首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Molecular models of amylopectin were created and investigated by computer simulation. First, single and double helices of various lengths were constructed. The 1 → 6 branching in double and single helices of amylopectin was studied. Subunits of single helices, double helices, and branch points were used as building blocks of larger systems. The possible makeup of amylopectin unit clusters was investigated via a series of models, including single–single, double–single, and double–double helix systems. The lengths of the single helix section that linked two branch points (internal chains) was systematically varied between values of 0–10 glucose residues. It was found that certain internal chain lengths lead to parallel double helices. Thus, it was postulated that the length of internal chains may determine the degree of local crystallinity. Furthermore, it was noted that some of the low‐energy arrangement of double helices could be superimposed on either the two adjacent and nonadjacent double helices of crystalline A and B starch polymorphs. In other cases, the distance between the double helices is so large that it may in fact be a model for branching between two amylopectin crystals or unit clusters. Results obtained through this work were corroborated, where possible, with information available from crystallographic, branching, and enzymatic studies. © 1999 John Wiley & Sons, Inc. Biopoly 50: 381–390, 1999  相似文献   

3.
The analogy between starch and a chiral side-chain polymeric liquid crystal is examined in relation to the processes involved during gelatinisation. There are three important parameters for characterisation of the molecular phase behaviour of the amylopectin: the lamellar order parameter (psi), the orientational order parameter of the amylopectin double helices (phi), and the helicity of the sample (h, the helix/coil ratio, a measure of the helix-coil transition of the double helices). The coupling between the double helices and the backbone through the flexible spacers is affected dramatically by the water content and it is this factor which dictates the particular phase adopted by the amylopectin inside the starch granule as a function of temperature. SAXS, WAXS and 13C CP/MAS NMR are used to examine these phenomena in excess water. Furthermore, previous experimental evidence pertaining to the limiting water case is reviewed with respect to this new theoretical framework.  相似文献   

4.
The influence of H+ on the secondary structure of DNA and on its B-to-A transition has been studied by employing X-ray diffraction and infrared spectroscopy. Helical parameters for DNA molecules with different degrees of protonation were determined. It was shown that H+ binding stabilizes the B-form of DNA in fibers over a wide range of water and inorganic salt content. Only 0.03 H+ bound per nucleotide is sufficient to prevent the B-to-A transition caused by decreasing relative humidity in DNA fibers containing 4% NaCl. The effectiveness of B-form stabilization by H+ is explained by changes in DNA-solvent molecule interactions, especially in the major groove of double helices.  相似文献   

5.
The order-disorder transitions of the double helices formed by the ribo-oligoadenylic acids rA8 and rA10 at pH 4.2 have been investigated in a series of organic/aqueous mixed solvents. Melting temperature data, Tm, derived from the uv melting curves were used to define the stability of the double helices in the different mixed solvent systems. It was found that the extent of helix destabilization depended in a predictable fashion on both the quantity and the nature of the added organic solvents. For the C1 through C4 aliphatic alcohols, the longer, less branched alcohols proved to be more effective destabilizers of the helical structure. Significantly, the amides proved to be more powerful destabilizers than the alcohols. Analysis of the melting curves provided the Van't Hoff enthalpy change for each transition. The data are interpreted in terms of the role of solvent in the stabilization of ribonucleic acid structure.  相似文献   

6.
Dietmar Prschke 《Biopolymers》1971,10(10):1989-2013
The properties of oligonucleotide helices of adeuylic- and uridylic acid oligomers have been investigated by measurements of hypo-and hyperchromieity. High ionic strengths favor the formation of triple helices. Thus, the double helix-coil transition can be studied (without interference by triple helices) only at low ionic-strength. A “phase diagram” is given representing the Tm-values of the various transitions at different ionic strengths for the system A(pA)17 + U(pU)17. Oligonucleolides of chain lengths <8 always form both double and triple helices at the nucleotide concentrations required for base pairing. For this reason the double helix-coil transition without coupling of the triple helix equilibrium can only be measured for chain lengths higher than 7. Melting curves corresponding to this transition have been determined for chain lengths 8, 9, 10, 11, 14 and 18 at different concentrations. An increase in nucleotide concentration leads to an increase in melting temperature. The shorter the chain length the lower the Tm-value and the broader the helix-coil transition. The experimental transition curves have been analysed according to a staggering zipper model with consideration of the stacking of the adeuylic acid single strands and the electrostatic repulsion of tlip phosphate charges on opposite strands. The temperature dependence of the nucleation parameter has been accounted for by a slacking factor x. The stacking factor expresses the magnitude of the stacking enthalpy. By curve fitting xwas computed to be 0.7, corresponding to a stacking enthalpy of about S kcal/mole. The model described allows the reproduction of the experimental transition curves with relatively high accuracy. In an appendix the thermodynamic parameters of the stacking equilibrium of poly A and of the helix-coil equilibria of poly A + poly U at neutral pH are calculated (ΔHA = ?7.9 kcal/mole for the poly A stacking and ΔH12 = ?10.9 kcal/mole for the formation of the double helix from the randomly coiled single strands). A formula for the configurational entropy of polymers derived by Flory on the basis of a liquid lattice model is adapted to calculate the stacking entropies of adenylic oligomers.  相似文献   

7.
To the 5′-end of the palindromic oligonucleotide sequence d(CGCGAATTCGCG) was appended an artificial 2,2′-bipyridine-based nucleoside, resulting in the formation of regular DNA double helices that contain bidentate ligands as single-nucleotide overhangs. Due to their limited size, these duplexes are too small to be resolved by atomic force microscopy (AFM). Therefore, only a homogeneous surface can be detected after their deposition on mica. In the presence of the octahedrally coordinating transition metal ion iron(II), an entirely different surface topology is observed, however. On mica support, two types of aggregates are formed, namely a monolayer of interconnected DNA double helices and a three-dimensional disc-like structure that with time rearranges into fibers with lengths of several micrometers. On highly ordered pyrolytic graphite (HOPG), two-dimensional structures resembling a labyrinth are observed in the presence of iron(II). These observations can be explained by the formation of artificial three-way junctions between DNA double helices, mediated by octahedral iron bipyridine complexes. Hence, the incorporation of artificial ligand-containing nucleosides into oligonucleotides opens up the way to DNA-based nanostructures that assemble only in the presence of suitable metal ions.  相似文献   

8.
GrpE is the nucleotide exchange factor for the Escherichia coli molecular chaperone DnaK, the bacterial homologue of Hsp70. In the temperature range of the bacterial heat shock response, the long helices of GrpE undergo a helix-to-coil transition, and GrpE exhibits non-Arrhenius behavior with respect to its nucleotide exchange function. It is hypothesized that GrpE acts as a thermosensor and that unwinding of the long helices of E. coli GrpE reduces its activity as a nucleotide exchange factor. In turn, it was proposed that temperature-dependent down-regulation of the activity of GrpE may increase the time in which DnaK binds its substrates at higher temperatures. A combination of thermodynamic and hydrodynamic techniques, in concert with the luciferase refolding assay, were used to characterize a molecular mechanism in which the long helices of GrpE are thermodynamically linked with the beta-domains via an intramolecular contact between Phe86 and Arg183. These "thermosensing" long helices were found to be necessary for full activity as a nucleotide exchange factor in the luciferase refolding assay. Point mutations in the beta-domains and in the long helices of GrpE destabilized the beta-domains. Engineered disulfide bonds in the long helices alternately stabilized the long helices and the four-helix bundle. This allowed the previously reported 75 degrees C thermal transition seen in the excess heat capacity function as monitored by differential scanning calorimetry to be further characterized. The observed thermal transition represents the unfolding of the four-helix bundle and the beta-domains. The thermal transitions for these two domains are superimposed but are not thermodynamically linked.  相似文献   

9.
The effects of hydrogen ions binding to DNA on its secondary structure and B to A transition were studied by methods of X-ray diffraction and infrared spectroscopy. Helical parameters of DNA molecules with different degrees of protonation were determined. It was shown that H+-ions binding stabilize the B form of DNA in fibers in the wide range of water and inorganic salt content. Only 0.03 H+-ions bound to each nucleotide are sufficient to prevent B to A transition caused by a relative humidity decrease in DNA fibers, containing 4% of NaCl. The effective stabilization of the DNA B form by H+-ions binding is explained by modifications in DNA - solvent molecules interactions, especially in the major groove of double helices.  相似文献   

10.
Conformational reorganization of the amino-terminal four-helix bundle (22-kDa fragment) of apolipoprotein E (apoE) in binding to the phospholipid dimyristoylphosphatidylcholine (DMPC) to form discoidal particles was investigated by introducing single, double, and triple interhelical disulfide bonds to restrict the opening of the bundle. Interaction of apoE with DMPC was assessed by vesicle disruption, turbidimetric clearing, and gel filtration assays. The results indicate that the formation of apoE.DMPC discoidal particles occurs in a series of steps. A triple disulfide mutant, in which all four helices were tethered, did not form complexes but could release encapsulated 5-(6)-carboxylfluorescein from DMPC vesicles, indicating that the initial interaction does not involve major reorganization of the helical bundle. Initial interaction is followed by the opening of the four-helix bundle to expose the hydrophobic faces of the amphipathic helices. In this step, helices 1 and 2 and helices 3 and 4 preferentially remain paired, since these disulfide-linked mutants bound to DMPC in a manner similar to that of the 22-kDa fragment of apoE4. In contrast, mutants in which helices 2 and 3 and/or helices 1 and 4 paired bound poorly to DMPC. However, all single and double helical pairings resulted in the formation of larger discs than were formed by the 22-kDa fragment, indicating that further reorganization of the helices occurs following the initial opening of the four-helix bundle in which the protein assumes its final lipid-bound conformation. In support of this rearrangement, reducing the disulfide bonds converted the large disulfide mutant discs to normal size.  相似文献   

11.
The pH-dependences of proton buffer capacity of poly(C) were computed on the basis of the literature data. In these curves there were observed four peaks: two narrow and two wide ones. The first narrow peak reflects the process of cooperative formation of double helices, which is induced by protonation of the N3 atom of nucleotide bases. The first wide peak is assigned to noncooperative process of poly(C) double helices protonation at the N3 nitrogen atom. It is proposed that the second wide peak corresponds to noncooperative protonation of the neutral cytosine bases at the oxygen atom. This reaction causes cooperative dissociation of the poly(C) double helices. The second narrow peak reflects the dissociation process.  相似文献   

12.
The hexapositive complex cation ruthenium red very effectively stabilizes DNA and RNA double helices against thermal denaturation. In the presence of nucleic acid helices, this symmetric cation acquires an extrinsic CD spectrum near the wavelength of the dye's maximum absorbance. Competition experiments with single-stranded polyd(T) show this induced CD to be the result of selective binding to helical sites. The preferential affinity of ruthenium red for double helical binding sites is so great that it brings about biphasic absorbance- temperature profiles of polyd(A-T) at low [cation]: [polynucleotide phosphate]. The visible CD signal and fraction of helix melting at the upper transition increases with ruthenium red concentration until approximate charge neutrality is reached. These interactions, which have been studied in detail with the poly(U-U) helix as well as polyd(A-T), are likely largely electrostatic, since sufficient [NaCl] eliminates the bipliasic melting of polyd(A-T), renders the ultraviolet absorbance of poly (U) insensitive to ruthenium red, and abolishes the induced CD effects. The bipliasic melting of polyd(A-T) at intermediate [dye] is attributed to saturation of remaining double helical segments by cation migration from newly melted regions- Furthermore, virtually no change was observed in the induced CD upon melting through the first transition, whereas the effect is destroyed upon inciting through the second transition. A quantitative treatment of the data is used to obtain binding site size and association constant for the complex. The induced effect may prove useful in the exploration of exposed nucleic acid helical structure in such complex particles as nucleosomes or ribosomes.  相似文献   

13.
κ-Carrageenan gels prepared with various carrageenan concentrations in pure water were completely dried and then swelled in pure water. Photon transmission measurements were performed using a UV-Vis (UVV) spectrometer during the swelling of κ-carrageenan gels. Transmitted photon intensity, Itr, increased exponentially as swelling time is increased for all gel samples. The behaviour of Itr was interpreted by Monte-Carlo Simulation. The increase in Itr was quantified by employing Li-Tanaka equation, from which time constants τ1 and collective diffusion coefficients, Do were determined for the gels in various carrageenan concentrations. Gravimetric and volumetric measurements were also carried out during swelling of gels. It is observed that gel with high carrageenan content possess more double helices and more lattice dislocations and swell slower than gels with low carrageenan content which may contain less double helices and less lattice imperfections. Increase in Itr was interpreted by the homogeneous distribution of double helices in the carrageenan gel system.  相似文献   

14.
Changes in gellan polymer morphology during the sol-gel transition were directly visualized by transmission electron microscopy and a model incorporating these changes and existing physical data is proposed. Our observations suggest that the most thermodynamically stable conformations of gellan polymers in solution, in the absence of added cations, are the double helix and double-helical duplexes. We have demonstrated two forms of lateral aggregation of gellan helices in the presence of Ca(2+) and K(+) ions. One type forms junction zones that lead to network formation and gelation, while the second type leads to the formation of isolated fibers of aggregated helices and inhibition of gelation. The proposed model of gellan gelation is based on these observations where thermoreversibility, gel strength, and endothermic transitions of gellan gels can be explained.  相似文献   

15.
Structural features of double helices formed by polypeptides with alternating L- and D-amino acid residues were analysed. It was found that the map of short distances (less than 4 A) between protons of the two backbones is unique for each double helix type and even its fragment implies unambiguously parameters of the helix (i.e. parallel or antiparallel, handedness, pitch of helix, relative shift of polypeptide chains). By analysis of two-dimensional 1H-NMR spectra (COSY, RELSY, HOHAHA, NOESY), proton resonances of [Val1]gramicidin A (GA) in the ethanol solution were assigned. The results obtained show that the solution contains five stable conformations of GA in comparable concentrations. Monomer of GA is in a random coil conformation. Specific maps of short interproton distances for the other four species (1-4) were obtained by means of two dimensional nuclear Overhauser effect spectroscopy. The maps as well as spin-spin couplings of the H-NC alpha-H protons and solvent accessibilities of the individual amide groups correspond to four types of double helices pi pi LD 5,6 with 5.6 residues per turn. The double helices are related to the Veatch species 1-4 of GA. Species 1 and 2 are left-handed parallel double helices increase increase pi pi LD 5,6 with different relative shift of polypeptide chains. Species 3 is a left-handed antiparallel double helix increase decrease pi pi LD 5,6 and species 4 is a right-handed parallel double helix increase increase LD 5,6. In the dimers helices are fixed by the maximum number (28) of interbackbone hydrogen bonds NH...O = C possible for these structures. Species 1, 3 and 4 have C2 symmetry axes. Relationship between gramicidin A spatial structures induced by various media is discussed.  相似文献   

16.
Coil-to-double helix (c-h) and double helix-to-dimer (h-d) phase transitions of iota-carrageenan in CaCl(2) solution upon cooling were studied using photon transmission technique. Photon transmission intensity, I(tr) was monitored against temperature to determine the (c-h) and (h-d) transition temperatures (T(ch) and T(hd)) and activation energies (DeltaE(ch) and DeltaE(hd)). An extra dimer-to-dimer (d-d) transition was also observed during cooling at low temperature region. However, upon heating dimers disappear to double helices by making dimer-to-double helix (d-h) transition. Further heating resulted double helix-to-coil (h-c) transition at high temperature region. T(dh) and T(ch) temperatures and DeltaE(dh) and DeltaE(hc) activation energies were also determined. It was observed that T(hc) and T(ch) temperatures and DeltaE(dh) and DeltaE(hd) activation energies do not effected by carrageenan content. However, T(hd), T(dh) and T(dd) temperatures and DeltaE(ch) and DeltaE(hc) activation energies were found to be strongly correlated to the carrageenan content in the system.  相似文献   

17.
The X-ray crystallographic coordinate data of a 56 DNA double helical oligomers were examined, using the molecular modeling program STR3DI32.EXE, in order to ascertain the aromatic statuses of the Watson-Crick hydrogen bonded base pairs. Several oligomers that were intercalated with anthraquinoid molecules (like the daunomycin and nogalamycin aglycones) were also included in the study in order to evaluate the aromatic statuses of the intercalated entities. This study revealed that the base pairs were aromatic in their Watson-Crick hydrogen bonded double helices, whereas they are known to be non-aromatic in situations in which they are not involved in Watson-Crick hydrogen bonding. The resonance energy gained by the aromatization of these bases, while engaged in Watson-Crick hydrogen bonding, must contribute to the stability of these DNA double helices. The anthraquinoid intercalates were revealed to be in their radical anion form, having received an electron from one of the bases between which these intercalates were sited. These anthraquinoid intercalates are therefore "held" in position by ionic - charge transfer - interactions, as well as hydrogen bonding due to their glycosidic entities. These observations are also relevant to investigations of the electrical conductivity of DNA double helices that are similarly intercalated.  相似文献   

18.
The mode of protamine binding to DNA double helices has been analyzed for the example of clupein Z from herring and DNA samples from bacteriophages lambda and PM2 by measurements of light-scattering intensities, ultracentrifugation and kinetics. The light-scattering intensity of DNA increases co-operatively at a threshold clupein concentration suggesting co-operative binding of clupein to double helices. These data are first analyzed in terms of a model with a transition at a threshold degree of binding. The parameters resulting from this analysis appear to be reasonable, but are shown to be in contrast with data on the absolute degree of clupein binding to DNA obtained by centrifugation experiments. An analysis of the kinetics associated with clupein binding to DNA by measurements of the time-dependence of light-scattering intensities in the time range of seconds demonstrates directly that clupein-induced intermolecular interactions of DNA molecules are essential. The rate constants of DNA association increase co-operatively at threshold clupein concentrations, which correspond to those observed in the equilibrium titrations. Above the threshold, the rate constants arrive at a level that is almost constant, but shows some decrease with increasing clupein concentrations. These results are described by a model with a monomer and a dimer state of DNA, which bind ligands with different affinities according to an excluded-site binding scheme. When the ligand binding constant is larger for the dimer than for the monomer state, as should be expected, binding of ligands drives the DNA from the monomer to the dimer state, even if the dimerization equilibrium in the absence of ligands is far in favor of the monomer. The transition from the monomer to the dimer state proves to be strongly co-operative. When the ligand concentration is increased to higher values, the dimers may be converted back to monomers due to an increased extent of ligand binding to the monomer state. The model is consistent with the available experimental data. The analysis of the data by the model indicates the existence of a reaction unit much below the DNA chain length, corresponding to about 80 nucleotide residues. The present model describes ligand driven intermolecular association; an analogous model is applicable to ligand driven intramolecular association. In summary, the co-operativity of clupein binding to DNA double helices is not due to nearest neighbor interactions, but results from thermodynamic coupling of clupein binding with clupein-induced DNA association.  相似文献   

19.
Contributed equally to this work. To further understand the origin of the double thermal transitions of collagen in acidic solution induced by heating, the denaturation of acidic soluble collagen was investigated by micro-differential scanning calorimeter (micro-DSC), circular dichroism (CD), dynamic laser light scattering (DLLS), transmission electron microscopy (TEM), and two-dimensional (2D) synchronous fluorescence spectrum. Micro-DSC experiments revealed that the collagen exhibited double thermal transitions, which were located within 31–37?°C (minor thermal transition, T s?~?33?°C) and 37–55?°C (major thermal transition, T m?~?40?°C), respectively. The CD spectra suggested that the thermal denaturation of collagen resulted in transition from polyproline II type structure to unordered structure. The DLLS results showed that there were mainly two kinds of collagen fibrillar aggregates with different sizes in acidic solution and the larger fibrillar aggregates (T p2?=?40?°C) had better heat resistance than the smaller one (T p1?=?33?°C). TEM revealed that the depolymerization of collagen fibrils occurred and the periodic cross-striations of collagen gradually disappeared with increasing temperature. The 2D fluorescence correlation spectra were also applied to investigate the thermal responses of tyrosine and phenylalanine residues at the molecular level. Finally, we could draw the conclusion that (1) the minor thermal transition was mainly due to the defibrillation of the smaller collagen fibrillar aggregates and the unfolding of a little part of triple helices; (2) the major thermal transition primarily arose from the defibrillation of the larger collagen fibrillar aggregates and the complete denaturation of the majority part of triple helices.  相似文献   

20.
The assembly of double stranded DNA helices with divalent manganese ion is favored by increasing temperature. Direct force measurements, obtained from the osmotic stress technique coupled with x-ray diffraction, show that the force characteristics of spontaneously precipitated Mn(2+)-DNA closely resemble those observed previously by us for other counterion condensed DNA assemblies. At temperatures below the critical one for spontaneous assembly, we have quantitated the changes in entropy and manganese ion binding associated with the transition from repulsive to attractive interactions between helices mediated by osmotic stress. The release of structured water surrounding the DNA helix to the bulk solution is the most probable source of increased entropy after assembly. Increasing the water entropy of the bulk solution by changing the manganese salt anion from CI- to ClO4- predictably and quantitatively increases the transition entropy. This is further evidence for the dominating role of water in the close interaction of polar surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号