist of only a CIGS photoabsorber layer sandwiched between back and front contact layers but yet demonstrate high photovoltaic efficiencies, are reported. To realize this accomplishment, Si‐doped CIGS films grown by the three‐stage coevaporation method, B‐doped ZnO transparent conductive oxide front contact layers deposited by chemical vapor deposition, and heat–light soaking treatments are used. Si‐doping of CIGS films is found to modify the film surfaces and grain boundary properties and also affect the alkali metal distribution profiles in CIGS films. These effects are expected to contribute to improvements in buffer‐free CIGS device performance. Heat–light soaking treatments, which are occasionally performed to improve conventional buffer‐based CIGS device performance, are found to be also effective in enhancing buffer‐free CIGS photovoltaic efficiencies. This result suggests that the mechanism behind the beneficial effects of heat–light soaking treatments originates from CIGS bulk issues and is independent of the buffer materials. Consequently, over 16.5% efficiencies, including an independently certified value, are demonstrated from completely buffer‐free CIGS photovoltaic devices.  相似文献   

16.
The understanding and control of nanostructures with regard to transport and recombination mechanisms is of key importance in the optimization of the power conversion efficiency (PCE) of solar cells based on inorganic nanocrystals. Here, the transport properties of solution‐processed solar cells are investigated using photo‐CELIV (photogenerated charge carrier extraction by linearly increasing voltage) and transient photovoltage techniques; the solar cells are prepared by an in‐situ formation of CuInS2 nanocrystals (CIS NCs) at the low temperature of 270 °C. Structural and morphological analyses reveal the presence of a metastable CuIn5S8 phase and a disordered morphology in the CuInS2 nanocrytalline films consisting of polycrystalline grains at the nanoscale range. Consistent with the disordered morphology of the CIS NC thin films, the CIS NC devices are characterized by a low carrier mobility. The carrier density dynamic indicates that the recombination kinetics in these devices follows the dispersive bimolecular recombination model and does not fully behave in a diffusion‐controlled manner, as expected by Langevin‐type recombination. The mobility–lifetime product of the charge carriers properly explains the performance of the thin (200 nm) CIS NC solar cell with a high fill‐factor of 64% and a PCE of over 3.5%.  相似文献   

17.
18.
19.
By application of thermal annealing and UV ozone simultaneously, a solution‐processed NiOx film can achieve a work function of approximately –5.1 eV at a temperature below 150 °C, which allows the processing of NiOx that is compatible with fabrication of polymer solar cells (PSCs) on plastic substrates. The low processing temperature, which is greatly reduced from 250–400 °C to 150 °C, is attributed to the high concentration of NiOOH species on the film surface. This concentration will result in a large surface dipole and lead to increased work function. The pretreated NiOx is demonstrated to be an efficient buffer layer in PSCs based on polymers with different highest occupied molecular orbital energy levels. Compared with conventional poly(3,4‐ethylenedioxy‐thiophene):poly(styrenesulfonate)‐buffered PSCs, the NiOx‐buffered PSCs achieve similar or improved device performance as well as enhanced device stability.  相似文献   

20.
Silver nanowire (AgNW)‐based transparent electrodes prepared via an all‐solution‐process are proposed as bottom electrodes in flexible perovskite solar cells (PVSCs). To enhance the chemical stability of AgNWs, a pinhole‐free amorphous aluminum doped zinc oxide (a‐AZO) protection layer is deposited on the AgNW network. Compared to its crystalline counterpart (c‐AZO), a‐AZO substantially improves the chemical stability of the AgNW network. For the first time, it is observed that inadequately protected AgNWs can evanesce via diffusion, whereas a‐AZO secures the integrity of AgNWs. When an optimally thick a‐AZO layer is used, the a‐AZO/AgNW/AZO composite electrode exhibits a transmittance of 88.6% at 550 nm and a sheet resistance of 11.86 Ω sq?1, which is comparable to that of commercial fluorine doped tin oxide. The PVSCs fabricated with a configuration of Au/spiro‐OMeTAD/CH3NH3PbI3/ZnO/AZO/AgNW/AZO on rigid and flexible substrates can achieve power conversion efficiencies (PCEs) of 13.93% and 11.23%, respectively. The PVSC with the a‐AZO/AgNW/AZO composite electrode retains 94% of its initial PCE after 400 bending iterations with a bending radius of 12.5 mm. The results clearly demonstrate the potential of AgNWs as bottom electrodes in flexible PVSCs, which can facilitate the commercialization and large‐scale deployment of PVSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号