首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because of pelagic-larval dispersal, coral-reef fishes are distributed widely with minimal genetic differentiation between populations. Amphiprion akallopisos, a clownfish that uses sound production to defend its anemone territory, has a wide but disjunct distribution in the Indian Ocean. We compared sounds produced by these fishes from populations in Madagascar and Indonesia, a distance of 6500 km. Differentiation of agonistic calls into distinct types indicates a complexity not previously recorded in fishes' acoustic communication. Moreover, various acoustic parameters, including peak frequency, pulse duration, number of peaks per pulse, differed between the two populations. The geographic comparison is the first to demonstrate 'dialects' in a marine fish species, and these differences in sound parameters suggest genetic divergence between these two populations. These results highlight the possible approach for investigating the role of sounds in fish behaviour in reproductive divergence and speciation.  相似文献   

2.
In the hornet nest of the species Vespa orientalis, there is transmission of information by acoustic means between the larvae and the adults. The rhythmic pattern of the sounds produced by the larvae was recorded and spectrally analyzed for rhythm frequencies by use of the Fast Fourier Transform. The frequency of the "larval activity duration till cessation" was 0.018 Hz whereas the interval between two successive sound productions ranged from 0 to 1.0 Hz. The possible significance of precise signaling by the larvae towards efficient communication in colonies of social insects is discussed.  相似文献   

3.
Most studies of fish sounds show that the sounds are species-specific, with unique spectral and timing characteristics. This raises the question as to whether these sounds can be used to understand phyletic relationships between species and which acoustic parameters are subject to variation between species. In the present study, 597 sounds (and 2540 pulses) related to signal jumps of four Dascyllus species ( Dascyllus aruanus , Dascyllus trimaculatus , Dascyllus albisella , and Dascyllus flavicaudus ) from different geographic regions (Madagascar, Moorea, Rangiroa, and Hawaii) were analysed. It was possible to discern species-specific sounds, but also variation in sounds between populations. Large variations in sound length were found between Dascyllus species, whereas differences in interpulse duration were found to be variable between populations. In the regions where species live in sympatry, it appears that they restrict the variability in their sounds. This could comprise evidence of adaptation with character displacement of sonic characteristics where different species co-occur. However, sonic characteristics still overlapped substantially between species, suggesting that females would need to sample more than one sound and potentially use other cues to discriminate between species.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 928–940.  相似文献   

4.
Activity patterns of Phyllophaga crinita (Burmeister), Phyllophaga congrua (LeConte), Phyllophaga crassissima (Blanchard), and Cyclocephala lurida (Bland) grubs were monitored with acoustic sensors in small pots of bluegrass, Poa arachnifera Torr, at varying and constant temperatures over multiple-day periods. Experienced listeners readily distinguished three types of sound with distinct differences in frequency and temporal patterns, intensities, and durations. Of approximately 3,000 sounds detected from P. crinita larvae, 7% were identifiable as snaps, with large amplitudes and short durations typically associated with root breakage or clipping activity. Approximately 60% were identifiable as rustles, suggestive of surfaces sliding or rubbing past each other during general movement activity. Another 2% of sounds contained patterns of repeated pulses suggestive of surfaces scraping across a pointed ridge. The remaining 31% had spectral or temporal patterns that fell outside the ranges of easily recognizable sound types. Because the behavioral significance of the different sound types has not yet been fully established, the classified and unclassified sounds were pooled together in analyses of the effects of species, temperature, weight, and time of day. Grubs of all four species produced detectable sounds at rates that increased with temperature [0.45 sounds/((min)(degrees C))] and larval weight [6.3 sounds/((min)(g))]. Mean sound rates were independent of species and time of day. At temperatures <9 degrees C, mean sound rates fell below the typical levels of background noise observed under field conditions. This reduced activity at low temperatures is likely to reduce the effectiveness of acoustic monitoring in the field in cold weather. The consistency of results obtained in these tests over multiple-day periods suggests that acoustic systems have potential as tools for nondestructive monitoring of the efficacy of insect management treatments as well as for biological and ecological studies.  相似文献   

5.
While acoustic communication has been described in adults of various fish species, our knowledge about the ontogeny of fish sound production is limited. In adults, sound signals are known to be involved during aggressive interactions. However, aggressive behaviour may appear early in the life of fishes due to the possible competition for food and space. If acoustic signals are used to send information to competitors, sounds are likely to play a role during interactions between juvenile fish as well. The apparition and evolution of sound production were monitored in a group of juveniles of the cichlid fish Metriaclima zebra from hatching to 4months of age. In addition, the link between vocalizations and agonistic behaviour was studied during dyadic interactions at three different ages. Sounds production appeared to be present early in the development of this fish and increased along with the number of aggressive behaviours. Recorded sounds consisted, in juveniles, in isolated pulses showing a decrease in frequency and duration as the fish grew. In adults, sounds became bursts of pulses but the transition from isolated to repetitive pulses was not observed. These results are compared to the existing literature on sound production ontogeny in fishes.  相似文献   

6.
We present a new sound type recorded from bottlenose dolphins, Tursiops truncatus , in eastern Australian waters: low-frequency, narrow-band (LFN) harmonic sounds (defined as less than 2 kHz). Most of these sounds were of frequencies less than 1 kHz and were recorded commonly from socializing dolphins. These sounds differ significantly from narrow-band whistles, which are higher in frequency and longer in duration. The absence of these sounds in most studies of the acoustic behavior of bottlenose dolphins may reflect geographic differences in repertoires or result from insufficient sampling. Alternatively, these sounds may have been ignored where the focus of research was on other sound types.  相似文献   

7.
Muscle contraction generates discrete sound bursts.   总被引:1,自引:0,他引:1       下载免费PDF全文
Isolated frog sartorius muscles were stimulated to shorten under lightly loaded conditions. A piezoelectric transducer was placed alongside the muscle to record sounds generated during contraction. Shortening was accompanied by the generation of a series of discrete sound bursts. The bursts were found to be moderately repeatable among successive contractions; 44% repeated from contraction to contraction. The duration of each sound burst was on the order of 400 mus, and the temperature dependence of the interval between successive bursts had a Q10 of approximately 2. Sound intensity was variable: average acoustic power ranged from 0.05-0.4 mW/g, or approximately 1% of the heat generated during contraction. The generation of discrete bursts of sound during contraction, rather than continuous sound, implies that contractile behavior may be discontinuous.  相似文献   

8.
Fish vocalisation is often a major component of underwater soundscapes. Therefore, interpretation of these soundscapes requires an understanding of the vocalisation characteristics of common soniferous fish species. This study of captive female bluefin gurnard, Chelidonichthys kumu, aims to formally characterise their vocalisation sounds and daily pattern of sound production. Four types of sound were produced and characterised, twice as many as previously reported in this species. These sounds fit two aural categories; grunt and growl, the mean peak frequencies for which ranged between 129 to 215 Hz. This species vocalized throughout the 24 hour period at an average rate of (18.5 ± 2.0 sounds fish-1 h-1) with an increase in vocalization rate at dawn and dusk. Competitive feeding did not elevate vocalisation as has been found in other gurnard species. Bluefin gurnard are common in coastal waters of New Zealand, Australia and Japan and, given their vocalization rate, are likely to be significant contributors to ambient underwater soundscape in these areas.  相似文献   

9.
A sequence of sounds may be heard as coming from a single source (called fusion or coherence) or from two or more sources (called fission or stream segregation). Each perceived source is called a 'stream'. When the differences between successive sounds are very large, fission nearly always occurs, whereas when the differences are very small, fusion nearly always occurs. When the differences are intermediate in size, the percept often 'flips' between one stream and multiple streams, a property called 'bistability'. The flips do not generally occur regularly in time. The tendency to hear two streams builds up over time, but can be partially or completely reset by a sudden change in the properties of the sequence or by switches in attention. Stream formation depends partly on the extent to which successive sounds excite different 'channels' in the peripheral auditory system. However, other factors can play a strong role; multiple streams may be heard when successive sounds are presented to the same ear and have essentially identical excitation patterns in the cochlea. Differences between successive sounds in temporal envelope, fundamental frequency, phase spectrum and lateralization can all induce a percept of multiple streams. Regularities in the temporal pattern of elements within a stream can help in stabilizing that stream.  相似文献   

10.
The swimming behaviour of coral‐reef fish larvae from 20 species of 10 different families was tested under natural and artificial sound conditions. Underwater sounds from reef habitats (barrier reef, fringing reef and mangrove) as well as a white noise were broadcasted in a choice chamber experiment. Sixteen of the 20 species tested significantly reacted to at least one of the habitat playback conditions, and a range of responses was observed: fishes were (1) attracted by a single sound but repelled by none (e.g. white‐banded triggerfish Rhinecanthus aculeatus was attracted by the barrier‐reef sound), (2) repelled by one or more sounds but attracted by none (e.g. bridled cardinalfish Pristiapogon fraenatus was repelled by the mangrove and the bay sounds), (3) attracted by all sounds (e.g. striated surgeonfish Ctenochaetus striatus), (4) attracted and repelled by several sounds (e.g. whitetail dascyllus Dascyllus aruanus was attracted by the barrier‐reef sound and repelled by the mangrove sound) and (5) not influenced by any sound (e.g. convict surgeonfish Acanthurus triostegus). Overall, these results highlight two settlement strategies: a direct selection of habitats using sound (45% of the species), or a by‐default selection by avoidance of certain sound habitats (35%). These results also clearly demonstrated the need to analyse the influence of sounds at the species‐specific level since congeneric and confamilial species can express different behaviours when exposed to the same sounds.  相似文献   

11.
Cetacean populations can adjust their sound repertoire depending on the environment they are in, their population structure and the activities they are performing. Our goal was to characterize and compare, qualitatively and quantitatively, the sound repertoire of Sotalia guianensis in two areas of south-eastern and southern Brazil. We expected to find similar sound repertoires between the two regions, as they are geographically close and are part of the same complex estuarine. Acoustical parameters of the whistles, burst pulses and clicks were recorded during both daytime and night-time hours. They were compared between areas through Chi-square and Mann–Whitney tests. The samples resulted in 3,630 recorded whistles, 631 burst pulses and 44 low-frequency narrow-band sounds, with echolocation clicks present in 50.98% of the total minutes analysed. The occurrence rate of all sounds and the acoustic parameters of the whistles and clicks differed between the two areas, so our initial hypothesis was rejected. We highlighted environmental differences, behaviour exhibited by animals, number of individuals and group size and low exchange of individuals between areas as possible explanations that might account for these results, based on our knowledge of the species and areas of study, as well as a substantial literature on the physical and biological characteristics of the sounds.  相似文献   

12.
The effects of anthropogenic sources of sound on fishes   总被引:1,自引:0,他引:1  
There is increasing concern about the effects of pile driving and other anthropogenic (human-generated) sound on fishes. Although there is a growing body of reports examining this issue, little of the work is found in the peer-reviewed literature. This review critically examines both the peer-reviewed and 'grey' literature, with the goal of determining what is known and not known about effects on fish. A companion piece provides an analysis of the available data and applies it to estimate noise exposure criteria for pile driving and other impulsive sounds. The critical literature review concludes that very little is known about effects of pile driving and other anthropogenic sounds on fishes, and that it is not yet possible to extrapolate from one experiment to other signal parameters of the same sound, to other types of sounds, to other effects, or to other species.  相似文献   

13.
Haddock, Melanogrammus aeglefinus, have been previously shown to produce sounds during mating. Several behavioural aspects of sound production of courting haddock were further investigated in relation to sex ratio. We assessed whether (i) single males or females generate sounds when isolated, (ii) sound is produced when one male is present with a female, (iii) sound production becomes altered with the introduction of an additional male, and (iv) sounds are produced independent of egg release. Data were collected from 30 March to 11 June 1999, during the spawning period using small outdoor tanks. Sounds generated by captive males during spawning were categorized as knocks, hums and an intermediate between these two types. Solitary males and females did not produce sounds. Sounds were produced when one male was present with a single female. The knocking call duration increased when a second male was introduced. Sounds produced by males occurred independent of the day of egg release.  相似文献   

14.
Several species of Carapidae are known to have symbiotic relationships with marine invertebrates. The two most common species in Moorea (French Polynesia), Carapus boraborensis and Carapus homei, undergo conspecific and heterospecific encounters in the same holothurian host during which they produce sounds. Another characteristic of these fish lies in their abilities to produce sounds. The objective of this study was dual: (1) to seek if there was a sexual difference in the sounds produced by C. boraborensis; (2) to seek if there was a difference in the sound emissions between heterospecific and conspecific encounters. In each trial, sounds were only recorded when one individual entered the sea cucumber that was already occupied. In encounters, sounds were structured in regular pulse emissions whose pulse lengths and periods allowed to significantly distinguish each species, as well as both sexes in C. boraborensis. In the latter species, results show for the first time that temporal features of the emitted sounds can have a functional importance in sex identification. In heterospecific encounters, sounds were reduced 68% of the time to a single pulse emission and there was a modification in the pulse length of each species: it shortens in C. homei and it lengthens in C. boraborensis. It highlights that both carapids are able to adapt their sounds to the facing species. Because a modification of the sound appears to be done at the first emission, it is supposed that recognition precedes the sound emission.  相似文献   

15.
Carapus boraborensis, C. homei and Encheliophis gracilis are three species of Carapidae that display the ability to penetrate and reside in the holothurian Bohadschia argus. This study describes both the particular morphology of the sound-producing structures and, for the first time, the sounds produced by each species. The study of the structures composing the sound-producing system seems to indicate that the action made by the primary sonic muscles (i.e. the pulling and releasing of the front of the swim bladder) might be responsible for the sound emissions of these three species by provoking a vibration of a thinner zone in front of the swim bladder (swimbladder fenestra). The sounds were only emitted and recorded when several individuals of the same species were inside the same sea cucumber. They were composed of serially repeated knocks and were heard as drum beats or drum rolls. Their specific differences were mainly defined as variations in the timing or grouping of the knocking sounds. The recordings of these sound productions demonstrate a vocal ability for the three species, linked with the presence of particular organs associated with sound production. Moreover, the ecological significance of the sounds and of the sound apparatus system is discussed.  相似文献   

16.
To investigate the molecular phylogeny and evolution of the family Canidae, nucleotide sequences of the zinc-finger-protein gene on the Y chromosome (ZFY, 924-1146 bp) and its homologous gene on the X chromosome (ZFX, 834-839 bp) for twelve canid species were determined. The phylogenetic relationships among species reconstructed by the paternal ZFY sequences closely agreed with those by mtDNA and autosomal DNA trees in previous reports, and strongly supported the phylogenetic affinity between the wolf-like canids clade and the South American canids clade. However, the branching order of some species differed between phylogenies of ZFY and ZFX genes: Cuon alpinus and Canis mesomelas were included in the wolf-like canid clades in the ZFY tree, whereas both species were clustered in a group of Chrysocyon brachyurus and Speothos venaticus in the ZFX tree. The topology difference between ZFY and ZFX trees may have resulted from the two-times higher substitution rate of the former than the latter, which was clarified in the present study. In addition, two types of transposable element sequence (SINE-I and SINE-II) were found to occur in the ZFY final intron of the twelve canid species examined. Because the SINE-I sequences were shared by all the species, they may have been inserted into the ZFY of the common ancestor before species radiation in Canidae. By contract, SINE-II found in only Canis aureus could have been inserted into ZFY independently after the speciation. The molecular diversity of SINE sequences of Canidae reflects evolutionary history of the species radiation.  相似文献   

17.
基于MFCC和GMM的昆虫声音自动识别   总被引:1,自引:0,他引:1  
竺乐庆  张真 《昆虫学报》2012,55(4):466-471
昆虫的运动、 取食、 鸣叫都会发出声音, 这些声音存在种内相似性和种间差异性, 因此可用来识别昆虫的种类。基于昆虫声音的昆虫种类自动检测技术对协助农业和林业从业人员方便地识别昆虫种类非常有意义。本研究采用了语音识别领域里的声音参数化技术来实现昆虫的声音自动鉴别。声音样本经预处理后, 提取梅尔倒谱系数(Mel frequency cepstrum coefficient, MFCC)作为特征, 并用这些样本提取的MFCC特征集训练混合高斯模型(Gaussian mixture model, GMM)。最后用训练所得到的GMM对未知类别的昆虫声音样本进行分类。该方法在包含58种昆虫声音的样本库中进行了评估, 取得了较高的识别正确率(平均精度为98.95%)和较理想的时间性能。该测试结果证明了基于MFCC和GMM的语音参数化技术可以用来有效地识别昆虫种类。  相似文献   

18.
Synopsis Males of two freshwater Italian gobies, the common goby, Padogobius martensii and the panzarolo goby, Knipowitschia punctatissima, emit trains of low-frequency pulses, i.e. drumming sounds, in the presence of a ripe female in the nest. In P, martensii the drumming sound is usually followed by a tonal sound (complex sound). Examination of the pulse structure suggests that these sounds are produced by muscles acting on the swimbladder. Both species exhibited high emission rates of spawning sounds, especially before the beginning of oviposition. Moreover, spawning sound production ceased only after the female abandoned the nest, which always occurred at the end of oviposition. This is the first study reporting the production among fishes of distinct sounds during protracted spawning. Unlike sounds produced just before mating by fishes with planktonic or demersal zygotes, the spawning sound production of these gobies does not function to coordinate mating events in the nest. The presence of a two-part vocalization by male P. martensii even suggests a functional dichotomy of spawning sounds in this species.  相似文献   

19.
SOUND AND ITS SIGNIFICANCE FOR LABORATORY ANIMALS   总被引:1,自引:0,他引:1  
1. Several methods of varying accuracy have been used to assess what sounds small laboratory animals such as rodents are capable of hearing. Most rodents can detect sounds from 1000 Hz (the frequency of the Greenwich Time Signal) up to 100000 Hz, depending on the strain, with usually one or more commonly two peaks of sensitivity within this range. Dogs can detect sound most easily from 500 Hz to 55000 Hz, depending on the breed. 2. Rodents also produce sound signals as a behavioural response and for communication in a variety of situations. Ultrasonic calls in the range 22000–70000 Hz are the main communicating pathway during aggressive encounters, mating, and mothering. Similar calls have also been recorded from isolated animals associated with inactivity, rest and possibly even sleep. 3. Very loud sounds cause seizures in rats and mice, or can make them more susceptible to other sounds later in life. This effect is possible even when animals are fully anaesthetized. Sound tends to startle and reduce activity in several species of animal. Even offspring of mice that have been sound-stressed exhibit abnormal behaviour patterns. Sounds also elicit various responses in rats from increasing aggression to making them more tolerant to electric shocks. 4. Levels of sound above 100 dB are teratogenic in several species of animals and several hormonal, haematological and reproductive parameters are disturbed by sounds above 80 dB. When rats are chemically deafened the disturbance to their fertility disappears. Lipid metabolism is disrupted in rats when exposed to over 95 dB of sounds, leading to increases in plasma triglycerides. Atherosclerosis can be produced in rabbits by similar levels of sound. 5. It has also been shown in guinea pigs and cats that hearing damage is governed by the duration as well as the intensity of the sound and is irreversible. Work on chinchillas hs demonstrated that sounds above 95 dB lead to this injury, but that sounds of 80 dB have no permanent effect on hearing sensitivity.  相似文献   

20.
In communication animals use a full range of signals: acoustic, visual, chemical, electrical and tactile. The processes involved in how and why animals communicate have long held veritable fascination for scientists. A branch of science concerned with the production of sound and its effects on living organisms is bioacoustics.The main purpose of the present study is to raise and discuss some issues related to the relationship between animals, their sounds and ecology, including presentation of methods of analysis of sound recordings. A better understanding of the relationship between the studied animals will allow for development of a better framework for future research, as well as a better grasp of interactions between different organisms, including humans. The paper discusses the significance of acoustic research in animal ecology and its possible applications in the future. The author also summarizes previous research in the field of sound communication of various animal species.The paper proves that vocalizations of every acoustically communicating animal are threatened by climate change. For marine animals, the source of changes in vocalization abilities is ocean acidification and increased ambient noise, which can affect communication and foraging behavior. For terrestrial animals, changes in precipitation and temperature may result in modifications of the sounds emitted, as well as certain modifications to the auditory system. Together with changes in species distribution due to environmental parameters, cumulatively these factors can cause changes in the entire landscape of acoustics ecosystems. Thanks to acoustic biomonitoring, we can understand how the sounds of entire habitats and acoustic ecosystems will change in response to the changing climate and how it will affect bioacoustics on a global scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号